
Parameterized Algorithms for Computing Pareto
Sets
Joshua Marc Könen #

Institute of Computer Science, University of Bonn, Germany

Heiko Röglin #

Institute of Computer Science, University of Bonn, Germany

Tarek Stuck #

Institute of Computer Science, University of Bonn, Germany

Abstract
The problem of computing the set of Pareto-optimal solutions has been studied for a variety
of multiobjective optimization problems. For many such problems, algorithms are known that
compute the Pareto set in (weak) output-polynomial time. These algorithms are often based on
dynamic programming and by weak output-polynomial time, we mean that the running time depends
polynomially on the size of the Pareto set but also on the sizes of the Pareto sets of the subproblems
that occur in the dynamic program. For some problems, like the multiobjective minimum spanning
tree problem, such algorithms are not known to exist and for other problems, like multiobjective
versions of many NP-hard problems, such algorithms cannot exist, unless P = N P.

Dynamic programming over tree decompositions is a common technique in parameterized
algorithms. In this paper, we study whether this technique can also be applied to compute Pareto
sets of multiobjective optimization problems. We first derive an algorithm to compute the Pareto
set for the multicriteria s-t cut problem and show how this result can be applied to a polygon
aggregation problem arising in cartography that has recently been introduced by Rottmann et
al. (GIScience 2021). We also show how to apply these techniques to also compute the Pareto set of
the multiobjective minimum spanning tree problem and for the multiobjective TSP. The running time
of our algorithms is O(f(w) · poly(n, pmax)), where f is some function in the treewidth w, n is the
input size, and pmax is an upper bound on the size of the Pareto sets of the subproblems that occur
in the dynamic program. Finally, we present an experimental evaluation of computing Pareto sets on
real-world instances of polygon aggregation problems. For this matter we devised a task-specific data
structure that allows for efficient storage and modification of large sets of Pareto-optimal solutions.
Throughout the implementation process, we incorporated several improved strategies and heuristics
that significantly reduced both runtime and memory usage, enabling us to solve instances with
treewidth of up to 22 within reasonable amount of time. Moreover, we conducted a preprocessing
study to compare different tree decompositions in terms of their estimated overall runtime.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Parameterized complexity and exact algorithms; Theory of computation
→ Graph algorithms analysis

Keywords and phrases parameterized algorithms, treewidth, multicriteria optimization problems,
multicriteria MST, multicriteria TSP, polygon aggregation

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.105

Related Version Full Version: https://arxiv.org/abs/2509.06124

Supplementary Material Software: https://github.com/Tarek-pub/Bicriteria_Aggregation [19]
archived at swh:1:dir:b6eacf189792239e9115cf288be27c6753b8df17

InteractiveResource: https://github.com/Tarek-pub/Bicriteria_Aggregation_plotting [20]

Funding This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 390685813; 459420781 and by the Lamarr Institute for Machine Learning
and Artificial Intelligence lamarr-institute.org.

© Joshua Marc Könen, Heiko Röglin, and Tarek Stuck;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 105; pp. 105:1–105:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:koenen@cs.uni-bonn.de
https://orcid.org/0000-0003-4245-4812
mailto:roeglin@cs.uni-bonn.de
https://orcid.org/0009-0006-8438-3986
mailto:s6tastuc@uni-bonn.de
https://doi.org/10.4230/LIPIcs.ESA.2025.105
https://arxiv.org/abs/2509.06124
https://github.com/Tarek-pub/Bicriteria_Aggregation
https://archive.softwareheritage.org/swh:1:dir:b6eacf189792239e9115cf288be27c6753b8df17;origin=https://github.com/Tarek-pub/Bicriteria_Aggregation;visit=swh:1:snp:6062d834e514947614ecb3cd421cafb02a5cd7f5;anchor=swh:1:rev:029970db0ee7425b1739d3c87bfa94e3f9081dbd
https://github.com/Tarek-pub/Bicriteria_Aggregation_plotting
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

105:2 Parameterized Algorithms for Computing Pareto Sets

1 Introduction

Multiobjective optimization problems arise naturally in many contexts. When booking a
train ticket, one might be interested in minimizing the travel time, the price, and the number
of changes. Similarly when planning a new infrastructure, companies often have to find
a compromise between reliability and costs, to name just two illustrative examples. For
multiobjective optimization problems there is usually not a single solution that is optimal
for all criteria simultaneously, and hence, one has to find a trade-off between the different
criteria. Since it is not a priori clear which trade-off is desired, one often studies the set of
Pareto-optimal solutions (also known as Pareto set), where a solution is Pareto-optimal if
it is not dominated by any other solution, i.e., there does not exist another solution that
is better in at least one criterion and at least as good in all other criteria. The reasoning
behind this is that a dominated solution cannot be a reasonable compromise of the different
criteria and it makes sense to restrict one’s attention to only the Pareto-optimal solutions.

A lot of research in multiobjective optimization deals with algorithms for computing the
Pareto set and with studying the size of this set for various optimization problems. If this
set is not too large then it can be presented to a (human) decision maker who can select a
solution. The Pareto set also has the important property that any monotone function that
combines the different objectives into a single objective is optimized by a Pareto-optimal
solution. This means, in order to optimize such a function, one could first generate the
Pareto set and then pick the best solution from this set.

This approach is only reasonable if there are not too many Pareto-optimal solutions.
While in the worst case the Pareto set can be of exponential size for almost all multiobjective
optimization problems, it has been observed that the Pareto set is often small in practice (see,
e.g., [16, 23]). It has also been shown in the probabilistic model of smoothed analysis that
for many problems the expected size of the Pareto set is polynomial if the input is subject to
a small amount of random noise [10, 5]. This motivates the development of algorithms for
computing the Pareto set that have polynomial running time with respect to the output size.

In the literature such output-sensitive algorithms have been developed for different
multiobjective optimization problems (e.g., for the multiobjective shortest path problem [12,
17, 29], multiobjective flow problems [15, 24], and the knapsack problem when viewed as
a bicriteria optimization problem [25]). There is, however, a small caveat. Since these
algorithms are usually based on dynamic programming, they are not output-polynomial in
the strict sense but they solve certain subproblems of the given instance and their running
times depend not only polynomially on the size of the Pareto set of the entire instance but also
polynomially on the sizes of the Pareto sets of the subproblems. While in theory it could be
the case that some of the subproblems have Pareto sets of exponential size while the Pareto set
of the entire instance is small (see, e.g., [9]), this behavior is neither observed in experiments
nor does it occur in probabilistic input models. Hence, algorithms that are output-polynomial
in the weak sense that their running time depends polynomially on the sizes of the Pareto
sets of all subproblems that occur in the dynamic program are useful and state-of-the-art
for many multiobjective optimization problems. For some problems such output-sensitive
algorithms are not known to exist. In particular, for the multiobjective spanning tree problem
no algorithm is known that computes the Pareto set in output-polynomial time (not even in
the weak sense).

