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—— Abstract

The classical comparison-based sorting problem asks us to find the underlying total ordering of a

given set of elements, where we can only access the elements via comparisons. In this paper, we
study a restricted version, where, as a hint, a set T" of possible total orderings is given, usually in
some compressed form.

Recently, an algorithm called topological heapsort with optimal running time was found for case
where T is the set of topological orderings of a given directed acyclic graph, or, equivalently, T is
the set of linear extensions of a partial ordering [Haeupler et al. 2024]. We show that a simple
generalization of topological heapsort is applicable to a much broader class of restricted sorting
problems, where T corresponds to a given antimatroid.

As a consequence, we obtain optimal algorithms for the following restricted sorting problems,
where the allowed total orders are ...

...restricted by a given set of monotone precedence formulas;

...the perfect elimination orders of a given chordal graph; or

...the possible vertex search orders of a given connected rooted graph.
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1 Introduction

One of the fundamental problems in theoretical computer science is sorting. It has a wide
variety of applications in practice [24] and is frequently used as an introduction to design
and analysis of algorithms.

Perhaps the most intensely studied variant is comparison-based sorting, where one can only
access the input elements via comparisons (otherwise, we assume the standard word RAM
model). This excludes bucket sort, radix sort, and other integer-sorting techniques [10, 16, 15].
The well-known information-theoretic bound (ITB) states that comparison-based sorting
requires log(n!) ~ nlogn comparisons in the worst case, and many algorithms asymptotically
matching this bound are known.

In this paper, we study a restricted variant of comparison-based sorting. In addition to
the n elements to be sorted, we are give a set T of possible total orders, with the guarantee
that the actual order of the input is contained in 7. Call this the T-sorting problem. Note
that T may be very large compared to n, so it makes sense to consider variants of the problem
where T is given in some compressed form. Regardless of that, the ITB for the T-sorting
problem is log |T'|, so perhaps the first question to ask is: Can we solve the T-sorting problem
with only O(log|T'|) comparisons?

In turns out that the answer is yes if |T'| > 2™, Fredman [9] showed how to solve the
T-sorting problem with O(n + log|T'|) comparisons. This algorithm assumes that T is given
explicitly and is thus entirely impractical. Fredman also showed that there exist sets T with
|T'| € O(n) where the T-sorting problem requires 2(n) comparisons, which means the ITB is
not always tight.

Most later work on this problem has been focused on the special case where T is the
set of linear extensions of a partial order P, given by its Hasse diagram. It is known that
O(log |T|) comparisons are sufficient, that is, the ITB is tight (even when logT < n). After
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decades of research [21, 9, 29, 19, 2, 5, 33], eventually, two algorithms were found that are
simultaneously comparison-optimal and running-time optimal [14, 32]. Both algorithms
actually solve the slightly more general DAG sorting problem: Given is a directed acyclic
graph G, and T is taken as the set of topological orderings of G. Note that each DAG G
defines a partial order P (though G may contain some “unnecessary” edges), and T is the
set of linear extensions of P.

Most important for our purposes is the topological heapsort algorithm of Haeupler, Hladik,
Tacono, Rozhon, Tarjan, and Tétek [14]. This was the first DAG-sorting algorithm with
optimal running time O(|V(G)| + |E(G)| + log|T|), though it makes O(|V(G)| + log|T|)
comparisons, which is non-optimal if |T'| is small. Achieving comparison optimality requires
further modifications, which we discuss later.

We briefly describe topological heapsort. Let G be the given DAG. At the beginning,
identify the set S of sources (vertices of in-degree 0) of G, and insert them into a priority
queue Q. In each following step, we first find and remove the minimum element z from Q.
Then, we remove x from G. This may create several new sources, which we all insert into Q.
Repeat until @ is empty. It is easy to see that this algorithm is correct if the underlying total
order of the vertices is indeed a topological ordering of G. Haeupler et al. achieve optimal
running time by using a special priority queue with the so-called working-set property.

Let us now try to generalize topological heapsort to solve the general T-sorting problem.
Suppose that instead of the graph G, we are given a black-box data structure D that reports
all elements that are the minimum of at least one ordering 7 € T'. After “removing” the
first k elements x1, x2, ..., 2k, let D report all elements y such that z1xs ... x5y is a prefix
of some ordering 7 € T (the available elements). Again, it is easy to see that topological
heapsort with this data structure is correct. But is it optimal?

