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Abstract
The problem of identifying the satisfiability threshold of random 3-SAT formulas has received a lot
of attention during the last decades and has inspired the study of other threshold phenomena in
random combinatorial structures. The classical assumption in this line of research is that, for a given
set of n Boolean variables, each clause is drawn uniformly at random among all sets of three literals
from these variables, independently from other clauses. Here, we keep the uniform distribution of
each clause, but deviate significantly from the independence assumption and consider richer families
of probability distributions. For integer parameters n, m, and k, we denote by Fk(n, m) the family
of probability distributions that produce formulas with m clauses, each selected uniformly at random
from all sets of three literals from the n variables, so that the clauses are k-wise independent. Our
aim is to make general statements about the satisfiability or unsatisfiability of formulas produced by
distributions in Fk(n, m) for different values of the parameters n, m, and k.

Our technical results are as follows: First, all probability distributions in F2(n, m) with m ∈ Ω(n3)
return unsatisfiable formulas with high probability. This result is tight. We show that there exists
a probability distribution D ∈ F3(n, m) with m ∈ O(n3) so that a random formula drawn from D
is almost always satisfiable. In contrast, for m ∈ Ω(n2), any probability distribution D ∈ F4(n, m)
returns an unsatisfiable formula with high probability. This is our most surprising and technically
involved result. Finally, for any integer k ≥ 2, any probability distribution D ∈ Fk(n, m) with
m ∈ O(n1−1/k) returns a satisfiable formula with high probability.
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1 Introduction

Satisfiability of propositional formulas (SAT) is one of the most renowned problems in
theoretical computer science. It appeared in the first lists of NP-complete problems inde-
pendently proposed by Cook and Levin [44], and is pivotal for many developments in modern
complexity theory. Today, many lower bounds on the running time of algorithms rely on
the Exponential Time Hypothesis for solving SAT [11, 18, 36, 37]. On the practical side,
SAT solvers are frequently deployed in hardware circuit design, model checking, program
verification, automated planning and scheduling, as well as in solving real-life instantiations
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of combinatorial optimization problems such as FCC spectrum auctions. Modern SAT solvers
often find solutions to large industrial instances with thousands or even millions of variables
despite the NP-hardness of the problem. However, there is still a large discrepancy between
the performance of SAT solvers on those instances and theoretical average-case predictions,
which have been studied in great depth under the line of research on random SAT.

Random SAT

A j-CNF formula ϕ over n variables is composed of m OR-clauses, each containing exactly j

literals of j different variables. In the most commonly studied random SAT model, a formula
ϕ is generated uniformly at random from all possible j-CNF formulas over n variables and m

clauses. The most prominent theoretical question related to random SAT is to identify the
satisfiability threshold rj such that limn→∞ Pr[ϕ is satisfiable] is equal to 0 when m/n > rj ,
and equal to 1 when m/n < rj . It has been established [15] that 2-SAT has r2 = 1, and its
phase transition window [10] is m ∈ [n−Θ(n1/3), n + Θ(n1/3)]. For j ≥ 3, the asymptotic
j-SAT threshold was shown to be 2j log 2− 1

2 (1 + log 2)± oj(1) as j →∞ [17] (improving
previous results from [3]), while for large enough j the exact value of rj was determined
in [20]. However, the question of identifying rj for small values of j remains open. In
particular, random 3-SAT has attracted a lot of attention. For the lower bound part, it has
been shown in a series of papers [15, 12, 32, 1, 35, 39] that r3 ≥ 3.52 (the currently best
known bound is due to [35, 39]). The upper bound part is studied by [27, 38, 21, 19]; the
currently best known bound is r3 < 4.49 due to [19]. The estimate r3 ≈ 4.26 was derived
from numerical experiments [40] (see also [14, 41]).

A more recent line of work [29, 30, 31, 42] extends the standard model of random j-SAT
to non-uniform distributions. Their motivation comes from the empirical observation that,
in practice, CNF formulas often have rather different frequencies/probabilities for the n

variables to appear in each clause (following a power-law distribution instead of a uniform
one). Namely, Friedrich and Rothenberger [31] proposed a non-uniform random model, where
the literals {xi, xi}i∈[n] are selected independently at random in each clause c of the random
j-CNF with Pr[xi ∈ c] = Pr[xi ∈ c] = pi and where probabilities p = (pi)i∈[n] may vary
across different variables. They find satisfiability threshold r2(p) of non-uniform random
2-SAT for certain regimes depending on p. However, the non-uniform model of [31] does
not capture the community biases/correlations (i.e., the fact that certain variables are more
likely to appear together in a clause), which are often observed in practice [6]. This leads us
to the question of whether it is possible to relax the strong independence assumption in the
existing random SAT literature.

Relaxation of independence

We first observe that it does not make much sense to study distributions of SAT formulas with
arbitrary correlations over the clauses. Indeed, by allowing correlation between several clauses,
one may enforce that the random formula ϕ contains large fixed sub-formulas corresponding
to NP-hard SAT variants. This would be at odds with our goal of studying average-case
complexity. Therefore, we must keep a certain degree of independence in the distribution of
instances. We propose to consider the relaxation of mutual independence over m clauses in a
random formula ϕ to k-wise independence for a small constant k. To keep the new model
tractable, we focus on 3-SAT and uniform distribution of literals within each clause. I.e.,
we assume that (i) every 3-OR-clause c of a random 3-CNF formula ϕ has three literals
of three distinct variables drawn uniformly at random among all such triplets of literals
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and that (ii) given this marginal distribution of each clause c ∼ Funi., the distribution D
over the clause set C in ϕ is only k-wise independent instead of the mutually independent
distribution DInd. = (Funi.)⊗m in the standard model. This is a natural generalization that
has been considered in a number of different settings but, to the best of our knowledge, not
in the context of random SAT. Note that the smaller k is, the bigger the set of possible
distributions D. Furthermore, for small values of k, a k-wise independent distribution D can
still capture a large class of dependencies among clauses but at the same time does not allow
correlation between any k-tuples of clauses. In mathematical terms, the family of discrete
k-wise independent distributions naturally appears when we map the set of distributions to
the set of their low-degree moments. Specifically, if a distribution D is supported on the
n-dimensional binary cube supp(D) = {−1, 1}n, then all its moments of degree up to k can
be described as µ(D) = (E[