Dynamic programming is a common technique in parameterized algorithms. For many
graph problems, dynamic programming on tree decompositions is applied to obtain fixed-
parameter tractable (FPT) algorithms with respect to the treewidth of the input graph.

J. M. Könen, H. Röglin, and T. Stuck 105:3

In this paper, we explore for the first time the potential of dynamic programming on tree
decompositions for computing Pareto sets. First we design an algorithm for the multicriteria
s-t cut problem and apply it on a problem from cartography that has recently been introduced
by Rottmann et al. [28] and that was the original motivation for our research.

Rottmann et al. study maps with building footprints and present a new model how
less detailed maps can be derived from a given map. Their method is based on viewing
the problem as a bicriteria optimization problem. It is assumed that the plane containing
the building footprints is triangulated and a set of triangles to glue together some of the
buildings is to be selected that on the one hand minimizes the total area and on the other
hand minimizes the total perimeter. Rottmann et al. present an algorithm that computes
the set of extreme nondominated solutions (i.e., the set of solutions that optimize a linear
combination of the objectives), which is a subset of the Pareto set. They ask if it is also
possible to compute the entire Pareto set in some output-efficient way.

We show how a treewidth-based algorithm can be used to compute the Pareto set for
the s-t cut problem. The running time of this algorithm is FPT in the treewidth and
output-polynomial in the weak sense, i.e., it is of the form O(f(w) · poly(n, pmax)) where f

is some function in the treewidth w, n denotes the input size, and pmax denotes an upper
bound on the size of the Pareto sets of the subproblems that occur in the dynamic program.

As a special case, the results for the multiobjective s-t cut algorithm directly translate to
the cartography problem by computing the whole Pareto set in FPT time and being output-
polynomial in the weak sense. We experimentally analyze the computation of Pareto sets for
this cartography problem on real-world datasets by designing a specialized data structure,
developing heuristics, and integrating additional implementation-specific techniques tailored
to the task.

1.1 Our Results
We first consider the multiobjective s-t cut problem and its special case, the triangle
aggregation problem [28]: Given some polygons P and triangles T , the goal is to find all
Pareto-optimal subsets T ′ ⊆ T minimizing both the total area and perimeter of P ∪ T ′. This
problem arises in cartography, where the goal is to compute a less detailed map from a given
map. Here the polygons are building footprints and the space between these footprints is
triangulated. By including triangles, one can glue together these building footprints, leading
to a less detailed version of the map. We show that the multiobjective s-t cut problem
implies an algorithm to compute the Pareto set in time O(nw · 2w · p2

max log(pmax)) for this
problem, where w is the treewidth of the triangle adjacency graph.

In the full version of the paper, we show that this method for computing Pareto sets can
also be applied for other multiobjective optimization problems, such as the multiobjective
minimum spanning tree problem (MST) and the multiobjective traveling salesman problem
(TSP). For both, we present algorithms with running time O(nwO(w) · p2

max logd−2(wO(w) ·
p2

max)) where w is the treewidth of the input graph, n is the number of vertices in the graph,
pmax is the size of the largest Pareto set computed in one of the subproblems of the dynamic
program, and d ≥ 2 is the (constant) number of different objectives. This shows that the
Pareto set can be efficiently computed for graphs with small treewidth if the Pareto sets of
the subproblems are not too large, which is often the case in realistic inputs.

Finally, we experimentally evaluate our algorithm on real-world datasets. We introduce
new heuristic pruning techniques, runtime estimates for tree decompositions and their root,
memory optimization, multi-threading, and other improvements for reducing runtime and
memory usage.

ESA 2025

105:4 Parameterized Algorithms for Computing Pareto Sets

1.2 Related Work
Output-polynomial time algorithms (at least in the weak sense) are known for many problems.
Examples include the multiobjective shortest path problem [12, 17, 29], multiobjective flow
problems [15, 24], and the knapsack problem when viewed as a bicriteria optimization
problem [25]. For the multiobjective spanning tree problem such algorithms are not known
and there are only results on the set of extreme nondominated solutions. This is a subset
of the Pareto set and it contains all solutions that optimize some linear combination of the
different objectives. For the multiobjective spanning tree problem it is known that there are
only polynomially many extreme nondominated solutions [14], and efficient algorithms for
enumerating them exist [2].

Rottmann et al. [28] introduce the triangle aggregation problem under the objective of
map simplification by grouping multiple building footprints together. They show that, similar
to the multiobjective minimum spanning tree problem, there exist only a polynomial number
of nondominated extreme solutions and they present an algorithm to compute this set in
polynomial time. They also provide an extensive experimental study of their algorithms
on real-world data sets showing that the model captures nicely the intention to aggregate
building footprints to obtain less detailed maps. They put it as an open question whether or
not it is possible to also compute the set of Pareto-optimal solutions in an output-efficient
way.

Motivated by the observation that for many problems the Pareto set is often small in
applications, the number of Pareto-optimal solutions has been studied in the probabilistic
framework of smoothed analysis in a sequence of articles [27, 22, 10, 5]. It has been shown
for a large class of linear integer optimization problems (which contains in particular the
multiobjective MST problem and the multiobjective TSP) that the expected number of
Pareto-optimal solutions is polynomially bounded if the coefficients (in our case, the edge
weights) are independently perturbed by random noise. Formally, the coefficients of d − 1
out of the d objectives are assumed to be independent random variables with adversarially
chosen distributions with bounded density. It is shown that not only the expected number
of Pareto-optimal solutions is bounded polynomially in this setting but also all constant
moments, so in particular the expected squared number of Pareto-optimal solutions is also
polynomially bounded. Combined with this, our results imply that the Pareto set for the
multiobjective MST problem, the multiobjective TSP and the multiobjective s-t cut problem
can be computed in expected FPT running time O(f(w) · poly(n)) in the model of smoothed
analysis.

While dynamic programming over tree decompositions is a well-established technique,
using it effectively in practice comes with more difficulties than simply minimizing the width
of the decomposition. In experiments the runtime of an algorithm can vary largely for
different tree decompositions with the same width.

