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Abstract
We study the computational complexity of estimating the quantum ℓα distance Tα(ρ0, ρ1), defined
via the Schatten α-norm ∥A∥α := tr(|A|α)1/α, given poly(n)-size state-preparation circuits of n-qubit
quantum states ρ0 and ρ1. This quantity serves as a lower bound on the trace distance for α > 1. For
any constant α > 1, we develop an efficient rank-independent quantum estimator for Tα(ρ0, ρ1) with
time complexity poly(n), achieving an exponential speedup over the prior best results of exp(n) due
to Wang, Guan, Liu, Zhang, and Ying (IEEE Trans. Inf. Theory 2024). Our improvement leverages
efficiently computable uniform polynomial approximations of signed positive power functions within
quantum singular value transformation, thereby eliminating the dependence on the rank of the
states.

Our quantum algorithm reveals a dichotomy in the computational complexity of the Quantum
State Distinguishability Problem with Schatten α-norm (QSDα), which involves deciding
whether Tα(ρ0, ρ1) is at least 2/5 or at most 1/5. This dichotomy arises between the cases of
constant α > 1 and α = 1:

For any 1 + Ω(1) ≤ α ≤ O(1), QSDα is BQP-complete.
For any 1 ≤ α ≤ 1 + 1

n
, QSDα is QSZK-complete, implying that no efficient quantum estimator

for Tα(ρ0, ρ1) exists unless BQP = QSZK.
The hardness results follow from reductions based on new rank-dependent inequalities for the
quantum ℓα distance with 1 ≤ α ≤ ∞, which are of independent interest.
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1 Introduction

Closeness testing of quantum states is a central topic in quantum property testing [58],
which aims to develop (efficient) quantum testers for properties of quantum objects. This
problem is also closely related to verifying the functionality of quantum devices, such as Q0
and Q1, which are commonly designed to prepare the respective n-qubit (mixed) quantum
states ρ0 and ρ1. The goal of (tolerant) quantum state testing is to design efficient quantum
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algorithms that test whether ρ0 is 2/5-far from or 1/5-close to ρ1 with respect to a given
closeness measure. Notably, this problem generalizes classical (tolerant) distribution testing
(see [20] and [35, Chapter 11]) from a non-commutative perspective.

When the “source codes” of distribution- or state-preparation circuits are given, a
surprising correspondence was established between such closeness testing problems – measured
by the ℓ1 norm distance [66, 37] or entropy difference [36] – and interactive proof systems
that admit statistical zero-knowledge (SZK). This correspondence links closeness testing
problems to both complexity theory and cryptography. A similar correspondence was later
identified in the quantum world: closeness testing of quantum states with respect to the
trace distance (given by Schatten 1-norm) [77, 78], denoted by QSD, or the von Neumann
entropy difference [10] was shown to be QSZK-complete.1

In contrast, when the closeness measure follows an ℓ2-norm-like definition, such as the
Hilbert-Schmidt distance or the quantum linear entropy, the corresponding closeness testing
problems are in BQP using the SWAP test [17, 27]. Taken together, these results reveal
a dichotomy in the complexity of closeness testing: when the measure is ℓ1-norm-like, the
problems are QSZK-hard and their query or sample complexities have polynomial dependence
on the dimension or rank of the states; whereas for ℓ2-norm-like measures, the problems are
contained in BQP and their query or sample complexities are rank-independent.

What about the closeness testing problems with respect to generalizations that approxim-
ates the trace distance or the von Neumann entropy? The quantum ℓα distance, defined as
Tα(ρ0, ρ1) := 1

2 tr(|ρ0 − ρ1|α)1/α via the Schatten α-norm, generalizes both the trace distance
(α = 1) and the Hilbert-Schmidt distance (α = 2). Similarly, the quantum q-Tsallis entropy
Sq(ρ) extends both von Neumann entropy (q = 1) and quantum linear entropy (q = 2).