∏
i∈S xi])|S|≤k. As low-degree moments (basically, the image

of µ) are extremely important in statistical analysis, it is equally important to study the
kernel of the aforementioned mapping, which exactly corresponds to the family of k-wise
independent distributions. Let us provide additional justifications of our framework by
discussing some of the theoretical work on random 3-SAT and on other settings with a similar
k-wise independence relaxation.

Pseudo-randomness. Historically, the k-wise relaxation of independence has been actively
used in the literature on derandomization and pseudo-randomness, as it allows to sig-
nificantly reduce the amount of random bits needed to generate random objects. For
example, Alon and Nussboim [5] consider random Erdős-Rényi graphs and examine the
minimal degree k of independence needed to achieve a variety of graph properties and
statistics (such as connectivity, existence of perfect matchings, existence of Hamiltonian
cycles, clique and chromatic numbers, etc.) that match those in the mutually independent
case. Benjamini et al. [9] consider similar questions for monotone boolean functions.
The motivation in [5] comes from the fact that there are efficient constructions of k-wise
independent distributions with “low degree of independence” (say k = O(log n)) that
utilize only polylog(n) random bits, i.e., much fewer than the polynomial number of
random bits required to generate mutually independent distributions. While some of this
motivation can be applied to our setting of random 3-SAT, it is a conceptually different
story. Indeed, the perspective of pseudo-random generation is through the lenses of
“probability theory”, where one controls the distributions and can simply choose one that
satisfies necessary conditions such as, e.g., (log n)-wise independence. On the other hand,
our motivation stems from “statistics”, as our ideal model should have a reasonable fit to
empirical observations. So, we would like to use as minimal assumptions as possible and
study small (constant) degrees of independence.

Refutability of 3-SAT. While the research on lower bounds for random 3-SAT often comes up
with certain simple heuristics that efficiently find a satisfying assignment (see the surveys
by Achlioptas [2] and Flaxman [26]), it is extremely hard to find an efficient refutation
of a unsatisfiable 3-SAT formula. Indeed, the common approach to refute a given SAT
formula is proof in resolution. Chvatal and Szemeredi [16] first showed that a random
3-CNF formula with m = Θ(n) clauses (which is almost surely unsatisfiable) almost surely
admits exponential size proof in resolution. Later, Ben-Sasson and Wigderson [8] derived
similar result for much larger m = O(n3/2−ε). On the positive side, [28] gave the first
polynomial time algorithm via spectral techniques that almost surely1 refutes a random

1 Refutation in this case is an algorithm with one-sided error: it always refutes the formula correctly by
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3-SAT formula with m = n3/2+ε clauses. The best known bound on m is due to Feige
and Ofek [25] who proved that, for a sufficiently large constant c, random 3-SAT formulas
with m = c · n3/2 clauses can be almost surely refuted in polynomial time using another
spectral graph algorithm. We note that a similar situation (extremely high probability of
unsatisfiability for a random formula and inability to efficiently confirm it) is unlikely
to happen in our k-clause independent model for constant k. Indeed, the main proof
approach for dealing with arbitrary k-wise independent distribution is to define a k-wise
statistic, which differentiates any satisfiable formula from a typical unsatisfiable one.

Testing k-wise independence. The property of k-wise independence of a distribution with n

components can be tested using nO(k) = poly(n) many samples in polynomial time, when
k is a constant [4, 43]. This is a useful property to have, as it allows one to verify with
only polynomially many instances of random 3-SAT, whether these instances conform to
k-wise independence or not.

Robust mechanism design. A recent line of work in robust mechanism design also considers
families of k-wise independent Bayesian priors in single and multi-unit auctions [13, 22,
33, 34]. Their motivation is similar to ours, as they also rely on the statistical point
of view to justify the extension of the results for mutual independent priors typically
assumed in Bayesian mechanism design to k-wise independent ones.

1.1 Problem formulation
We consider random 3-CNF formulas with n variables generated from a distribution D over
m clauses, where the mutual independence assumption over clauses is relaxed to k-wise
independence. We use the term k-clause independence to refer to such distributions. We
denote such families of distributions by Fk(n, m), where each D ∈ Fk(n, m) has identical
marginals uniformly distributed over all possible OR-clauses and those marginals are only
assumed to be k-wise independent in D. We would like to understand the following question
for small values of k:

How does the satisfiability threshold r3 of random 3-SAT formulas behave under any
k-clause independent distribution D ∈ Fk(n, m)?

As the distribution D is not unique, there might be a large gap between lower and upper
estimates of r3. To this end, we formally define the lower satisfiability threshold LSTk(n) as
an upper bound on m, such that a random formula ϕ drawn from a distribution in Fk(n, m)
with m ≤ LSTk(n) clauses has Pr[ϕ is satisfiable] ≥ 2

3 . Similarly, the upper satisfiability
threshold USTk(n) is a lower bound on m, such that the random formula ϕ with m ≥ USTk(n)
clauses has Pr[ϕ is satisfiable] ≤ 1

3 . What kind of bounds on upper USTk(n) and lower
LSTk(n) thresholds should we expect?