Bodlaender and Fomin [8] introduced the concept of the f -cost of a tree decomposition,
which sums up a cost function f applied to the bag sizes across all nodes. This framework
formalizes the observation that not all nodes contribute equally to runtime or memory, and
that practical efficiency can benefit from structurally favorable decompositions.

The f -cost approach was later extended and evaluated experimentally by Abseher et
al. [1] using machine learning to select a tree decomposition based on different features such
as bag sizes, branching factors, and node depths. With their method they could often select
a decomposition that performs well in practice. Kangas et al. [18] used the same model
for the problem of counting linear extensions, confirming the value of such estimators, and
suggesting the average join-node depth as a good single feature for estimating runtime.

J. M. Könen, H. Röglin, and T. Stuck 105:5

Beyond selection heuristics, tree decompositions have also been studied with respect to
memory efficiency. Charwat et al. [11] explored compressed representations of intermediate
states using decision diagrams, and Betzler et al. [6] proposed anchor-based compression
techniques to reduce hard drive memory usage.

In our case, we not only solve an optimization problem, but compute the entire set of
Pareto-optimal solutions. This makes memory usage more sensitive to the structure of join
operations and limits the applicability of pointer-based or diagram-compressed representations.
To address this, we develop a custom estimation strategy for predicting both runtime and
memory usage, based on predicting the number of Pareto-optimal solutions at each node
and the runtime impact of join operations. We then select a decomposition based on a
combination of both runtime and memory usage. Details of this procedure are provided in
the full version of the paper.

2 Preliminaries

Let [i] := {1, . . . , i}. We consider an arbitrary optimization problem with a constant number
d ∈ N of objectives to be minimized. Each (feasible) solution s is mapped to a cost vector
f(s) = (f(s)1, . . . , f(s)d) ∈ Rd where f is our objective function. A solution s1 is said to
dominate another solution s2 if f(s1)i ≤ f(s2)i for all i ∈ [d] and there exists some j ∈ [d]
such that f(s1)j < f(s2)j . We write s1 ≺ s2 to denote that s1 dominates s2. The set of
all non-dominated solutions is called the Pareto set. These definitions extend naturally to
optimization problems where a subset of objectives is to be maximized instead of minimized.
In the following we assume that all objectives are to be minimized, but all arguments and
results can be adapted analogously when some (or all) objectives are to be maximized.

Let P1 and P2 be two sets of Pareto-optimal solutions. We define their combined Pareto
set as P1 + P2 := {p ∈ P1 ∪ P2 | p is Pareto-optimal in P1 ∪ P2}, their union as SP1,P2 :=
{p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2}, which contains all pairwise unions of solutions from P1 and P2,
and the Pareto set of SP1,P2 as P1 ⊕ P2 := {s ∈ SP1,P2 | s is Pareto-optimal in SP1,P2}.

2.1 Treewidth

Our algorithms rely on dynamic programming over a tree decomposition. The concept of
tree decomposition and treewidth, introduced by Robertson and Seymour [26], provide a
measure of how similar a graph is to a tree. Many N P-hard problems become tractable on
graphs with small treewidth. Computing the optimal treewidth is N P-hard [3], but it is
FPT with respect to the treewidth [7], and a tree decomposition of width at most 2 · w(G)
can be computed in linear time using approximation algorithms [21]. Hence, we assume that
our algorithm starts from such an approximate decomposition if no optimal one is available.
In the following, we briefly introduce the notation used for tree decompositions.

▶ Definition 1 (Tree decomposition). A tree decomposition of a graph G = (V, E) is a
pair T = (T = ({t1, . . . , tm}, E), {Xt}t∈V (T)) where T is a tree and each node t ∈ V (T) is
associated with a bag Xt ⊆ V , such that the following conditions hold:⋃

t∈V (T) Xt = V (G), i.e., every vertex of G appears in at least one bag,
∀{u, v} ∈ E(G) ∃t ∈ V (T) : u ∈ Xt ∧ v ∈ Xt, i.e., for every edge {u, v} ∈ E(G) the
vertices u and v must appear together in at least one bag,
Tu = {t ∈ V (T) | u ∈ Xt} is a connected subtree of T for every u ∈ V (G).

ESA 2025

105:6 Parameterized Algorithms for Computing Pareto Sets

The width of a tree decomposition is w(T) := maxt∈V (T) |Xt| − 1, and the treewidth w(G)
is the smallest possible width of a tree decomposition. We denote with Vt the union of
vertices that were introduced at t or some child of t. In the following, we write w for the
width of the tree decomposition used by our algorithm, which may be larger than w(G) if an
approximation is used.

We assume we have a nice tree decomposition, which is a binary tree decomposition rooted
at some node r ∈ V (T) with Xr = ∅ and with four specific node types:

Leaf node: Let t be a node with no child nodes. Then t is a Leaf node iff Xt = ∅.
Introduce node: Let tparent, tchild be two nodes in V (T), where tparent has exactly one
child tchild. Then tparent is an Introduce node iff Xtparent = Xtchild ∪{v} for some v ∈ V (G).
Forget node: Let tparent, tchild be two nodes in V (T), where tparent has exactly one child
tchild. Then tparent is a Forget node iff Xtparent ∪ {v} = Xtchild for some v ∈ V (G).
Join node: Let tparent, t1

child, t2
child be three nodes in V (T), where tparent has exactly two

children t1
child and t2

child. Then tparent is a Join node iff Xtparent = Xt1
child

= Xt2
child

.

From any tree decomposition of width w, a nice tree decomposition of the same width
with O(|V (G)| · w) nodes can be computed in polynomial time [13].

The algorithm works as follows: Given an instance G = (V, E) and a cost function
c : E → Rd, it first computes a nice tree decomposition (T, {Xt}t∈V (T)). In each leaf node
the Pareto sets are initialized as empty sets. Then, for each node t, depending on its type, the
algorithm recursively computes the set of Pareto-optimal solutions for each subproblem at
this node. We distinguish between the functions computeLeafNode, computeIntroduceNode,
and computeForgetNode, corresponding to their respective node types, and show correctness
assuming that the Pareto sets for all child nodes are correctly computed.

3 Multiobjective s-t cut problem

We consider the problem of computing all Pareto-optimal s-t cuts in a graph. Given a graph
G′ = (V ∪ {s, t}, E′) with n = |V | and a cost function c′ : E′ → Rd, a cut corresponds to a
subset S ⊆ V . The cost of a cut S is defined as the sum of costs of all edges crossing from
S ∪ {s} to (V \ S) ∪ {t}. Let δ(S) := {{u, v} ∈ E′ | u ∈ S ∪ {s}, v ∈ (V \ S) ∪ {t}} be the
set of edges cut by S. The cost of S is given by

∑
e∈δ(S) c′(e). We now wish to compute all

s-t cuts that are Pareto-optimal. Without loss of generality, we assume {s, t} /∈ E′, since
such an edge only introduces a constant shift in cost to every Pareto-optimal solution.