The main contribution of this paper (Section 3) is to show that topological heapsort has
optimal running time if 7' corresponds to a class of structures called antimatroids, which
are a generalization of partial orders, when we disregard the running time for the data
structure D. We additionally show that, for several possible representations of antimatroids,
we can implement D such that its total running time is linear in the size of the input, so
the running time stays optimal (Section 4). Finally, we show how to additionally achieve
comparison optimality (Section 5). The full version of the paper contains various omitted
proofs, as well as a discussion of several generalizations of antimatroids where topological
heapsort is not optimal. In the remainder of this section, we give an informal definition of
antimatroids, and discuss some related work.

Antimatroids. Fix a set T of total orderings, and consider the black-box data structure D
mentioned above. Recall that, for each sequence x1,x2, ...,z of k> 0 elements, D tells us
the set of available elements y such that zixzs...xxy is a prefix of some 7 € T. It is clear
that any set T can be described in this way. Intuitively, T is an antimatroid if the following
conditions apply. First, once an element becomes available, it stays available until it is chosen
(availability is monotone); and second, availability of an element can only depend on the set
of elements chosen so far (but not their order).

The first condition can be nicely related to topological heapsort: It means that our
priority queue @ at no point contains unavailable elements. The second condition may seem
more surprising, but it turns out to be also necessary for optimality of topological heapsort
and tightness of the ITB (for details, see the full version of the paper).
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Antimatroids were first studied by Dilworth [7] in lattice theory. Later, they were found
to be special cases of so-called greedoids [25, 26], which are structures admitting a certain
greedy optimization procedure. A common alternative definition of antimatroids treats them
as set systems; this definition can be related to matroids (hence the name), which are also
special cases of greedoids. We refer to the surveys of Bjorner and Ziegler [1] and Korte,
Schrader, and Lovész [27] for more.

Related work. Optimal algorithms are known [17, 4, 29] for merging two sorted lists; this
corresponds to a partial order consisting of exactly two disjoint chains. Merging can be
generalized to multiway merging, where the input is split into any number of sorted lists;
here, the ITB is known to be related to the Shannon entropy of the list lengths. Multiway
merging is important for pratical sorting algortihms that exploit runs in a given unsorted
sequence (see, e.g., Gelling, Nebel, Smith, and Wild [11]).

A different special case of the T-sorting problem concerns the case where the set T is the
permutations that avoid a certain pattern 7.1 It is known that 7' < ¢? for some constant
¢ depending on 7, so the ITB is linear in this case. Opler [31] gave an optimal linear-time
algorithm for the pattern-avoiding sorting problem, which works even when the pattern  is
unknown. We refer to his paper for more information on that problem.

The X + Y -sorting problem is a restricted sorting problem where, interestingly, the ITB
is mot tight. Here, two sets X,Y C R of size k each are given, and we need to sort the set
{r+y|x € X,yeY} of size n = k2. If only comparisons of the form = +y < 2’ + ¢/ with
z,r' € X, y,y € Y are allowed, then this is a restricted sorting problem by our definition.
It is known that the number of possible orderings is only k®*) [9], which makes the ITB
Q(klogk) = Q(y/nlogn); however, Fredman [9] showed that Q(k?) comparisons are needed.
It is currently unknown if an algorithm with optimal running time ©(k?) exists.

Finally, a question closely related to restricted sorting is finding balanced pairs, which are
comparisons that split the set of possible total orders into two parts of approximately equal
size. There is a body of work on balanced pairs in partial orders [21, 9, 29, 2, 3], and the
concept has been generalized to antimatroids [8].

2 Preliminaries

All the following definitions are taken from Bjorner and Ziegler [1] with only slight changes.

Words and languages. Let an alphabet Y be a set of letters. A word on ¥ is a finite
sequence of letters. We write words without commas as a = x1x5 ... x,, where x; € 3, and
we write a3 for the concatenation of two words o and S. We denote the length of a word «
by |a|. The support & of a word « is the set of letters contained in it, and the empty word is
denoted by ¢.

A word « is simple if each letter occurs at most once in it (i.e., |&| = |a|), and « is a
permutation of 3 if each letter occurs precisely once in it. The set of all simple words on X is
denoted by X%, and a simple language is a subset L C 3. We denote the set of permutations
contained in a simple language by P(L), and we call L full if |P(L)| > 0.

LA permutation 7 of a set X avoids a permutation 7 of [k] if 7 contains no subsequence that is order-
isomorphic to 7, according to some fixed total order on X. This restricted sorting problem is usually
formulated in a different, but equivalent way where X is given as a sequence that is known to avoid a
pattern.
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Partial orders. A partial order on a set X is denoted with a capital letter, like P, and we
write <p for the actual partial order relation. Total orders are treated as permutations of the
underlying set X.. Whenever necessary, we write <, for the total order relation corresponding
to the permutation 7, i.e., we have x <, y if x precedes y in w. An oracle for a total order 7
is a black-box function that answers queries of the form = <, y in constant time.