Interestingly, prior results show a divergence in behavior for closeness measures looser
than the ℓ2 norm: The closeness testing problem with respect to Tα(ρ0, ρ1), denoted by
QSDα (see Definition 17), is in BQP only for even integer α ≥ 2 via the Shift test [27]; while
for odd integers α ≥ 3, the query and sample complexities generally depend on the rank [71].
However, the techniques in [27] yield BQP algorithms for estimating Sq(ρ) for all integer
q ≥ 2. A recent work [53] further explored the closeness testing problem with respect to
Sq(ρ0) − Sq(ρ1), and extended the observed dichotomy from integers – where the transition
occurs between q = 1 and q ≥ 2 – to a continuous setting, showing a sharp distinction
between q = 1 and any constant q > 1. These results naturally lead to an intriguing question:

▶ Problem 1. What is the computational complexity of the closeness testing problem with
respect to Tα(ρ0, ρ1)? Does a similar dichotomy hold between α = 1 and constants α > 1,
or does the complexity vary largely depending on whether α is even or odd?

Why study ℓα problems for possibly non-integer α > 1? The trace distance (α = 1) is a
fundamental closeness measure of quantum states, capturing the maximum success probability
of quantum state discrimination [41, 40] and playing a key role in applications such as the
security of quantum key distribution [11, 63]. For α > 1, such as α = 1.001, the quantum ℓα

distance provides a natural lower bound on the trace distance, and addressing Problem 1
could make this bound efficiently computable. Moreover, insights from ℓα problems have
previously contributed to progress on well-studied ℓ1 problems, as seen in [49].

Beyond their connections to ℓ1 problems, ℓα problems for α > 1 are of independent
interest. In classical scenarios, they have applications in machine learning (e.g., [46]), as
well as in streaming and sketching algorithms (e.g. [43]). In quantum scenarios, the Hilbert-

1 The QSZK containment of the closeness testing problem with respect to the trace distance, denoted by
QSD[a(n), b(n)], holds only in the polarizing regime a(n)2 − b(n) ≥ 1/O(log n), as shown in [77, 78]. A
recent work [51] slightly improved the parameter regime for this containment.
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Schmidt distance (α = 2) is widely used in quantum information theory (e.g., [42, 61]), and
more recently, has been leveraged in designing near-term (variational) quantum algorithms
(e.g., [5, 28]). Consequently, positive answers to Problem 1 may offer new opportunities to
refine, extend, or develop techniques relevant to these areas.

A classical counterpart to Problem 1 was investigated in [69] nearly a decade ago. The
main takeaway aligns with [53]: For constant α > 1, the sample complexity for distinguishing
whether TVα(D0, D1) is at least 2/5 or at most 1/5 is independent of the dimension of the
probability distributions D0 and D1,2 fewer samples are needed as α increases. Classically,
these upper bounds can be achieved by drawing a polynomial number of samples and
computing the ℓ∞ norm distance between the resulting empirical distributions. However,
this approach does not directly extend to the quantum world: (1) quantum states ρ0 and ρ1
are generally not simultaneously diagonalizable; and (2) even when they are, estimating their
eigenvalues associated with the unknown common eigenbasis remains challenging. Addressing
these challenges is central to resolving Problem 1, which is the focus of our work.

1.1 Main results
We begin by stating our first main theorem, which provides a positive answer to Problem 1
when α lies in the range 1 + Ω(1) ≤ α ≤ O(1):

▶ Theorem 2 (Quantum estimator for Tα, informal). Given quantum query access to the
state-preparation circuits of n-qubit quantum states ρ0 and ρ1, for any constant α > 1,
there is a quantum algorithm for estimating Tα(ρ0, ρ1) within additive error 1/5 and query
complexity O(1). If the state-preparation circuits have poly(n)-size descriptions, then the
algorithm’ time complexity is poly(n). Thus, for any constant α > 1, QSDα is in BQP.