We denote δ(A, B) := {{u, v} ∈ E′ | u ∈ A, v ∈ B} for A, B ⊆ V (G′) as the set of edges
between vertices in A and B that are being cut. We define c : 2V (G′) × 2V (G′) → Rd with
c(A, B) =

∑
e∈δ(A,B) c′(e) for any subsets A, B ⊆ V (G′). For simplicity, for a single vertex

p ∈ V (G′) and subset A ⊆ V (G′), we write c(p, A) instead of c({p}, A).
Let G = G′[V] be the subgraph induced by V . Given a nice tree decomposition

(T, {Xt}t∈V (T)) for G, we compute for each node t ∈ V (T) and subset S ⊆ Xt the Pareto set
PS

t consisting of all Pareto-optimal solutions p ⊆ Vt with p∩Xt = S. We refer to such a subset
S as a selection. Every such solution p has cost c′(δ(p)) = c(p, V \ p) + c(p, t) + c(V \ p, s).
We refer to such an instance by a pair (t, S).

▶ Theorem 2. For an arbitrary s-t cut instance (G′ = (V ∪ {s, t}, E′), c′) with cost function
c′ : E → Rd, we can compute the set of Pareto-optimal s-t cuts in time O(nw · 2w ·
p2

max logmax{d−2,1}(p2
max)) if a nice tree decomposition of graph G = G′[V] with width w is

provided.

J. M. Könen, H. Röglin, and T. Stuck 105:7

In the following we describe how to compute the Pareto set for each node type. For each
instance (t, S), the set of Pareto-optimal solutions is stored in an entry D[t, S]. For simplicity,
we assume that D[t, S] contains the actual corresponding Pareto set. Since the algorithm
only depends on the cost vectors and selection S, in the actual implementation we will only
save their cost vectors and reconstruct each solution by additionally storing pointers to the
solutions from which it originated. Since we assume d as a constant, the encoding length
of every Pareto-optimal solution is constant as well. Proofs of the following lemmas are
provided in the full version of the paper.
computeLeafNode(t, S): For a leaf node t, we have only one solution D[t, ∅] = {∅}.
computeIntroduceNode(t, S): Assume we have Xt = Xt′ ∪ {v}. If v /∈ S, then D[t, S] =
D[t′, S]. If v ∈ S, then v is only adjacent to vertices in Xt′ and V \ Vt. If Xt′ is fixed,
placing v on the same side of the cut as s only changes the cost of every solution by
a fixed amount. Therefore we have D[t, S] = D[t′, S \ {v}], and their costs change by
c(v, Xt′ ∪ (V \ Vt) ∪ {t}) − 2c(S \ {v}, v) − c(s, v).

▶ Lemma 3. If node t introduces some vertex v and has a child t′ for which D[t′, S] has
been computed, then computeIntroduceNode(t, S) computes D[t, S] in time O(pmax) for any
partition S.

computeForgetNode(t, S): Assume we have Xt = Xt′ \ {v}. To obtain D[t, S], we compute
the union of the sets D[t′, S] and D[t′, S ∪ {v}] and then remove all dominated solutions.

▶ Lemma 4. If node t forgets some vertex v and has a child t′ for which all possible
sets D[t′, S′] have been computed, then computeForgetNode(t, S) computes D[t, S] in time
O(pmax logd−2(pmax)).

For the correctness of computeJoinNode(t, S), the following lemma will be useful:

▶ Lemma 5. For each Pareto-optimal solution p ⊆ V and any node t ∈ V (T), the solution
p ∩ Vt is Pareto-optimal in the instance (t, Xt ∩ p).

computeJoinNode(t, S): Assume we have Xt = Xt1 = Xt2 . Since Xt separates Vt1 \ Xt, Vt2 \
Xt and V \ Vt, we can combine every solution from D[t1, S] with every solution from D[t2, S]
and then remove all dominated ones.

▶ Lemma 6. If node t ∈ V (T) is a join node with children t1, t2 ∈ V (T) and sets D[t1, S]
and D[t2, S] have been correctly computed, then computeJoinNode(t, S) computes D[t, S] in
time O(p2

max logmax{d−2,1}(p2
max)).

Proof of Theorem 2. The correctness follows directly from the previous lemmas for the
different node types, and from D[r, ∅] being the Pareto set for the entire instance.

The runtime is dominated by the join nodes. Our nice tree decomposition contains O(nw)
nodes, and for each node t the number of subsets S ⊆ Xt is bounded by 2w+1. Computing
D[t, S] at a join node takes time O(p2

max logmax{d−2,1}(p2
max)). Hence, the total running time

is bounded by O(nw · 2w · p2
max logmax{d−2,1}(p2

max)). ◀

The technique of computing the Pareto set for the s-t cut problem can also be applied
to other multiobjective optimization problems as well. To illustrate this, we show how to
compute the Pareto set for the multiobjective MST problem and the multiobjective TSP
problem. Proofs of the following theorems are provided in the full version of the paper.

ESA 2025

105:8 Parameterized Algorithms for Computing Pareto Sets

▶ Theorem 7. For an arbitrary multiobjective spanning tree instance (G = (V, E), c) with
d ≥ 2 objectives and cost function c : E → Rd, we can compute the set of Pareto-optimal
spanning trees in time O(n(2w)O(w) · p2

max logmax{d−2,1}((2w)O(w) · p2
max)), if a nice tree

decomposition of graph G with width w is provided.

▶ Theorem 8. For an arbitrary multiobjective traveling salesman instance (G = (V, E), c)
with d ≥ 2 objectives and cost function c : E → Rd, we can compute the set of all Pareto-
optimal tours in time O(n(3w + 3)O(w) · p2

max · logmax{d−2,1}((3w + 3)O(w) · p2
max)), if a nice

tree decomposition of graph G with width w is provided.

4 Experiments

In this section we present the experimental evaluation of our proposed algorithm for a special
case of the multiobjective s-t cut problem: the bicriteria polygon aggregation problem,
introduced by Rottmann et al. [28]. An instance (T, P) consists of a set P = {p1, . . . , pm} of
polygons and a set T = {t1, . . . , tn} of triangles. For any polygon s ∈ T ∪ P , let A(s) > 0
denote its area and P (s) > 0 its perimeter. Given a set of triangles S ⊆ T , we define A(S)
as the total area of S ∪ P and P (S) as the total perimeter of S ∪ P . The goal is to compute
the Pareto set P of subsets S ⊆ T minimizing both A(S) and P (S).