Antimatroids. An antimatroid (sometimes called antimatroid language) is a simple language
A C 37 that satisfies the following two axioms:

(i) Foralla € ¥* and z € ¥\ &, if ax € A, then o € A. (A is closed under taking prefixes.)
(i) For each o, 3 € A with & Z B, there is some z € & \ 8 such that Sz € A.

Axiom (i) is called accessibility and implies that every word in L can be built by starting
with € and successively appending letters, without ever leaving L. Axiom (ii) ensures the
two “availability properties” of antimatroids mentioned in the introduction.

In this paper, we only consider full antimatroids (recall that this means P(A) # ()).2
A full antimatroid A is completely determined by P(A); in fact, A is exactly the set of
prefixes of P(A). However, not every set of permutations can be described by an antimatroid;
for example, any antimatroid on ¥ = {x,y, z} that contains zyz and zyz also contains zzy.

Throughout this paper, we use a different formalism, which is closer to the informal
definition of antimatroids given in the introduction. For an alphabet X, a precedence
function for a letter € ¥ is a function p, : 2°\#} — {0,1} that is monotone, i.c., we have
px(X) <p (V) if X CY CX. A monotone precedence system (MPS) on X is a collection
S = {ps }zex of precedence functions. The language of S is the set

L(S) ={z1za... 2k | Vi € [k] : po, {21, 22, ..., 25-1}) = 1}.

The full version of the paper contains a proof that monotone precedence systems indeed
characterize (full) antimatroids. In the following, we write P(S) = P(L(S)) for convenience.

» Example 1. Let P be a partial order on a set 3. Define S = {p, }sex with p,(X) =1 if
and only if {y € ¥ |y <p 2} C X. Tt is easy to see that P(S5) is exactly the set of linear
extensions of P. Thus, antimatroids generalize partial orders.

» Example 2. Let ¥ = {a, b, ¢}, and consider the MPS S with p,(X) = p,(X) = 1 for all
X C¥ and p.(X)=1iff a € X or b € X. Then P(S) = {abc, bac, acb,bea}. Since P(S)
contains both acb and its reverse bca, but not all possible orderings, it is not the set of linear
extensions of any partial order. Thus, antimatroids strictly generalize partial orders.

Priority queues. The central data structure of topological heapsort is the working-set
priority queue. This is a priority queue (like the well-known binary heap [34]) with the
so-called working-set property. Informally, this property ensures that extracting an element
is fast if that element has been inserted only shortly before. We omit the precise definitions
here, since they are not needed for our proofs, and refer to Haeupler et al. [14] for more
details.

2 Some authors define antimatroids to be always full [27].
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3 Generalized topological heapsort

Let us now formally state the antimatroid-sorting meta-problem. Given is a set X%, an
antimatroid A on ¥, and a comparison oracle for a permutation m € P(A). The task is to
output 7 (or, equivalently, output ¥ in sorted order according to the oracle comparisons < ).
Note the assumption = € P(A) in particular implies that A is full.

We call this a meta-problem since the precise representation of A is unspecified. We
discuss some possible representations in Section 4. For now, we give a meta-algorithm for the
problem (Algorithm 1), using the characterization of A as a monotone precedence system S.

Algorithm 1 Topological heapsort for antimatroids.

Input: Set X, MPS S = {p, }»ex, comparison oracle for some m € P(S).
Initialize working-set priority queue @ that contains each z € ¥ with p,(0) =1
o< €
while @ is not empty do

Delete the minimum from @ and append it to «

For each z € ¥\ (AU Q), add it to @ if py(&) =1

return «

We can already show correctness of our meta-algorithm regardless of implementation
details.

» Lemma 3. Topological heapsort is correct for every input (3,5, ).

Proof. Let S = {p,}ses and m = x1, 9, ..., z,. We need to show that topological heapsort
produces o = .

Since w € P(S), we have p,, ({1, z2,...,2,-1}) = 1 for each ¢ € [n]. In particular, this
means that p,, () =1, so z; is contained in @ at the start. Since also z1 <, ; for all 4 > 1,
the first element added to « is indeed x1. Suppose now that we have o = z1z5...2;_1 at
the start of some iteration. Since p,, (&) = 1, we have x; € Q. Since z; <, x; for all j > i,
the algorithm next appends x; to a. By induction, the algorithm indeed returns 7. |

Two parts of the algorithm are left unspecified: How to identify the initial elements in @,
and the elements inserted in each iteration. We now define an abstract data structure for
this task. A candidate data structure C for a monotone precedence system S = {p;}rex
maintains a set X C Y, initially X = ), and supports the following two operations:

C.init(): Set X <« ) and report all x € ¥ with p,(0) = 1.
C.step(x): Given z € ¥\ X with p,(X) = 1, report all y € ¥ with p,(X) = 0 and
py(X U{z}) =1. Then, add = to X.