More precisely, for a given additive error ϵ, the explicit query complexity of Theorem 2 is
O(1/ϵα+1+ 1

α−1 ) (see Theorem 14). In combination with the samplizer [74, 75], estimating
Tα(ρ0, ρ1) can be done using Õ(1/ϵ3α+2+ 2

α−1 ) samples of ρ0 and ρ1 (see Theorem 16). Both
upper bounds can be expressed as poly(1/ϵ) for the regime 1 + Ω(1) ≤ α ≤ O(1). In addition,
if the state-preparation circuits of ρ0 and ρ1 have size L(n) = poly(n), then Theorem 2 implies
a quantum algorithm with time complexity Õ(L/ϵα+1+ 1

α−1 ), or equivalently, poly(n, 1/ϵ).

Previous quantum algorithms for estimating the quantum ℓα distance for constant α > 1
have all relied on its powered variant, specifically the powered quantum ℓα distance:

Λα(ρ0, ρ1) := 1
2 tr(|ρ0 − ρ1|α) = 2α−1 · Tα(ρ0, ρ1)α.

Thus, for 1 < α ≤ O(1), the estimates of Tα(ρ0, ρ1) and Λα(ρ0, ρ1) are polynomially related.
When α > 1 is an even integer, estimating Tα(ρ0, ρ1) follows from a folklore result via

the Shift test [27], using O(1/ϵ) queries or O(1/ϵ2) samples.3 However, for odd integer α > 1,
no efficient quantum algorithm is known in general. Closeness testing of quantum states
with respect to Tα(ρ0, ρ1) for α = 3, with query complexity O(1/ϵ3/2), has been noted only
in [32]. For general non-integer constants α > 1, the quantum query complexity of estimating
Tα(ρ0, ρ1) was studied in [71], with polynomial dependence on the maximum rank r of ρ0
and ρ1. A technical comparison of our approach with this result is provided in Section 1.2.

2 The closeness measure TVα(D0, D1) represents the classical ℓα distance based on the ℓα norm and
generalizes the total variation distance, which is recovered at α = 1.

3 The sample complexity was noted in [62, Equations (83) and (84)].
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By combining our efficient quantum estimator for Tα(ρ0, ρ1) in the regime 1 + Ω(1) ≤
α ≤ O(1) (Theorem 2) with our hardness results for QSDα (Theorem 3), we identify a sharp
phase transition between the case of α = 1 and constant α > 1, addressing Problem 1. For
clarity, we summarize our main theorems and the quantitative bounds on quantum query
and sample complexities, derived from both our results and prior work, in Table 1.

Table 1 Computational, query, and sample complexities of QSDα for 1 ≤ α ≤ O(1).

α = 1 1 < α ≤ 1+ 1
n1+δ 1+ 1

n1+δ < α ≤ 1+ 1
n

1+Ω(1) ≤ α ≤ O(1)

QSDα
QSZK-complete(*) QSZK-complete(*) BQP-complete

[77, 78] Theorem 3(2) Theorems 2 and 3(1)

Query Upper
Õ

(
r/ϵ2)

Õ
(

r3+ 2
α /ϵ4α+2

)
O

(
1/ϵα+1+ 1

α−1

)
Bound [72] [71] Theorem 14

Compl. Lower
Ω̃

(
r1/2)

Ω̃
(
r1/2)

Ω
(
r1/3)

Ω(1/ϵ)
Bound [18] Theorem 27(2) Theorem 27(1) Theorem 22(1)

Sample Upper
Õ

(
r2/ϵ5)

poly(r, 1/ϵ) Õ
(

1/ϵ3α+2+ 2
α−1

)
Bound [72] Noted in [71, Footnote 2] Theorem 16

Compl. Lower
Ω

(
r/ϵ2)

Ω
(
r/ϵ2)

Ω
(
1/ϵ2)

Bound [60] Theorem 28 Theorem 22(2)

(*) For any α(n) ∈
[
1, 1 + 1

n ], the promise problem QSDα[a, b] is contained in QSZK only under the polarizing
regime a(n)2 − b(n) ≥ 1/O(log n), which can be slightly improved when α = 1 (see Footnote 1). However,
establishing containment in a complexity class typically requires the natural regime a(n)− b(n) ≥ 1/ poly(n),
as in Theorem 2.