As with many multiobjective optimization problems, the set of Pareto-optimal solutions
for the bicriteria polygon aggregation problem can be of exponential size. In fact, one
can more generally show that the bicriteria polygon aggregation problem can be seen as a
generalization of the bicriteria knapsack problem. The statement on the size of the Pareto
set follows as a corollary. The proof of the following theorem is provided in the full version
of the paper.

▶ Theorem 9. For every instance I of the bicriteria knapsack problem, there exists an
instance I ′ of the bicriteria triangle aggregation problem such that there is a one-to-one
correspondence between the Pareto-optimal solutions in I and I ′.

Our implementation follows the methodology outlined in Section 3, is written in Java,
and was evaluated on the datasets used by Rottmann et al.[28], which consist of triangle
aggregation problems derived from various cities and villages in Germany. The source code
is available at https://github.com/Tarek-pub/Bicriteria_Aggregation.

We use the s-t cut construction from Rottmann et al. [28] to generating each instance.
Additionally, we remove vertices corresponding to polygons from the graph G, resulting in a
more compact, yet equivalent graph structure. To reduce complexity, weights (i.e. area and
perimeter) are rounded to one decimal place (perimeter in decimals), and only unique-weight
solutions are retained. Tree decompositions are computed using the JDrasil framework [4].
Several observations during development led to significant improvements in runtime and
memory usage, which we integrated iteratively into the implementation and quantify through
an analysis on the Ahrem dataset (Table 1). Experiments were run using 16 threads of
an Intel Core i9-13900 with 100GB RAM. Multiple tree decompositions were generated for
exactly 1 hour using 16 threads.

Further implementation details are provided in the full version of the paper, including an
extended description of optimizations and a complete list of datasets with corresponding
runtimes and memory usage.

As noted in Section 3, it suffices to store only the overall cost of a solution, rather than the
full set of triangles included. The actual solutions can be reconstructed later by maintaining,
additionally to the cost, pointers to the solutions from which the current one originated.

https://github.com/Tarek-pub/Bicriteria_Aggregation

J. M. Könen, H. Röglin, and T. Stuck 105:9

Table 1 Performance comparison of different algorithmic improvements on the dataset Ahrem.
*: These values are extrapolated based on sampled subproblems and scaled proportionally to estimate
full runtimes (more details are provided in the full version of the paper).
**: For the versions before choosing a good root or tree decomposition, we chose the median rated
root / tree decomposition in this table for a fair comparison.

Algorithm improvement Runtime [h] Storage usage [GiB]
Outsourcing & Pruning** 13767.8* 3707
Choosing a good root** 8571.6* (−38%) 3991 (+8%)
Choosing from multiple tree decompositions 7129.6* (−17%) 3647 (−9%)
Join node heuristic 162.0 (−98%) 3647 (−0%)
Join-forget nodes 8.2 (−95%) 1499 (−59%)
Introduce-join-forget nodes 7.0 (−15%) 122 (−92%)
Summary −99.95% −96.71%

We briefly describe the data structure used in our implementation, as well as a rough
description of the algorithm adaptations. Each solution p is represented as a weighted pair
(A(p), P (p)) for area and perimeter.

4.1 Outsourcing and Pruning

Initially, the implementation was unable to solve even small datasets, such as Osterloh
(treewidth 14), due to RAM exhaustion reaching up to 100GB. To solve this problem, we
implemented an efficient outsourcing strategy that stores all currently unneeded solutions
onto a hard drive, keeping only the necessary solutions in RAM. Each solution is stored
as a 16-byte entry in a dedicated origin-pointer file. Each DP table D[t, S] is stored in
a separate surface-pointer file, containing solution IDs and their weights. These files are
kept on disk and only loaded into RAM when needed. This data structure allowed solving
Osterloh without exceeding RAM limits, but other datasets remained unsolvable due to hard
drive usage growing up to 2TB. To free up disk space, we remove obsolete surface-pointer
files and, when necessary, run a slow in-place pruning step to clean the origin-pointer file.
This involves recursively marking only reachable entries by following their pointers and
compacting the file accordingly. Pruning is only triggered when space is critically low, based
on conservative estimates of future storage use. These strategies prevented further storage
issues, but many datasets were still unsolvable due to excessive runtime, particularly in join
nodes. For example, the runtime required to solve the Ahrem dataset at this stage was
estimated at approximately 13,768 hours, or one and a half year worth of CPU.

4.2 Choosing an appropriate tree decomposition

When generating multiple tree decompositions for the same graph, we observed that both the
decomposition structure and the choice of the root node can significantly affect performance.
Similar to Abseher et al. [1], we therefore generate multiple tree decompositions for the same
graph and select one that is expected to yield good performance. However, our approach
differs in two important aspects: First, since we consider a concrete algorithm rather than
a general class of dynamic programming approaches, we can simulate its execution to
approximate actual performance. Second, we do not only estimate runtime but also account
for memory consumption, selecting the decomposition that minimizes a weighted combination
of both. To this end, each decomposition is traversed in postorder, and we estimate the
number of solutions at each node to predict resource usage.

ESA 2025

105:10 Parameterized Algorithms for Computing Pareto Sets

Earlier versions of our approach focused solely on minimizing runtime, which did not
always lead to reduced memory usage (see Table 1). Only in the final version did we optimize
both runtime and memory simultaneously. Incorporating this performance estimator into the
algorithm led to a significant improvement in runtime. For the Ahrem dataset we estimated
a runtime decrease to around 7,130 hours, a 48% decrease in the estimated runtime.

In an experiment with 100 decompositions for the instance Osterloh, our estimator selected
the decomposition that ranked first in both runtime and storage. The correlation between
the predicted score and actual performance was 0.91 for runtime and 0.97 for storage. We
obtained similarly strong results when estimating performance for different root node choices,
again observing a high correlation between predicted and actual runtime and memory usage.
These results suggest that our estimator reliably selects either the best tree decomposition
or at least one that still performs well with regards to runtime and memory consumption.