Observe that C allows at most || calls to step after init, one for each z € X. Further,
parameters of step calls form a sequence x125 ... x € L(S). The total time for C, written
ttotal () is the overall time for one call to init and a valid sequence of step calls, in the
worst case.

Clearly, any correct candidate data structure can be used to finish the implementation
of topological heapsort. The actual implementation will heavily depend on the given
representation of the antimatroid; see Section 4.

104:5

ESA 2025



104:6

Optimal Antimatroid Sorting

a b c d e
I Il Il Il Il
X1 T2 x3 Ty Zs5

QO Ql QZ QS Q4 QS
I I I I I I

{a;c} by {ed H{der  {e} 0

Figure 1 An example transcript of topological heapsort for some antimatroid on ¥ = {a, b, ¢, d, e}.

3.1 Running time analysis

Since we want our analysis to be independent of the candidate data structure, we split the
work done by topological heapsort into two essential parts.
The total time ¢*°**!(C') spend by the candidate data structure, as defined above.
The time required to initialize @) (given the initial elements), delete the minimum from @,
and insert given elements into @ in each step. Call this the queue time t9.

Since the loop performs at most n = |X| iterations, the running time of topological
heapsort is t'°%(C) + 2 + O(n).

Note that the queue time does not depend on the representation of S at all. In the
following, we show that t? is always O(n + log|P(S)|), by reducing to the special case
where S is a partial order, which has been solved by Haeupler et al. [14]. The number of
comparisons can be as large as the queue time, which is not optimal if log(|P(S)|) < n. In
Section 5, we improve this bound to the optimal O(log|P(S)|) by modifying the algorithm.

Partial orders. Let GG be a directed acyclic graph with n vertices and m edges, and consider
the set T(G) of topological orderings of G. Clearly, T(G) is the set of linear extensions of a
partial order on V(G). Thus, 7(G) is an also antimatroid in V(G) (see Example 1).

It is easy to implement a candidate data structure for 7(G) via the standard topological
sorting algorithm [18, 23], with total running time O(m + n). Haeupler et al. [14] showed
that the queue time of topological heapsort is optimal for partial orders:

» Lemma 4 (Haeupler et al. [14]). Let S be a monotone precedence system corresponding
to a partial order on a set ¥, and let m € P(S) be a total order on X. Then, for topological
heapsort with input (X, S, 7), we have t2 € O(|L| + log |P(9)]).

General antimatroids. We now generalize Lemma 4 to antimatroids. We need the following
definition. The transcript of a run of topological heapsort on an input (X, S, ) is the sequence
(Qo,Q1,...,Qn), where Qg is the set of elements initially in the priority queue, and Q;
for i € [n] is the set of elements in the priority queue after the i-th step. Observe that, if
T =21%2...Tp, then z; € Q;_1, and z; ¢ Q; for each j > i. See Figure 1 for an example.

A crucial fact that we use in the proof below is that the queue time tQ only depends on
the transcript of the run. In particular, two runs on inputs (X, S, 7) and (X, S’, w) that have
the same transcript also have the same queue time, even if S # S’.

» Theorem 5. Let S be a monotone precedence system on %, and let m € P(S) be a total order
on ¥. Then, for topological heapsort with input (X, S, ), we have t2 € O(|| + log |P(S)].

Proof. Consider a run of topological heapsort on (X, .5, 7) with transcript (Qo, @1, -- -, Qn),
and let m = x129...2,.
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We now define a partial order P on X. For each i € [n], let z; <p y for each y €
Y\ (QoUQrU...Q;—1). Informally, we have z <p y if x is deleted from the priority queue
before y is inserted. Let Sp be the monotone precedence system corresponding to P. Clearly,
m € P(Sp). We claim the following:

(i) The transcript of running topological heapsort on (3, Sp, ) is again (Qo, @1, .- .,Qn).
(i) P(Sp) C P(S).

We first explain how this implies the theorem. By Lemma 4, running topological heapsort
on (X, Sp,n) has queue time O(|X| +1log |P(Sp)|). By claim (i), running topological heapsort
on (X, 5, 7) has the same queue time (since the transcript is the same), which, by claim (ii),
is at most O(|X| + log [P(S)|), as required.

We now prove claim (i). Let (Qf, @Y, ..., Q),) be the transcript of running topological
heapsort on (X, Sp, 7). Each y € Qo is a minimal element of P by definition, so Qo C Q.
On the other hand, each y ¢ Qg satisfies 1 <p y by definition and thus y ¢ Qf, so Qo = Q.