Finally, we present our second main theorem, which addresses the computational hardness
of QSDα, as outlined in Theorem 3. In this context, PureQSDα refers to a restricted
variant of QSDα (see also Definition 17), where the states of interest are pure.

▶ Theorem 3 (Computational hardness of QSDα). The promise problem QSDα captures the
computational power of the respective complexity classes in the corresponding regimes of α:
(1) Easy regimes: For any 1 ≤ α ≤ ∞, PureQSDα is BQP-hard. As a corollary, QSDα

is BQP-complete for 1 + Ω(1) ≤ α ≤ O(1).
(2) Hard regimes: For any 1 ≤ α ≤ 1 + 1

n , QSDα is QSZK-complete, where the QSZK
containment of QSDα[a,b] only holds for the polarizing regime a(n)2−b(n)≥1/O(logn).

1.2 Proof techniques: BQP containment for α constantly above 1
At a high level, Quantum Singular Value Transformation (QSVT) [34] implies that the
main challenge in designing a quantum algorithm based on a smooth function – e.g., Grover
search [38] and the OR function, or the HHL algorithm [39] and the multiplicative inverse
function (see [57] for more examples) – reduces to finding an efficiently computable polynomial
approximation. Once such an approximation is obtained, the algorithm follows directly using
techniques from [34], with its efficiency determined entirely by the polynomial’s properties.

Now we focus on quantum algorithms for estimating the powered quantum ℓα distance.
We begin by reviewing [71] and then provide a high-level overview of our approach.

The quantum query complexity of estimating the quantum ℓα distance for non-integer α
was first considered in [71, Theorem IV.1]. Their approach begins with the identity

2Λα(ρ0, ρ1) = ∥ρ0 − ρ1∥α
α = tr

(
|ν−|α/2Πν+ |ν−|α/2

)
,
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where ν± = ρ0 ± ρ1 and Πν+ denotes the projector onto the support subspace of ν+.
According to this identity, they aim to prepare a quantum state that is a block-encoding
of (normalized) |ν−|α/2Πν+ |ν−|α/2.4 To this end, they first prepare a quantum state that
is a block-encoding of Πν+ , and then perform a unitary operator that is a block-encoding
of |ν−|α/2 on it.5 Finally, the (unnormalized) powered quantum ℓα distance, Λα(ρ0, ρ1),
can be obtained by estimating the trace of |ν−|α/2Πν+ |ν−|α/2 using quantum amplitude
estimation [16]. After the error analysis, their approach was shown to have query complexity
Õ(r3+1/{α/2}/ϵ4+1/{α/2}) = poly(r, 1/ϵ).6 The dependence on the rank is inherent in the
approach of [71], as they have to prepare a rank-dependent quantum state that is a block-
encoding of Πν+ , making the rank parameters unavoidable in the error analysis.

To overcome this technical issue, we utilize an identity different from theirs:

2Λα(ρ0, ρ1) = ∥ρ0 − ρ1∥α
α = tr

(
ρ0 · sgn(ν−) · |ν−|α−1

)
− tr

(
ρ1 · sgn(ν−) · |ν−|α−1

)
.

The idea is to estimate the terms tr(ρj · sgn(ν−) · |ν−|α−1) for j ∈ {0, 1} individually, and
then combine them to obtain an estimate of Λα(ρ0, ρ1). Our algorithm is sketched as follows:
1. Find a good approximation polynomial for sgn(x) · |x|α−1.
2. Implement a unitary block-encoding U of sgn(ν−) · |ν−|α−1 using Quantum Singular

Value Transformation (QSVT) [34] and Linear Combinations of Unitaries (LCU) [23, 15],
given the state-preparation circuits of ρ0 and ρ1.

3. Perform the Hadamard test [3] on U and ρj with outcome bj ∈{0,1} for each j∈{0,1}.
4. Estimate Λα(ρ0, ρ1) by computing the expected value of b0 − b1.