4.3 Join node algorithm
Let t be a join node with children t1 and t2. For each subset S ⊆ Xt, we compute PS

t =
Pt1 ⊕ Pt2 by combining all solutions p1 ∈ PS

t1
with all solutions p2 ∈ PS

t2
and subsequently

remove all dominated solutions. To do this efficiently, we employ a lexicographical ordering
of the input lists and process the combinations using a min-heap. Assume |PS

t1
| ≤ |PS

t2
|. We

initialize a min-heap with one heap node for each p1 ∈ PS
t1

, each pointing to the first entry in
PS

t2
. We then repeatedly extract the root of the min-heap, process the corresponding solution

pair (p1, p2), and increment its pointer to reference the next solution p′
2 ∈ PS

t2
that follows

p2 in lexicographical order. If such a solution p′
2 exists, we update the heap accordingly,

otherwise, we remove the heap node from the data structure. This process continues until the
heap is empty, ensuring that every valid solution pair has been considered. This min-heap
mechanism ensures that all candidate pairs are enumerated in lexicographical order, which
enables an efficient check for Pareto-optimality.

4.4 Optimizing join node computations
As with many dynamic programming algorithms over a nice tree decomposition, join nodes are
the main computational bottleneck. At each join node t we needed to compute P = P1 ⊕ P2
for two Pareto sets P1, P2 exactly 2|Xt| many times. Computing P1 ⊕ P2 for d ≥ 2 can be
done in O(p2

max logmax{d−2,1}(p2
max)). In the worst case, P1 ⊕ P2 can contain up to |P1| · |P2|

many solutions if every combination is Pareto-optimal. By considering every combination
(p1, p2) ∈ P1 × P2 and filtering out all dominated ones, this becomes very time-consuming.
However, in practice we observed only a roughly linear growth in size relative to the larger
input Pareto set. This discrepancy indicated that many combinations were computed that
would ultimately be discarded. To circumvent this problem, we utilize a heuristic pruning
strategy to efficiently exclude many non-Pareto-optimal combinations at the same time.

We construct a heuristic set H for P using a small subset of P1 and P2. Afterwards we
partition P1, P2 and H into multiple sections and compute lower bounds for each section
in P1, P2 and upper bounds for H. We then iterate over all combinations of lower bounds
and compare them with the upper bounds. If a combination of lower bounds is entirely
dominated by all upper bounds, we can conclude that no solution in these sections will
be Pareto-optimal (PO) in P and safely skip them in the min-heap. To construct H, we
apply the same optimization recursively until a base case is reached. Furthermore, we apply
multi-threading for each join node t, enabling parallel computation of multiple entries D[t, S]
at the same time.

J. M. Könen, H. Röglin, and T. Stuck 105:11

Table 2 Overview over some of the datasets we managed to solve. For all datasets see the full
version of the paper.

Dataset w
Time

[h]
Storage
[GIB]

#PO
Solutions

Percentage
nonextreme

Graph
#Vertices

Graph
#Edges |V (T)|

Osterloh 14 0.15 5.8 83055 99.43 1717 1887 7586
Ahrem 17 3.1 122 219969 98.99 5280 5607 21778
Lottbek 19 10.5 355 316567 99.48 5595 6101 24426
Erlenbach 22 70.7 1754 303565 99.47 5644 6284 25682

The heuristic pruning process introduces a trade-off between its own runtime and the
efficiency gains from skipping combinations. By selecting appropriate parameters, we achieved
a favorable balance, reducing the runtime by nearly 98% and ultimately solving Ahrem in
under seven days.

4.5 Join-forget nodes
To further improve runtime and reduce memory usage, we analyzed recurring patterns in the
algorithm process that allowed for optimization. In many instances, after computing a join
node, many of these solutions were immediately discarded in subsequent forget nodes. To
address this inefficiency, we introduce a new node type, called join-forget node, which merges
a join node with subsequent forget nodes into a single operation. Formally, for a join node t

in the tree decomposition, if its unique parent and all ancestors up to the next non-forget
node are forget nodes, we replace t and all these forget nodes by a single join-forget node t′.
This new node retains the original bag Xt and additionally stores the set F of forgotten
vertices from the removed forget nodes.

We consider which lists would be merged in the upcoming forget nodes of the original join
node while combining solutions in the min-heap. More specifically, for a join-forget node with
forgotten vertices F , we only create a min-heap for each subset S′ ⊆ Xt \ F . Each such heap
allows us to efficiently iterate over all combinations from the union

⋃
S∈{S′∪F ′|F ′⊆F }{p1 ∪p2 |

p1 ∈ PS
t1

, p2 ∈ PS
t2

}.
This setup also enhances our join node heuristic. Instead of computing a heuristic set

H and upper bounds for each pair PS
t1

, PS
t2

separately, we reuse the join-forget structure.
Specifically, for each subset S′ ⊆ Xt \ F , we compute the same heuristic set H for all
S ∈ {S′ ∪ F ′ | F ′ ⊆ F}. We do so by using subsets of PS

t1
and PS

t2
for all such S. As before,

we recursively apply this heuristic until a small base case is reached. A side effect of this
strategy is that it significantly increases RAM usage, as each thread now requires not just
three lists in memory (namely PS

t1
, PS

t2
and PS

t1
⊕ PS

t2
), but up to 2|F |+1 + 1 lists.

This strategy led to another significant boost in runtime for many of our datasets. For the
Ahrem dataset, using join-forget nodes reduced the runtime by 95%, allowing us to solve the
instance in almost 8 hours. Moreover, storage usage also decreased by 59%. We emphasize
that the improvements are not solely due to the use of join-forget nodes, but by adapting
the tree decomposition performance estimator accordingly as well.

4.6 Introduce-join-forget nodes
Together with the newly defined join-forget node, we searched for new patterns in the
algorithm computations to reduce the storage consumption further. To this end, we introduce
a second node type called introduce-join-forget node, which further generalizes the concept

ESA 2025

105:12 Parameterized Algorithms for Computing Pareto Sets

Figure 1 Three PO aggregations of the dataset Osterloh. Input polygons are filled dark gray,
chosen triangles are filled light gray. Middle: nonextreme solution. Left/Right: Closest extreme
solutions to the nonextreme solution.

of join-forget nodes. After replacing applicable structures with join-forget nodes, we consider
each join-forget node t with child nodes t1, t2, where at least one child (t1, t2, or both) is an
introduce node. We remove all consecutive introduce nodes among the children and store
their introduced vertices as additional information in t.