Now take some j € [n] and assume that by induction, we have Q; = @} for all i < j.
For each y € Q;, we have {z € ¥ | z <p y} C {z1,292,...,2;}, and y & {z1,22,...,2,}, sO
y € Q) by definition. On the other hand, each y ¢ Q; satisfies either (a) y € {z1,72,...,2;}
or (b) y ¢ QoUQ1U---UQ;. (a) directly implies y ¢ Q; (y is removed earlier). (b) implies
Tj+1 <p Y, which again implies y ¢ Q.

We finish the proof with claim (ii). Let o = 2z} ... 2], € P(Sp). We show that o € P(5),
i.e., that for each i € [n], we have p,, ({2, 25,...,2;_1}) = L.

Let y € 3, and let k£ be minimal such that y € Q. Let Xy = {21, 22,...,2x}. First, by
definition of Qy, we have py(Xy) = 1. Second, we have {x € £ | 2 <p y} = X, by minimality
of k. Now suppose y = 2}, and let X; ; = {z},25,...,2;_;}. Then p, (X; ;) = 1, implying
X!_, O X}j. By monotonicity, we have p,(X/_;) > py(Xx) = 1, as desired. <

Remark. The technique of constructing an auxiliary partial order is inspired by the work
of Haeupler, Hlad{k, Rozhoti, Tarjan, and Tétek [12] (we discuss further connections in
Section 4.2). In fact, the exact partial order P in the proof of Theorem 5 appears in the
revised version® of the paper that introduced topological heapsort [14]. They observe that P
is an interval order, which means |P(P)]| is relatively easy to bound and can be related to
the working-set bound.

The algorithm of van der Hoog, Rotenberg, and Rutschmann [32] is also analyzed with
the help of interval orders, but seemingly cannot be easily generalized to antimatroids.

4 Antimatroid representations

In this section, we consider several representations of antimatroids (some only covering
special cases), and discuss how to implement candidate data structures (CDSs) for these
representations. If C' is a CDS for an animatroid A with some representation, then we call

C efficient if t**1(C) € O(n), where n is the size of the representation (in machine words).
Theorem 5 implies that topological heapsort with an efficient CDS has optimal running time.

4.1 Precedence formulas

We first consider an explicit representation of general full antimatroids based on monotone
precedence systems. The precedence formula representation of a full antimatroid A on X is a

collection {F, },ex, where F, is a monotone boolean formula on the variable set V,, = X\ {z}.

(A monotone boolean formula allows only the operators V and A and the constants 0 and 1,
notably prohibiting the negation —.)

3 An carlier preprint [13] used a different proof technique.
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Each formula F, represents a precedence function p, as follows: For Y C ¥, we let p,(Y)
be the value of F, when setting each y € Y to 1, and each y € X \ (Y U {z}) to 0. Since any
monotone function f can be represented as a monotone boolean formula, this representation
is suitable for every antimatroid. In the following, we assume each formula is given as a
linked list of symbols with each variable, operator, constant, or parenthesis in the formula
occupying one machine word. Other representations, like parsing trees and circuits, are also
possible.

An CDS C for {F, },ex is implemented as follows. We need two preprocessing steps. First,
for each formula, we simplify it. We repeatedly replace substrings (1A z) — z, (1Vz) — 1,
(0 Az) — 0, and so on, in linear overall time. Afterwards, we have F, =1 for each x with
pl(@) =1

Second, compute a directed graph G, where V(G) = %, and (z,y) € E(G) if F, contains
the variable x. For each such edge, we store a list of pointers to each occurrence of x within F,.
Note that the size of G (including pointers) is at most the total size of all formulas.

The initial candidate set reported by init() is the set of sources in G. step(x) is
implemented as follows: For each out-neighbor y of x, replace each occurrence of x in F,
with 1. Then, simplify F}, as outlined above, and report y if F;, = 1 after the simplification.
Finally, remove x from the graph. To see that the data structure is correct, observe that after
calling step(x) on each z in some set X C 3, we have F,, =1 for each y with p,(X) = 1.

The total running time is linear, since each edge is visited once, and simplification is
linear overall. Thus, the data structure is efficient, and so:

» Theorem 6. Given an antimatroid A on X in a precedence formula representation of
length n, we can solve the P(A)-sorting problem in optimal time O(n + log|P(A)|).

There are two representations of antimatroids that are similar to precedence formulas:
rooted set collections and alternative precedence structures [27]. These roughly correspond to
precedence formulas in conjuctive normal form and disjunctive normal form, respectively.
A third related characterization with so-called elementary ranking conditions [30] is used
in linguistics (see the full version of the paper for details). In the following, we discuss two
more examples that only apply to subclasses of antimatroids.