Reasonable expectations

The condition D ∈ Fk(n, m) only says something about configurations of at most k clauses
and does not put any other restrictions on the random formula ϕ ∼ D. As the degree of
independence k is a small constant, any argument that gives bounds on LSTk or USTk can
only rely on statistics of at most a constant number of clauses. Hence, it is rather likely that
bounds on LSTk and USTk come together with efficient procedures of, respectively, finding a
satisfying assignment for a random formula ϕ, or certifying that ϕ is not satisfiable. Hence,
given the prior work on random 3-SAT for DInd. ∈ Fk(n, m), we get the following picture:

producing certain certificates, or says that the formula might be correct.
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Upper satisfiability threshold. The best known result for refuting 3-CNF formulas efficiently
is due to Feige and Ofek [25], who show how to do it only for a large number of clauses
m = c · n3/2. Furthermore, for any smaller number of clauses m = O(n3/2−ε), a random
3-CNF formula is likely to have only exponential in n proof size for any unsatisfiability
proof in resolution [8]. Hence, it is out of reach to aim for a better bound on USTk(n) than
O(n3/2) while relying only on k-wise independence for some constant k. In fact, the best
known positive result on efficiently computable proofs of unsatisfiability in resolution is
due to Beame et al. [7], who show that an ordered DLL algorithm executed on a random
3-SAT instance with m = Ω(n2/ log n) clauses terminates in polynomial time.

Lower satisfiability threshold. As the proofs for the lower bounds on r3 often establish
simple procedures that find satisfying assignments with high probability, it is still possible
that LSTk(n) is of similar order Θ(n) as the lower bounds on r3 for DInd.. Thus, the most
ambitious result would be to show that LSTk(n) ≤ ck · n for constant ck that increases
with k. A more modest goal is to aim for LSTk(n) = o(n) for a constant k, where
LSTk(n)→ Θ(n) as k → +∞.

1.2 Our results
We obtain the following bounds on the upper and lower satisfiability thresholds USTk(n) and
LSTk(n) for various values of k.

Upper satisfiability thresholds

We first consider small degrees of independence, i.e., k ∈ {2, 3}. In both cases, we show
that USTk(n) = Θ(n3), meaning that one needs almost all possible clauses in a 3-clause (as
well as 2-clause) independent formula to ensure that it is unsatisfiable (see Theorem 4 and
Theorem 7). The most nontrivial part is to construct the distribution D ∈ F3(n, m) with
m = Θ(n3) and Pr[ϕ is satisfiable] ≥ 2

3 . Our construction is based on “3-XOR formulas”
(i.e., OR-clauses that have either one or three literals that are satisfied by a randomly planted
truth assignment), which aligns well with the intuition developed in previous work [24, 25].
The main technical difficulty is to ensure k-clause independence by adding a small fraction
of unsatisfiable instances and checking all k-wise statistics.

Our most exciting and technically involved result (see Theorem 8) is our proof that
UST4(n) = O(n2), i.e., a random formula ϕ ∼ D with m = Ω(n2) clauses is unsatisfiable
with large probability for any 4-clause independent distribution D ∈ F4(n, m). It is worth
noting that such a bound is much harder to get under the 4-wise independence assumption
than in the case of a mutually independent distribution DInd.. Indeed, Feige and Ofek [25]
describe a very simple refutation algorithm for m = Θ(n2) that fixes a variable x and
considers all clauses containing x or x (there will be Θ(n) such clauses in expectation).
Then, after deleting x (or x), one can reduce the problem to the refutation of the respective
random 2-CNF sub-instance, which can be easily verified in polynomial time and has a
low satisfiability threshold of r2 = 1. This simple approach obviously fails for 4-clause
independent distributions. We instead construct a bipartite multigraph G(ϕ) between pairs
of distinct literals on one side and all singleton literals on the other, in which every OR-clause
in ϕ corresponds to three different edges. We then carefully examine the statistic κ(ϕ) that
counts K2,2 subgraphs in G(ϕ) for a random ϕ ∼ D. We find that the expected value of
κ(ϕ) for random ϕ is only slightly larger than its absolute minimal value, while at the same
time κ(ϕ) is significantly larger than its expectation when ϕ is satisfiable. Our argument

ESA 2025



103:6 On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses

bears certain similarities with the argument in [25], which also looked at intersections of two
literals between pairs of clauses but used the 3-XOR principle and a differently constructed
non-bipartite graph.

Lower satisfiability thresholds

We show (in Theorem 14) that LSTk(n) ≥ Ω(n1−1/k) for any k ≥ 2. I.e., any k-clause
independent random formula is satisfiable with high probability if it contains at most
O(n1−1/k) clauses. The argument is simple: for any k-clause independent distribution, we
look at the 3-uniform hypergraph that corresponds to the variables of a random formula
ϕ produced according to this distribution, and argue that this graph does not have Berge-
cycles, with high probability. We also provide an informal justification that this bound is
asymptotically tight, i.e., that LSTk(n) = O(n1−1/k). Specifically, we outline a plausible
approach for constructing a k-clause independent distribution with m = O(n1−1/k) clauses
such that most of its formulas are unsatisfiable. Our approach is built upon existing
constructions of dense hyper-graphs with large girth. It is interesting to note that, in
both the proof of the LSTk(n) = Ω(n1−1/k) result and the approach for showing that
LSTk(n) = O(n1−1/k), we only need to consider variables and can completely ignore the
distribution over the literals.

2 Preliminaries

Let x1, x2, · · · , xn be n boolean variables. A literal ℓ is a boolean variable or the negation
of it. For convenience, we usually represent a literal as a variable-sign pair, i.e., ℓ = (xi, s),
where s is the positive sign + if the literal is a boolean variable and the negative sign - if
it is its negation. We define Σ(n) = {+, -}n. An instance of the Satisfiability problem in
conjunctive normal form (or SAT instance, for short) is a boolean formula over a subset of
the n variables which is a conjunction of disjunctive clauses, each clause containing literals
with different variables. In a 3-SAT instance, every clause has exactly 3 literals. Each SAT
instance C can be described as a multiset of clauses. We denote the size of an instance C as
m = |C|.