A major inefficiency of standard introduce nodes arises from the exponential growth in
possible subsets S ⊆ Xt. When a new vertex v is introduced, each existing solution p ∈ PS

t

for S ⊆ Xt \ {v} is, with a constant weight adjustment, duplicated for both S and S ∪ {v}.
This significantly increases both memory usage and I/O overhead in the outsourcing step,
making it a significant bottleneck. To resolve this, we avoid explicit duplication of solutions
in introduce-join-forget nodes. Let I ⊆ Xt be the set of vertices whose introduction was
skipped on one side. If a set PS is required for the min-heap computations and S ∩ I ̸= ∅,
we instead load the solutions of the surface-pointer file of PS\I and add the constant weight
adjustments according to S ∩ I. Additionally, we create an origin-pointer entry for such a
solution only if they are identified as Pareto-optimal in the min-heap. This strategy also
reduces the growth of the origin-pointer file.

Together with adapting the performance estimator, this final improvement reduced the
memory consumption by an additional 92%, resulting in a total of only 122GB of storage
required for the Ahrem dataset, while also achieving a further 15% decrease in runtime,
bringing the total runtime down to 7 hours.

5 Results

Using an efficient data structure and multiple algorithmic improvements described in Section 4,
we were able to compute the full Pareto set for many datasets, including instances with
treewidths of up to 22, within a reasonable amount of time. Table 2 shows a subset of datasets
we successfully solved. All of these computations were performed on a high performance
computing system. We used 96 threads of two Intel Xeon “Sapphire Rapids” 2.10GHz and
about two terabytes of storage.

J. M. Könen, H. Röglin, and T. Stuck 105:13

Figure 2 The weights of all PO solutions of Osterloh. The arrow indicates which nonextreme
solution is shown in Figure 1.

For the polygon aggregation problem, it is known that all extreme solutions are hierarch-
ically compatible [28]. In Figure 1 we illustrate this by showing two consecutive extreme solu-
tions p1, p2 and one nonextreme solution p′ that lies between them (i.e. A(p1) < A(p′) < A(p2)
and P (p1) > P (p′) > P (p2)). While the nonextreme solution p′ is also a viable aggregation,
it exhibits a significantly different structure compared to the extreme solutions. Focusing
solely on extreme solutions may lead to large gaps in the solution space, as seen in Figure 2.

Across the datasets we solved, extreme solutions accounted for only less than one percent
of the total PO solutions on average. As a result, computing the set of nonextreme solutions
can therefore lead to a significant richer range of solutions for the user to choose from, while
the extreme solutions are forced being hierarchical depending on each other.

We published a tool to interactively investigate all PO solutions for the dataset Oster-
loh. The tool is available at https://github.com/Tarek-pub/Bicriteria_Aggregation_
plotting.

6 Conclusions

We presented the first algorithms for computing Pareto sets using dynamic programming
over tree decompositions and showed that this framework can naturally be applied to various
multiobjective optimization problems. The main motivation for our work was the article of
Rottmann et al. [28], who raised the question of whether it is possible to compute the Pareto
set in output-polynomial time. We also conducted an experimental analysis of the polygon
aggregation problem on real-world instances and developed several techniques to improve
both runtime and memory usage.

We want to highlight that the theoretical running times of our algorithms are only worst-
case bounds. In practice, because not every bag in a tree decomposition has the maximum
possible size and the number of join nodes is often relatively small, the actual running
time will usually be smaller. Additionally, it is a common phenomenon for multiobjective
optimization that Pareto sets are not too large for real-world inputs. Hence, the dependency
on the size of the largest Pareto set is not prohibitive in practice. For problems like the
multiobjective minimum spanning tree problem, the multiobjective TSP, and many other
problems, this is further supported by theoretical results in smoothed analysis, which shows
that Pareto sets are expected to be polynomially bounded when instances are randomly
perturbed [10].

ESA 2025

https://github.com/Tarek-pub/Bicriteria_Aggregation_plotting
https://github.com/Tarek-pub/Bicriteria_Aggregation_plotting

105:14 Parameterized Algorithms for Computing Pareto Sets

References
1 Michael Abseher, Frederico Dusberger, Nysret Musliu, and Stefan Woltran. Improving the

efficiency of dynamic programming on tree decompositions via machine learning. In Qiang
Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, IJCAI’15, pages 275–282. AAAI Press, 2015. doi:10.1613/jair.5312.

2 Pankaj K. Agarwal, David Eppstein, Leonidas J. Guibas, and Monika Rauch Henzinger.
Parametric and kinetic minimum spanning trees. In 39th Annual Symposium on Foundations
of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages
596–605. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743510.

3 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.
doi:10.1137/0608024.

4 Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil: A modular library for
computing tree decompositions. In Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and
Rajeev Raman, editors, 16th International Symposium on Experimental Algorithms, SEA 2017,
June 21-23, 2017, London, UK, volume 75 of LIPIcs, pages 28:1–28:21, Dagstuhl, Germany,
2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SEA.2017.28.

5 René Beier, Heiko Röglin, Clemens Rösner, and Berthold Vöcking. The smoothed number of
pareto-optimal solutions in bicriteria integer optimization. Math. Program., 200(1):319–355,
September 2023. doi:10.1007/s10107-022-01885-6.

6 Nadja Betzler, Rolf Niedermeier, and Johannes Uhlmann. Tree decompositions of graphs:
Saving memory in dynamic programming. Discret. Optim., 3(3):220–229, 2006. Graphs and
Combinatorial Optimization. doi:10.1016/j.disopt.2006.05.008.

7 Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, STOC ’93, pages 226–234, New York, NY, USA, 1993. ACM. doi:10.1145/167088.
167161.

8 Hans L. Bodlaender and Fedor V. Fomin. Tree decompositions with small cost. Discret.
Appl. Math., 145(2):143–154, 2005. Structural Decompositions, Width Parameters, and Graph
Labelings. doi:10.1016/j.dam.2004.01.008.

9 Fritz Bökler. Output-sensitive complexity of multiobjective combinatorial optimization with
an application to the multiobjective shortest path problem. PhD thesis, Dortmund University,
Germany, 2018. doi:10.17877/DE290R-19130.

10 Tobias Brunsch and Heiko Röglin. Improved smoothed analysis of multiobjective optimization.
J. ACM, 62(1):4:1–4:58, 2015. doi:10.1145/2699445.

11 Günther Charwat and Stefan Woltran. Efficient problem solving on tree decompositions
using binary decision diagrams. In Francesco Calimeri, Giovambattista Ianni, and Miroslaw
Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning - 13th International
Conference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, volume
9345 of Lecture Notes in Computer Science, pages 213–227, Cham, 2015. Springer. doi:
10.1007/978-3-319-23264-5_19.

12 H. William Corley and I. Douglas Moon. Shortest paths in networks with vector weights.
Journal of Optimization Theory and Application, 46(1):79–86, 1985. doi:10.1007/BF00938761.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 1st
edition, 2015. doi:10.1007/978-3-319-21275-3.