4.2 \Vertex search and distance orderings

Given a connected graph G and a designated root r € V(G), the vertex search antimatroid
on (G,r), written Ag)sr7 contains the empty word ¢ as well as each simple word vyvs ... vy
where v; = r and each prefix vivs ... v; induces a connected subgraph of G. The words in
A‘é% model each way of traversing the graph in a manner similar to BF'S or DFS. The basic
idea is easily extended to directed graphs; here we require that each prefix vivs ... v; induces
a subgraph of G where every vertex is reachable from r = v;. (We assume that each vertex
is reachable from r in G.)

It is easy to see that A\C/fr is indeed an antimatroid; for example, as a precedence formula
for each vertex v # r, takeva =uy Vug V-V ug, where ui,us,...,ux are the neighbors
(resp. in-neighbors) of v. However, not every antimatroid is a vertex search antimatroid.

Again, the restricted sorting problem for vertex search antimatroids is solved in optimal
time with the precedence formula representation given above.

The vertex search antimatroid plays a role in the distance ordering problem, a variant of
single-source shortest path (SSSP) problem. Given is an edge-weighted directed graph (G, w)
with a designated root r, and the task is to order the vertices by distance from r. Recently,
Haeupler et al. [12] showed that Dijkstra’s classical SSSP is universally optimal when equipped
with a certain working-set heap (which is more powerful than the one presented in Section 2).
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Universally optimal means, informally, that for every fixed graph, the algorihtm is worst-case
optimal w.r.t. the weight function. In fact, they essentially match the information-theoretic
lower bound with a running time of O(log |T| + |V (G)| 4+ |E(G)|), where T is the set of
possible distance orderings for the input graph G with root r, with any weight function.

We now demonstrate a strong connection between antimatroid sorting and the distance
ordering problem.* First off, the set T of possible distance orderings is precisely the vertex
search antimatroid (see the full version of the paper for a proof). Thus, we can run topological
heapsort to find a distance ordering with optimal running time — if we are allowed to directly
compare two vertices. That means comparing the distances of two vertices to r, which we
cannot do in the distance ordering problem (without computing the distances first).

Still, it can be seen that the transcript (see the proof of Theorem 5) of a run of Dijsktra’s
algorithm on an input (G,w,r) is the same as running topological heapsort on the corre-
sponding vertex search antimatroid. This gives an alternative proof of universal optimality;
details are found in the full version of the paper. It should be noted that Haupler et al. also
give an algorithm that is universally optimal in both time and number of comparisons, which
is harder (c.f. Section 5).

4.3 Elimination orderings

An undirected graph is chordal if has no induced cycles of length four or more. It is well-known
that chordal graphs can be characterized by the existence of perfect elimination orderings
(PEOs). A PEO is obtained by successively removing simplicial vertices, that is, vertices
whose neighborhood form a clique.

The set of elimination orderings form an antimatroid, also known as the simplicial vertex
pruning [1] or simplicial shelling [27] antimatroid. Given a graph G, we can define the
simplicial vertex pruning antimatroid A2Y" via the MPS {p, },ev(g) with

pu(U) =

1, if v is simplicial in G — U;
0, otherwise.

A candidate data structure for A is essentially a data structure that maintains the set
of simplicial vertices in G under simplicial vertex deletion.

There are known static and fully-dynamic algorithms to compute simplicial vertices in
arbitrary graphs [22, 28]. Since we only care about chordal graphs and only need vertex
deletion, we can use a relatively simple data structure based on clique trees. Details are
found in the full version of the paper. The total running time of removing all vertices is
O(m + n). Thus, we can solve the corresponding restricted sorting problem in optimal time.

5 Comparison optimality

In this section, we modify the topological heapsort algorithm to only use an optimal
O(log|P(S)|) comparisons, instead of O(|X| + log |P(5)]), while keeping the optimal running
time. The special case of partial orders was again solved by Haeupler et al. [14]. Our
algorithm is similar, but some non-trivial adaptation is required.

First of all, note that the additional O(n) term is only relevant when |[P(S)| < 2°(™). In
the partial order/DAG-sorting case, Haeupler et al. [14] showed that this condition implies
the existence of a long directed path in the DAG. Observe that such a path is pre-sorted.
We prove a corresponding fact for antimatroids (Section 5.1).

4 Such a connection is not surprising, since the technique used in the analysis of Dijkstra’s algorithm [12]
inspired the original analysis of topological heapsort [14] and large parts of this paper.
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Haeupler et al. then proceed roughly as follows. They first compute a set of marked
vertices on the pre-sorted path. Intuitively, the marked vertices represent the interaction with
the remainder of the graph: The removal of unmarked vertices does not affect “availability”
of vertices outside of the path. This means that often, a large set of unmarked vertices can
be removed at once, without any additional comparisons.