Given the number of variables n, let X(n) be the set of variables. Let T (n) be the set
of all unordered triplets of variables T (n) = {(xi, xj , xk) | xi, xj , xk ∈ X(n), i < j < k} and
T (n) be the set of all possible clauses, i.e., all triplets with literals of different variables.
We will usually omit the dependency of X, T, and T on n, when the value of n is clear
from the context. To refer to the variable (the set of variables) or the sign (the set of
signs) of a literal (a clause c ∈ C), we define operators Var(·) and Sign(·), so that if, e.g.,
c = ((x1, +), (x2, -), (x3, +)), then Var(c) = (x1, x2, x3) and Sign(c) = (+, -, +).

A truth assignment is a vector σ ∈ {0, 1}n, where 1 or 0 at the σi coordinate corresponds
to the “true” or “false” value of xi, respectively. A truth assignment σ is satisfying for an
instance C when each clause c ∈ C has at least one true literal under σ. An instance C is
satisfiable if there exists a satisfying assignment; otherwise, C is unsatisfiable.

The random 3-SAT model assumes that the instance is drawn from a probability distri-
bution over all possible 3-SAT instances with m clauses and n variables. The main object
of study in such a model is the probability of such a random instance being satisfiable as a
function of n and m.



I. Caragiannis, N. Gravin, and Z. Jiang 103:7

2.1 Random 3-SAT without mutual independence
In the standard random 3-SAT model, each clause is drawn uniformly at random among all
clauses in T (n), independently from the other clauses. A constructive definition is given by
Model 1. We denote the distribution over instances generated by Model 1 as DInd..

MODEL 1 Selects a 3-SAT instance uniformly at random from all possible instances.

Input: Integers n ≥ 3 and m ≥ 1
Output: A 3-SAT instance with n variables and m clauses
C ← ∅;
for l← 1, . . . , m do

pick a literal triplet (ℓ1, ℓ2, ℓ3) uniformly at random from T (n);
c← (ℓ1, ℓ2, ℓ3);
C ← C ∪ {c};

end
return C;

Our main focus will be on k-wise relaxations of the independent distribution.

▶ Definition 1 (k-clause independent random SAT). A distribution D for selecting a random
SAT instance is k-clause independent if the set of any fixed k clauses S ⊆ C is distributed
uniformly at random over all k-tuples of possible clauses, i.e.,

Pr
C∼D

[ci = ti,∀i ∈ [k]] = Pr
C∼DInd.

[ci = ti,∀i ∈ [k]] =
∏

i∈[k]

Pr [ci = ti] .

for every c1, . . . , ck ∈ C and t1, . . . , tk ∈ T . We denote the family of all k-clause independent
distributions with m clauses over n variables as Fk(n, m).

We remark that, in contrast to the random 3-SAT model (Model 1), which defines a single
distribution for given n and m, the family Fk(n, m) contains many different distributions.

By definition, the probability of any event AS that depends only on a subset S of at
most k clauses in the k-clause independent distribution D is the same as for DInd.. I.e.,
the expectations of the indicator function I[AS ] are the same for D and DInd.. Hence, by
linearity of expectation, any statistic that involves only k′ ≤ k clauses must be the same for
D and DInd., i.e.,

E
C∼D

 ∑
S⊆C,

|S|=k′

I
[
AS

] = E
C∼DInd.

 ∑
S⊆C,

|S|=k′

I
[
AS

] . (1)

We would like to understand what are the largest/smallest possible number of clauses
for a random 3-SAT formula to be almost surely satisfiable/unsatisfiable under any k-clause
independent distribution. Using SAT (C) to denote the event that the SAT instance C is
satisfiable, we define the following satisfiability “thresholds”.

▶ Definition 2 (Upper satisfiability threshold). The upper satisfiability threshold USTk(n) is
defined as follows. For integer n ≥ 3, USTk(n) is the minimum integer m such that

Pr
C∼D

[SAT (C)] ≤ 1/3, ∀D ∈ Fk(n, m).

ESA 2025
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▶ Definition 3 (Lower satisfiability threshold). The lower satisfiability threshold LSTk(n) is
defined as follows. For integer n ≥ 3, LSTk(n) is the maximum integer m such that

Pr
C∼D

[¬SAT (C)] ≤ 1/3, ∀D ∈ Fk(n, m).

Extending the line of research on the standard random 3-SAT model, we would like to have
as tight estimates of USTk(n) and LSTk(n) as possible.

3 Tight bounds for the upper satisfiability threshold UST2(n)

We begin with a technical warm up and prove asymptotically tight bounds on the upper
satisfiability threshold of 2-clause independent random 3-SAT.

▶ Theorem 4. UST2(n) = Θ(n3).

Theorem 4 follows by the next two lemmas. Lemma 5 provides an upper bound on UST2(n).
In the proof, we introduce the technique that we will use later in Section 5 to get a much
more involved upper bound on UST4(n).

▶ Lemma 5. For any D ∈ F2(n, m) with m ≥ 56
(

n
3
)
, PrC∼D[SAT (C)] ≤ 56

(
n
3
)
/m.

Proof. Let ξ(C) def==
∑

ci,cj∈C I[ci = cj ] be the number of identical clause pairs in the instance
C. On the one hand, Equation (1) implies that the expectation of ξ(C) is the same when C is
drawn from a 2-clause independent distribution and DInd.. On the other hand, if an instance
C has a satisfying assignment, at least 1/8 of possible clauses from T must not appear in C,
which means that the value of ξ(C) is significantly higher than its expectation. These two
observations will allow us to get the desired bound on the probability PrC∼D[SAT (C)].