14 Tamal K. Dey. Improved bounds on planar k-sets and k-levels. In 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22,
1997, pages 156–161. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.646104.

https://doi.org/10.1613/jair.5312
https://doi.org/10.1109/SFCS.1998.743510
https://doi.org/10.1137/0608024
https://doi.org/10.4230/LIPIcs.SEA.2017.28
https://doi.org/10.1007/s10107-022-01885-6
https://doi.org/10.1016/j.disopt.2006.05.008
https://doi.org/10.1145/167088.167161
https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/j.dam.2004.01.008
https://doi.org/10.17877/DE290R-19130
https://doi.org/10.1145/2699445
https://doi.org/10.1007/978-3-319-23264-5_19
https://doi.org/10.1007/978-3-319-23264-5_19
https://doi.org/10.1007/BF00938761
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/SFCS.1997.646104

J. M. Könen, H. Röglin, and T. Stuck 105:15

15 Matthias Ehrgott. Integer solutions of multicriteria network flow problems. Investigacao
Operacional, 19:229–243, 1999. doi:10.1007/978-3-642-59179-2_2.

16 Matthias Ehrgott. Multicriteria Optimization (2. ed.). Springer, 2005. doi:10.1007/
3-540-27659-9.

17 Pierre Hansen. Bicriterion path problems. In Multiple Criteria Decision Making: Theory and
Applications, volume 177 of Lecture Notes in Economics and Mathematical Systems, pages
109–127, 1980. doi:10.1007/978-3-642-48782-8_9.

18 Kustaa Kangas, Mikko Koivisto, and Sami Salonen. A faster tree-decomposition based
algorithm for counting linear extensions. Algorithmica, 82(8):2156–2173, 2020. doi:10.1007/
s00453-019-00633-1.

19 Joshua Marc Könen, Heiko Röglin, and Tarek Stuck. Bicriteria Aggregation. Software,
swhId: swh:1:dir:b6eacf189792239e9115cf288be27c6753b8df17 (visited on 2025-09-09).
URL: https://github.com/Tarek-pub/Bicriteria_Aggregation, doi:10.4230/artifacts.
24714.

20 Joshua Marc Könen, Heiko Röglin, and Tarek Stuck. Bicriteria Aggregation Plotting. Inter-
activeResource (visited on 2025-09-09). URL: https://github.com/Tarek-pub/Bicriteria_
Aggregation_plotting, doi:10.4230/artifacts.24713.

21 Tuukka Korhonen. Single-exponential time 2-approximation algorithm for treewidth. CoRR,
abs/2104.07463, 2021. doi:10.48550/arXiv.2104.07463.

22 Ankur Moitra and Ryan O’Donnell. Pareto optimal solutions for smoothed analysts. SIAM J.
Comput., 41(5):1266–1284, 2012. doi:10.1137/110851833.

23 Matthias Müller-Hannemann and Karsten Weihe. On the cardinality of the pareto set in
bicriteria shortest path problems. Ann. Oper. Res., 147(1):269–286, 2006. doi:10.1007/
s10479-006-0072-1.

24 Adli Mustafa and Mark Goh. Finding integer efficient solutions for bicriteria and tricriteria
network flow problems using DINAS. Comput. Oper. Res., 25(2):139–157, 1998. doi:10.1016/
S0305-0548(97)00027-0.

25 George L. Nemhauser and Zev Ullmann. Discrete dynamic programming and capital allocation.
Management Science, 15(9):494–505, 1969. doi:10.1287/mnsc.15.9.494.

26 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

27 Heiko Röglin and Shang-Hua Teng. Smoothed analysis of multiobjective optimization. In
50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA, pages 681–690. IEEE Computer Society, 2009. doi:
10.1109/FOCS.2009.21.

28 Peter Rottmann, Anne Driemel, Herman J. Haverkort, Heiko Röglin, and Jan-Henrik Haunert.
Bicriteria aggregation of polygons via graph cuts. In Krzysztof Janowicz and Judith Anne
Verstegen, editors, 11th International Conference on Geographic Information Science, GIS-
cience 2021, September 27-30, 2021, Poznań, Poland (Virtual Conference) - Part II, volume
208 of LIPIcs, pages 6:1–6:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.GIScience.2021.II.6.

29 Anders J. V. Skriver and Kim Allan Andersen. A label correcting approach for solving
bicriterion shortest-path problems. Comput. Oper. Res., 27(6):507–524, 2000. doi:10.1016/
S0305-0548(99)00037-4.

ESA 2025

https://doi.org/10.1007/978-3-642-59179-2_2
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/978-3-642-48782-8_9
https://doi.org/10.1007/s00453-019-00633-1
https://doi.org/10.1007/s00453-019-00633-1
https://archive.softwareheritage.org/swh:1:dir:b6eacf189792239e9115cf288be27c6753b8df17;origin=https://github.com/Tarek-pub/Bicriteria_Aggregation;visit=swh:1:snp:6062d834e514947614ecb3cd421cafb02a5cd7f5;anchor=swh:1:rev:029970db0ee7425b1739d3c87bfa94e3f9081dbd
https://github.com/Tarek-pub/Bicriteria_Aggregation
https://doi.org/10.4230/artifacts.24714
https://doi.org/10.4230/artifacts.24714
https://github.com/Tarek-pub/Bicriteria_Aggregation_plotting
https://github.com/Tarek-pub/Bicriteria_Aggregation_plotting
https://doi.org/10.4230/artifacts.24713
https://doi.org/10.48550/arXiv.2104.07463
https://doi.org/10.1137/110851833
https://doi.org/10.1007/s10479-006-0072-1
https://doi.org/10.1007/s10479-006-0072-1
https://doi.org/10.1016/S0305-0548(97)00027-0
https://doi.org/10.1016/S0305-0548(97)00027-0
https://doi.org/10.1287/mnsc.15.9.494
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1109/FOCS.2009.21
https://doi.org/10.1109/FOCS.2009.21
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.6
https://doi.org/10.1016/S0305-0548(99)00037-4
https://doi.org/10.1016/S0305-0548(99)00037-4

	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Treewidth

	3 Multiobjective s-t cut problem
	4 Experiments
	4.1 Outsourcing and Pruning
	4.2 Choosing an appropriate tree decomposition
	4.3 Join node algorithm
	4.4 Optimizing join node computations
	4.5 Join-forget nodes
	4.6 Introduce-join-forget nodes

	5 Results
	6 Conclusions