This strategy cannot be adapted to general antimatroids in a straight-forward way, since
the availability constraints are too complex to preprecompute a small set of marked vertices.
We instead use the following three-step algorithm (given is an antimatroid A on X):

1. Compute a long pre-sorted sequence 8 (Section 5.1).
2. Sort the set ' =X\ B, using topological heapsort on the sub-antimatroid of A induced

by T' (Section 5.2). This gives us a sorted sequence .

3. Merge the two sequences 8 and =, utilizing the antimatroid constraints (Section 5.3).

All three steps can be implemented efficiently using a candidate data structure for A. We
obtain:

» Theorem 7. Given a set X, a candidate data structure C' for an antimatroid A on o, and
an oracle for a total order € P(A), we can sort ¥ w.r.t. <, in time O(t*%¥(C)+log |P(A)|)
and with O(log |P(A)|) comparisons.

This means that each efficient candidate data structure presented in Section 4 yields a
comparison-optimal sorting algorithm.

5.1 Bottlenecks in antimatroids

Let S = {ps}zex be a monotone precedence system on 3. The layer sequence of S is a
partition of ¥ into nonempty layers Ly, Lo, ..., Li inductively defined as follows:

Ly ={z € X|p.(0) =1} )

Li = {1’ S E\Li,1 | px(Llfl) = 1}, where Li,1 = L1 ULQU‘ . 'ULifl, for each 2 S ) S k.

Observe that a layer sequence exists if and only if P(S) # @, and that a layer sequence
is always unique. If a candidate data structure C is available, we can compute the layer
sequence in O(t*%!(C)) time as follows: Call C.init() and add the reported elements to L.
Then, call C.step(z) for each © € Ly, add the reported elements to L, and so on.

» Lemma 8. Let S be a monotone precedence system with k layers. Then |P(S)| > 2"~*.

Proof. We essentially follow Haeupler et al. [14]. Let Ly, Lo, ..., L be the layer sequence
for S. For each i € [k], let a; be an arbitrary permutation of L;. We claim that the word
o = aias...q is contained in P(S). Indeed, if € L;, then all y € Li, precede x in a.

Since p;(L;—1) = 1 by definition of L;, we have o € P(S).
There are Hle |L;|! ways of constructing «. Writing n; = |L;| and n = |X|, we have

k k
PS) = [t = ]2 " =2 <
1=1 i=1

We now proceed to show how to find a long sequence x1z2...x; € 3 such that for
all i € [k —1], we have z; <o ;41 for all & € P(A); in other words, the sequence is pre-sorted.
In the DAG-sorting case, we can simply take a longest path in the DAG. Here, we need a
different approach, which is also related to the technique of Haeupler et al. [14].

» Lemma 9. Let Ly, Lo, ..., Ly be the layers of a monotone precedence system S, and let
m € P(S). Then, for all1 <i < j <k andy € L;, there exists an x € L; such that z <, y.
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Proof. Suppose the lemma does not hold for some pair ¢ < j, i.e., there exists some 3y’ € L;
such that y' <, z for all € L;. Let y = ming (X \ L;) = ming (L;4+1 U L;42U---U Lyg). Since
y 2x ¥, we have y <, z for all z € L;, implying that actually y = min, (X \ L;_1). This

means that py(L;—1) = 1, implying that y € L;, a contradiction. <

An element x € ¥ is a called a bottleneck if it is the only element in its layer. Let ¢ be
the number of bottlenecks and let k& be the number of layers. Since each non-bottleneck
layer contains at least two vertices, we have n — ¢t > 2(k — t), which implies n — k > "T_t By
Lemma 8, we have

» Corollary 10. Let S be an MPS with t bottleneck elements. Then |P(S)| > 2(n—1/2,

The bottleneck sequence B = biby...by of S contains all bottlenecks, ordered by the
layer they appear in. Lemma 9 implies that, for every permutation = € P(S), we have
b1 <x b <5 - -+ <5 by Overall, we obtain

» Lemma 11. Let S be an MPS on X, and write n = |X|. Then there exists a sequence
B = biby...b; that appears as a subsequence in every = € P(S), and [P(S)| > 2(»=1/2,
Moreover, given a candidate data structure C for S, we can compute (3 in time O(t*°%(C)).

5.2 Sorting subsets

In this section, we show how to sort the non-bottleneck elements ¥\ 3 of an antimatroid A.