Let D ∈ F2(n, m) and define p
def== PrC∼D[SAT (C)]. We shall derive two lower bounds

on the value the random variable ξ(C) can get: an unconditional lower bound LB[ξ] (not far
from EC∼D[ξ(C)]) and a lower bound LB[ξ | SAT ] on ξ(C) when C is satisfiable (this will
be significantly larger than EC∼D[ξ(C)]). We note that

EC∼D [ξ(C)] = Pr [SAT (C)] ·E [ξ(C) | SAT (C)]
+ Pr [¬SAT (C)] ·E [ξ(C) | ¬SAT (C)]
≥ p · LB[ξ | SAT ] + (1− p) · LB[ξ]. (2)

We next derive EC∼D[ξ(C)], LB[ξ], and LB[ξ | SAT ]. We denote as M
def== |T | = 8

(
n
3
)

the
number of possible clauses and λ

def== m/M > 1. First, we observe that

EC∼D [ξ(C)] =
∑

ci,cj∈C

E
[
I
[
ci = cj

]]
= m2 −m

2 ·Pr [ci = cj ] = m2 −m

2 ·M = m · λ ·M − 1
2 ·M .

(3)

To derive the lower bounds LB[ξ] and LB[ξ | SAT ], we observe that any given clause type
t ∈ T contributes

(
dt

2
)

pairs to ξ(C), where dt
def==

∑
c∈C I[c = t] is the number of type t

clauses in C. I.e.,

ξ(C) =
∑
t∈T

d2
t − dt

2 , where
∑
t∈T

dt = m. (4)
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The minimum of ξ(C) = 1
2

∑
d2

t − m
2 under the constraint

∑
dt = m is achieved when all

the dt variables are equal, i.e., equal to m
|T | = λ. Thus, we get the following lower bound

LB[ξ] on ξ(C):

ξ(C) ≥ LB[ξ] def== 1
2

∑
t∈T

λ2 − m

2 = m · λ− 1
2 . (5)

To derive the lower bound LB[ξ | SAT ] on ξ(C) for a satisfiable formula C, we note that at
least a 1

8 -fraction of the clause types are not present in C. I.e., at least M
8 of the dt variables

have value equal to 0 in (4). Similarly to (5), the minimum value of ξ(C) is achieved when
all the remaining 7M

8 dt variables are equal to each other, getting the value 8·m
7·M . That is,

ξ(C) ≥ LB[ξ | SAT ] def== 7 ·M
8 ·

(
8λ

7

)2
− m

2 = m ·
8
7 λ− 1

2 . (6)

We plug the bounds (3), (5), and (6) into (2) to get

m · λ ·M − 1
2 ·M ≥ p ·m ·

8
7 λ− 1

2 + (1− p) ·m · λ− 1
2 .

After simple algebraic transformation, this is equivalent to the inequality 1− 1
M ≥

p
7 λ, which

implies that p ≤ 7·M
m = 56

(
n
3
)
/m. ◀

To lower-bound UST2(n), we use a specific 2-clause independent distribution, which is
depicted as Model 2. The next lemma proves the correctness of our construction. The proof
is deferred to the full version.

▶ Lemma 6. Model 2 defines a 2-clause independent probability distribution that generates
3-SAT instances of size Ω(n3) that are satisfiable with probability at least 1−O(n−3).

MODEL 2 Selects a 3-SAT instance according to a 2-clause independent distribution.
Input: Integer n ≥ 3
Output: A 3-SAT instance C with n variables and m =

(
n
3

)
clauses

With probability 1−
(

n
3

)−1, construct a satisfiable instance C:
1. Match m =

(
n
3

)
clauses to all different T (n) variable triplets uniformly at random;

2. Pick a random truth assignment σ ∼ Uni[{0, 1}n];
3. For each clause c ∈ C matched to the variable triplet (xi, xj , xk) ∈ T (n)

Pick a random sign triplet (s1, s2, s3) of the same parity with (σi, σj , σk)
(i.e., I

[
s1 = -

]
+ I

[
s2 = -

]
+ I

[
s3 = -

]
+ σi + σj + σk = 0 mod 2);

Let clause c← ((xi, s1), (xj , s2), (xk, s3));

With probability
(

n
3

)−1, sample C from distribution Duni-var defined as follows:
1. Pick a random single variable triplet (xi, xj , xk) ∼ Uni[T (n)];
2. For each clause c ∈ C

Pick a random sign triplet (s1, s2, s3) ∼ Uni[{+, -}3];
Let clause c← ((xi, s1), (xj , s2), (xk, s3));

4 A tight lower bound for UST3(n)

Clearly, Lemma 5 also provides an upper bound on UST3(n). The proof of the next statement
follows by presenting a matching lower bound through Model 3.

▶ Theorem 7. UST3(n) = Θ(n3).
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MODEL 3 Selects a 3-SAT instance according to a 3-clause independent distribution.

Input: Integer n ≥ 3 and even integer m ≤ 1
3 ·

(
n
3

)
.

Output: A 3-SAT instance C with n variables and m clauses.
Set p

def== (m− 1) ·
((

n
3

)−1 − 1
3

(
n
3

)−2
)

and q
def==

(
n
3

)−2;
With probability 1− p− q, construct a satisfiable instance C:

1. Match C clauses to m different variable triplets in T (n) uniformly at random;
2. Pick a random truth assignment σ ∼ Uni[{0, 1}n];
3. For each clause c ∈ C matched to the variable triplet (xi, xj , xk) ∈ T (n)

Pick a random sign triplet (s1, s2, s3) of the same parity with (σi, σj , σk)
(i.e., I

[
s1 = -

]
+ I

[
s2 = -

]
+ I

[
s3 = -

]
+ σi + σj + σk = 0 mod 2);

Let clause c← ((xi, s1), (xj , s2), (xk, s3));
With probability p, construct an instance C with m/2 different variable triplets:

1. Uniformly at random match C to m
2 different variable triplets in T (n)

(exactly 2 clauses in C per one variable triplet);
2. For each clause c ∈ C assigned to the variable triplet (xi, xj , xk) ∈ T (n)

Pick a random sign triplet (s1, s2, s3) ∼ Uni[{+, -}3];
Let clause c← ((xi, s1), (xj , s2), (xk, s3));

With probability q, sample C from distribution C ∼ Duni-var as follows:
1. Pick a random single variable triplet (xi, xj , xk) ∼ Uni[T (n)];
2. For each clause c ∈ C

Pick a random sign triplet (s1, s2, s3) ∼ Uni[{+, -}3];
Let clause c← ((xi, s1), (xj , s2), (xk, s3));

We give an explicit construction (see Model 3) of a 3-clause independent distribution
D ∈ F3(n, m) with n variables and (an even number of) m ≤ 1

3 ·
(

n
3
)

clauses, such that
PrC∼D[SAT (C)] ≥ 2/3 − O(n−6). Our construction in Model 3 follows the same pattern
as in Model 2, but uses an additional step and minor modifications to ensure 3-clause
independence.2 The proof is deferred to the full version.

5 An upper bound for UST4(n)

Our next result is rather surprising as it indicates that 4-wise independence allows for a
steep decrease in the upper satisfiability threshold compared to 2- and 3-wise independence.

▶ Theorem 8. UST4(n) = O(n2).

Proof. We will prove the theorem by showing that for any positive integers n and m and
any 4-clause independent probability distribution D ∈ F4(n, m), it holds PrC∼D[SAT (C)] ≤
O

(
max

{
n2

m , 1√
n

})
. The claim is obvious for n < 10. We will assume that n ≥ 10 and

m ≤
√

10 ·n5/2, and will show that PrC∼D[SAT (C)] ≤ 4288·n2

m for every 4-clause independent
probability distribution D ∈ F4(n, m). Note that for m >

√
10 · n5/2, the probability bound

of O
(

1√
n

)
follows by selecting uniformly at random a subset of

√
10 · n5/2 clauses.

We will use a graph representation of 3-SAT instances defined as follows. Given a 3-SAT
instance C consisting of m clauses over n variables, the bipartite multi-graph G(C) =
(L∪R, E) has a node corresponding to each (unordered) pair of literals {ℓ1, ℓ2} from different
variables at the left node side L and a node corresponding to each literal ℓ at the right node

2 The first and third block of Model 3 correspond to the two blocks of Model 2. The only difference in the
first block is that the matching of C is not to all the variable triplets in T (n) but only to m of them.
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side R. Hence, |L| = 4
(

n
2
)

and |R| = 2n. For every clause c = (ℓ1, ℓ2, ℓ3) of C, G(C) has
the three edges between the node corresponding to the pair of literals (ℓi, ℓj) and the node
corresponding to literal ℓ6−i−j for (i, j) ∈ {(1, 2), (1, 3), (2, 3)}.

The main proof idea of Theorem 8 is to analyze the statistic κ(C) defined as the number
of distinct K2,2 subgraphs in graph G(C). Namely, we first derive an upper bound on the
expectation EC∼D[κ(C)] (see Lemma 9) when C is drawn from the 4-clause independent
probability distribution D ∈ F4(n, m). We then give two lower bounds on the value of the
random variable κ(C) by considering an underlying simple subgraph of G(C). Note that the
underlying simple subgraph corresponds to a smaller instance C̃ with m̃ distinct clauses,
in which we remove all duplicated clauses in C. As we show in Lemma 10, this does not
significantly reduce the size of the instance. Our first lower bound (Lemma 11) on κ(C̃)
holds for any instance C̃ and is very close to the upper bound on the expectation of κ(C).
On the other hand, when C̃ is satisfiable, we manage to give a significantly stronger lower
bound on κ(C̃) in Lemma 12. We then conclude the proof of Theorem 8 by relating all these
upper and lower bounds with EC∼D[κ(C)] in Lemma 13. We defer the proofs of Lemmas 9,
10, 11, and 12 to the full version.

▶ Lemma 9. For any D ∈ F4(n, m), it holds that EC∼D[κ(C)] ≤ 81m4

64n6 + 729m3

32n4 .

▶ Lemma 10. EC∼D[m̃4] ≥ m4 − 125
6 ·m

3 · n2.

▶ Lemma 11. Let C be an instance with n variables and m̃ distinct clauses. Then,

κ(C̃) ≥ 81m̃4

64n6 −
27m̃3

8n4 .

▶ Lemma 12. Let C be a statisfiable instance with n variables and m̃ distinct clauses. Then

κ(C̃) ≥ 82m̃4

64n6 −
123m̃3

16n4 .

▶ Lemma 13. For any D ∈ F4(n, m), we have EC∼D[κ(C)] ≥ 81m4

64n6 − 1215m3

32n4 + m4

64n6 ·
PrC∼D[SAT (C)].