Recall that a candidate data structure C' is given, and we want to sort in overall time
Ot (C) +log |P(A)]), with O(log |P(A)|) comparisons (see Theorem 7). We show how
to sort any subset I' C 3 within this budget.

We first need some definitions. Let X be an alphabet. Given a word o and a subset
T C %, the restriction of a to I', written «|r, is obtained by removing all letters in X\ T’
from «. For a simple language L C X7, let L|r = {a|r | @ € L}. It is known that if A C ¥*
is an antimatroid, then the restriction A|r is also an antimatroid (called the trace [27, 1]).

Let us now assume we have a candidate data structure Cr for A|r. Then we can use
topological heapsort to sort I'. The running time is t***!(Cr) + O(log |P(Alr)|), and we
need O(|T'| + log|P(A|r)|) comparisons. First, observe that |P(A|r)| < |P(A)|, since the
restriction operation surjectively maps P(A|r) to P(A). Second, recall that |I'| < 2log [P (A)]
if T is obtained by removing all bottleneck elements (Corollary 10). If we further assume
that t*°t2l(Cp) < O(t*°t21(C)), then we are within the budget of Theorem 7.

It remains to build a candidate data structure Cr for Alp with t%°%!(Cp) < O(ttotal(C)).

Suppose C' is given. Then Cr.init() is implemented as follows. First, call C.init(), and
store the result in a set Y. Then, we repeat the following as long as there is an element
y € Y\ I': Discard y, call C.step(y), and add all reported elements to Y. At the end, report
the final set Y.

To implement Cr.step(y), we similarly first call C.step(y), store the result in a set Y,
and perform the repeated replacement as above.

The (rather technical) correctness proof for Cr is found in the full version of the paper.

The running time is clearly t*°%!(C) + O(|X|) = O(t'°*1(C)). Thus, we have:

» Lemma 12. Given a set %, a subset I' C X, a candidate data structure C for an

antimatroid A on ¥, and an oracle for a total order m € P(A), we can sort I' w.r.t. <. in
time Ot (C) +log |P(A)|) and with O(|T'| 4 log |P(A)|) comparisons.
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5.3 Merging

We now want to optimally merge under antimatroid constraints:

» Theorem 13. Let A be an antimatroid on %, let m € P(A), and let T') A be a partition
of X. Let v =7|r and § = w|a. Let R C P(A) contain each permutation p € P(A) such that
plr =7 and p|a = 9.

Given X, vy, 6, an oracle for w, and a candidate data structure C for A, we can compute
7 in time O(t*°%(C) + log |R|) and with O(|A| + log |R|) comparisons.

A proof of Theorem 13 is given in the full version of the paper. The algorithm used can
be seen as a simplified version of Haeupler et al’s heapsort with lookahead algorithm [14]; in
fact, if the antimatroid A is given as a collection of precedence formulas, it simplifies to a
partial order under the assumption that v and ¢ are sorted. (However, our proof works with
general candidate data structures.)

5.4 Putting things together

We now prove Theorem 7. First, we compute the bottleneck sequence f with Lemma 11.
Then, we use Lemma 12 to sort the subset I' = 3\ B. In other words, if 7 is the underlying
total order, we compute v = m|p. Finally, we merge § and =y using Theorem 13. The overall
running time is O(t*%(C) 4+ log |P(A)| + log |R|), and we use O(log |P(A)| + |T| + log | R|)
comparisons, where R is as defined in Theorem 13. Note that R C P(A). Moreover, we have
IT| =n —|B] < 2log|P(A)| by Lemma 11. Thus, we need O(t*°*?1(C) + log |P(A)|) time and
O(log |P(A)|) comparisons, as desired.

6 Conclusion

In this paper, we have shown that the basic variant of topological heapsort nicely generalizes
to the problem of sorting antimatroids, and its running time stays optimal. We also showed
how the algorithm can be modified to be comparison-optimal in the antimatroid case, which
in particular implies that the information-theoretic bound is tight for antimatroids. Since
topological heapsort is not optimal for further generalizations like greedoids (see the full
version of the paper), perhaps antimatroids are the most general structure that can be sorted
“greedily”. The question whether the information-theoretic bound for greedoids holds, and
whether greedoids can be sorted efficiently in some other way, is left open.

For another interesting open question, let us consider an important class of antimatroids
that was omitted from Section 4. Convex shelling antimatroids [6, 27, 1] are obtained by
progressively removing points from the convex hull of a given point set. A candidate data
structure for such an antimatroid would be a certain kind of decremental convexr hull data
structure. The total running time of this data structure cannot be linear as in the other
examples, since computing the convex hull can take superlinear time [20]. Is there a candidate
data structure for the convex shelling antimatroid that is fast enough to sort optimally?
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