Proof. We prove the lemma with the following derivation:

E
C∼D

[κ(C)] ≥ E
C∼D

[
κ(C̃)

]
= E

C∼D

[
κ(C̃)|SAT (C)

]
· Pr

C∼D
[SAT (C)]

+ E
C∼D

[
κ(C̃)|¬SAT (C))

]
· Pr

C∼D
[¬SAT (C)]

≥ E
C∼D

[
82m̃4

64n6 −
123m̃3

16n4

∣∣∣∣SAT (C)
]
· Pr

C∼D
[SAT (C)]

+ E
C∼D

[
81m̃4

64n6 −
27m̃3

8n4

∣∣∣∣¬SAT (C)
]
· Pr

C∼D
[¬SAT (C)]

≥ E
C∼D

[
82m̃4

64n6 −
123m̃3

16n4

]
− E

C∼D

[
m̃4

64n6

∣∣∣∣¬SAT (C)
]
· Pr

C∼D
[¬SAT (C)]

≥ 82
64n6 E

C∼D

[
m̃4]
− 123m3

16n4 −
m4

64n6 · Pr
C∼D

[¬SAT (C)]

≥ 82m4

64n6 −
861m3

32n4 −
123m3

16n4 −
m4

64n6 · Pr
C∼D

[¬SAT (C)]
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= 81m4

64n6 −
1107m3

32n4 + m4

64n6 · Pr
C∼D

[SAT (C)] ,

as desired. The second inequality follows by Lemmas 12 and 11, the fourth one by the fact
m̃ ≤ m, and the fifth one by Lemma 10. ◀

Now, Lemmas 9 and 13 yield

81m4

64n6 −
1215m3

32n4 + m4

64n6 · Pr
C∼D

[SAT (C)] ≤ E
C∼D

[κ(C)] ≤ 81m4

64n6 + 729m3

32n4 ,

which implies the desired bound PrC∼D[SAT (C)] ≤ 4288·n2

m . Theorem 8 follows. ◀

6 Bounds on the lower satisfiability threshold

In this section, we present our upper bound on the lower satisfiability threshold and explain
why we believe that it is the tight bound for every degree of independence.

▶ Theorem 14. For every integer k ≥ 2, LSTk(n) = Ω(n1−1/k).

Proof. We prove the theorem by showing that for every integers n ≥ 3 and m ≤ 1
12 · n

1−1/k,
any k-clause independent distribution D ∈ Fk(n, m) satisfies PrC∼D[¬SAT (C)] ≤ 1/3.

Let G(C) = (V, E) be a 3-uniform hypergraph defined by an instance C drawn from a
k-clause independent distribution D, V = X(n) and E = {Var(c)}c∈C , i.e., every node in G

represents a variable and every hyperegde in G represents the variable triplet of a clause. We
consider simple Berge-cycles (or, simply, cycles) of length ℓ ≥ 2. A cycle of length ℓ > 2 is
defined as a set of ℓ distinct hyperedges e1, e2, . . . , eℓ ∈ E such that pairs of consecutive edges
share exactly one vertex (|ei ∩ ei+1| = 1 and |eℓ ∩ e1| = 1) and all other pairs of hyperedges
are disjoint. In a cycle of length ℓ = 2, the two hyperedges e1 and e2 have at least two
vertices in common. We similarly define a path of length ℓ ≥ 2, where pairs of consecutive
edges share exactly one vertex (|ei∩ei+1| = 1 for i ∈ [ℓ−1]) and all other pairs of hyperedges
are disjoint. We observe that any unsatisfiable instance must contain a subgraph H in G

such that every variable in H appears in at least two hyperedges of H, which in turn implies
that G has a cycle. That translates into the following upper bound on the probability that
instance C ∼ D is not satisfiable:

Pr
C∼D

[¬SAT (C)] ≤ Pr
C∼D

[∃ cycle in G(C)] ≤
∑
ℓ≥2

E
C∼D

[
Cycle

ℓ
(G(C))

]
≤ E

C∼D
[Path

k
(G(C))] +

k−1∑
ℓ=2

E
C∼D

[
Cycle

ℓ
(G(C))

]
= E

C∼DInd.
[Path

k
(G(C))] +

k−1∑
ℓ=2

E
C∼DInd.

[
Cycle

ℓ
(G(C))

]
. (7)

In the above derivation, Cycle
ℓ
(G(C)) counts the number of distinct cycles of length ℓ in G,

and Path
k
(G(C)) counts the number of distinct paths of lengths k in G. For each ordered

tuple of k hyperedges in G (there are k! ·
(

m
k

)
such orderings), we can easily calculate the

probability that they form a path. Thus,

E
C∼DInd.

[Path
k
(G(C))] = k! ·

(
m

k

)
·

3 ·
(

n−3
2

)(
n
3
) ·

k∏
t=3

2 ·
(

n−2t+1
2

)(
n
3
) ≤ mk · 9

n
·
(

6
n

)k−2
. (8)
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For each ordering of k edges, the first edge e1 can be chosen arbitrarily; the second edge has
exactly one vertex in common with e1 and the remaining two vertices are chosen from [n] \ e1
vertices; each of the remaining edges et for t ≥ 3 has exactly one of the two vertices of et−1
different from et−1 ∩ et−2 and has two other vertices chosen from [n] \ (e1 ∪ . . . ∪ et−1). The
upper bound follows after simplifying each of the terms. We similarly derive an upper bound
on E[Cycle

ℓ
(G(C))] for ℓ ≥ 3 as follows:

E
C∼DInd.

[
Cycle

ℓ
(G(C))

]
≤ 1

6 · ℓ! ·
(

m

ℓ

)
·

[
3 ·

(
n−3

2
)(

n
3
) ·

ℓ−1∏
t=3

2 ·
(

n−2t+1
2

)(
n
3
) ]

· 4 · (n− 2ℓ + 1)(
n
3
) ,

where for each ordering of ℓ edges (now 2ℓ ≥ 6 orderings correspond to the same cycle), the
probabilities to choose the first ℓ− 1 edges can be computed in the same way as for Path

k
;

for the last hyper-edge eℓ, there are 4 = 2 · 2 ways to select a vertex of eℓ−1 together with a
vertex of e1, and n− 2ℓ + 1 choices for the new vertex in [n] \ (e1 ∪ . . . ∪ eℓ−1). Hence,

E
C∼DInd.

[
Cycle

ℓ
(G(C))

]
≤ mℓ ·

[
9
n
·
(

6
n

)ℓ−3
]
· 4

n2 = 1
6

(
6m

n

)ℓ

. (9)

For ℓ = 2 we have

E
C∼DInd.

[
Cycle2(G(C))

]
=

(
m

2

)
· 3 · (n− 3) + 1(

n
3
) = 3m · (m− 1) · (3n− 8)

n · (n− 1) · (n− 2) ≤
(

3m

n

)2
. (10)

We conclude the proof by plugging estimates (8),(9), and (10) into (7).

Pr [¬SAT (C)] ≤ 2
3

(6m)k

nk−1 +
(

3m

n

)2
+ 1

6

k−1∑
ℓ=3

(
6m

n

)ℓ

≤ 2
3 · 2k

+ 1
16 + 1

6 ·
(

1
23 + 1

24 + . . . + 1
2k−1

)
<

1
3 .

The second inequality follows since m ≤ 1
12 · n

1−1/k. ◀

6.1 On the tightness of the O(n1−1/k) bound for LSTk(n)
Theorem 14 says that k-wise independence of D ∈ Fk(n, m) is enough to guarantee satisfiab-
ility of a random formula C ∼ D for the number of clauses m of order n1−1/k. On the other
hand, for the mutually independent distribution DInd. a random formula is unsatisfiable
with high probability for m = O(n). Furthermore, our analysis in Theorem 14 is essentially
tight and it seems unlikely that there is a better bound than m = O(n1−1/k). We discuss
below why this is the case, by outlining a plausible way for constructing k-clause independent
distribution D ∈ Fk(n, m) with PrC∼D[¬SAT (C)] ≥ 2

3 and m = Θ(n1−1/k).

Informal outline of the construction

In our construction of the k-clause independent distribution D we are only concerned with the
distribution of clauses over variables, as all literals will be assigned uniformly at random and
independently. Then, a sufficient condition for a random formula C ∼ D to be unsatisfiable
with large probability is that the 3-uniform hypergraph G(C) constructed in Theorem 14
has a dense subgraph, i.e., a subgraph on |V (H)| vertices (corresponding to variables in
C) with at least |E(H)| ≥ 100 · |V (H)| hyperedges. Indeed, one can simply count the
expected number of satisfying assignments of a random formula ϕH on V (H) variables and
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|E(H)| fixed clauses with randomly assigned literals: initially, all 2|V (H)| assignment are
satisfying, but then, as we add |E(H)| clauses one-by-one, the expected number of satisfying
assignments reduces each time exactly by a factor 7/8 (each satisfying assignment disappears
with probability 1/8). At the end, we get that the expected number of satisfying assignments
is

( 7
8
)100|V (H)| · 2|V (H)| < 0.01, which means that ϕ is unsatisfiable most of the times.

Now, we want to make sure that our hypergraph G(C) often has such a “dense” subgraph
H, to get an unsatisfiable random formula. Notice that H needs only have a constant
number of vertices. Also, note that according to the analysis in Theorem 14, we need to
avoid any cycles of length smaller than or equal to k, as the probability of having such a
cycle is of order o(1) in G(C) for m = c · n1−1/k and any k-clause independent distribution
C ∼ Fk(n, m). Luckily, there are many construction of such 3-uniform hypergraphs H on
|V (H)| = O(1) vertices with large number of hyperedges |E(H)| ≥ 100|V (H)|, and also
of large girth g(H) ≥ k + 1 (e.g., see [23]). We shall “plant” H (essentially insert H as a
connected component into G) with large probability in our construction. However, we need
to make sure that by inserting H into our graph G, we still have enough room to match
Pr[ci = ti,∀i ∈ S] =

∏
i∈S Pr[ci = ti] for all S : |S| ≤ k. Next, we give a high level idea how

one could achieve this.

As usual for the construction of distributions with identical marginals, we symmetrize D
over all possible permutations of variables in C ∼ D. Then, our goal is to match the expected
numbers for each isomorphism class of configurations of k hyperedges in G(C) for C ∼ D
with C ∼ DInd.. It is useful to take note of the structure of hypergraph G(C) for C ∼ DInd.
when m = c · n1−1/k: it consists of connected components, each of which is a tree of size at
most k; the number of connected components of size k is a constant that grows slightly faster
than linearly in c and, more generally, the number of connected components of size k − j

is Θ(nj/k). There is also a o(1) probability event of having a Berge-cycle or a connected
component of size at least k + 1 in G(C) for C ∼ DInd.. We can ignore in our construction
of D those events, by adding small probability mass to D that consists of DInd. conditional
on any of these rare events (can be easily achieved via rejection sampling from DInd.). In
this way, we only need to worry about matching expected numbers of forest configurations of
size k in G(C) between C ∼ D and C ∼ DInd.. We can pick the constant in m = c · n1−1/k

sufficiently large, so that the constant size subgraph H contributes fewer trees of each type
than their respective expected numbers in G(C) for C ∼ DInd.. Then, we can add a few
more connected components that are trees of size k to C ∼ D, so that we match k-wise
statistics on all tree configurations with C ∼ DInd.. By having H and a few trees of size k in
the graph G(C) for C ∼ D, we only utilize a constant number of variables. Then, we would
like to keep adding smaller connected components that consist of trees with strictly less than
k hyperedges and eventually match k-wise statistics on all forest-like configurations of size k.

It seems plausible that the approach outlined above should work and yield a k-clause
independent distribution D. Apart from heavy notation that would be needed to formalize
all steps in the above outline, the main technical hurdle is to ensure that statistics for all
“forest-like” configurations of k hyperedges with more than one connected component are
perfectly matched with G(C) for C ∼ DInd.. Note, however, that even if our approach fails
and there is a stronger version of Theorem 14 with m = ω(n1−1/k) and PrC∼D[SAT (C)] ≥ 2

3
for any k-clause independent distribution D, such a theorem would require a rather nontrivial
argument that relies on subtle dependencies between multiple k-wise statistics.
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