Our algorithm is actually inspired by the trace distance estimation in [72], which cor-
responds to the case of α = 1. However, the approach in [72] still has a rank-dependent
query complexity of Õ(r/ϵ2), compared to the Õ(r5/ϵ6) in [71].7 Nevertheless, we discover
an approach for estimating the quantum ℓα distance with a rank-independent complexity as
long as α is constantly greater than 1. Specifically, we use the best uniform approximation
polynomial Pd(x) (of degree d) for the function sgn(x) · |x|q, as given in [31, Theorem 8.1.1]:

max
x∈[−1,1]

∣∣Pd(x) − sgn(x) · |x|q
∣∣ → 1

dq
, as d → ∞.

Our use of the best uniform approximation by polynomials is inspired by the recent work
[53] on estimating the q-Tsallis entropy of quantum states for non-integer q, where they
used the best uniform approximation polynomial for xq in the non-negative range [0, 1]
(given in [67]). The difference is that in our case, we have to further consider the sign
of x, thereby requiring the polynomial approximation to behave well in the negative part.
It turns out that the polynomial approximation given in [31] is suitable for our purpose.
Having noticed this, we then use the now standard techniques (used in [48, 53]) such as
Chebyshev truncations and the de La Vallée Poussin partial sum (cf. [65]) to construct
efficiently computable asymptotically best approximation polynomials such that

max
x∈[−1,1]

∣∣∣∣P (x) − 1
2 sgn(x) · |x|q

∣∣∣∣ ≤ ϵ, max
x∈[−1,1]

|P (x)| ≤ 1, and deg(P ) = O

(
1
ϵ1/q

)
.

4 See Definition 10 for the formal definition of block-encoding.
5 This is because of the evolution of subnormalized density operators [71, Lemma II.2].
6 Here, {x} := x − ⌊x⌋ denotes the fractional part of x.
7 Some readers may wonder if our approach applies to trace distance estimation (α = 1) to remove the

rank dependence in quantum query and sample complexities in [72]. However, the answer is generally
no, as the rank dependence is intrinsic to trace distance estimation due to the polynomial dependence
of the rank in the quantum query and sample complexities lower bounds (see [52, Section 2.2.2] in the
full version).

ESA 2025
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Using this efficiently computable polynomial (with q = α− 1) and with further analysis,
we can then estimate the quantum ℓα distance to within additive error ϵ with the desired
query upper bound in Theorem 2. Moreover, using the (multi-)samplizer [74, 75], a quantum
query-to-sample simulation, we can also achieve the desired sample upper bound.

1.3 Proof techniques: QSZK completeness for α > 1 near 1
To establish the BQP- and QSZK-hardness results in Theorem 3, we reduce the promise
problems QSD and PureQSD (α = 1) to the corresponding promise problems QSDα and
PureQSDα for appropriate ranges of α. The key technique underlying these reductions is
the following rank-dependent inequalities that generalize the case of α = 2 from [24, 25]:

▶ Theorem 4 (Tα vs. T, informal). For any states ρ0 and ρ1 and α ∈ [1,∞], it holds that:

21− 1
α · Tα(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤ 2

(
rank(ρ0)1−α + rank(ρ1)1−α

)− 1
α · Tα(ρ0, ρ1). (1)

For α = ∞, the inequalities hold in the limit as α → ∞.

The proof of Theorem 4 follows from considering orthogonal positive semi-definite matrices
ς0 and ς1 satisfying ρ0 − ρ1 = ς0 − ς1, and analyzing their properties carefully.

We then illuminate the hardness results in Theorem 3:
For the easy regime, Equation (1) becomes an equality when both ρ0 and ρ1 are pure
states. This equality implies the BQP-hardness of PureQSDα, along with the query and
sample complexity lower bounds for all 1 ≤ α ≤ ∞, establishing Theorem 3(1).
For the hard regime, Equation (1) is sensitive to α. Particularly, for α = 1+ 1

n , if quantum
states ρ0 and ρ1 are τ -far, meaning T(ρ0, ρ1) ≥ τ , it follows only that Tα=1+ 1

n
(ρ0, ρ1) ≥

τ/2. However, when α ≤ 1 + 1
n1+δ for any arbitrarily small constant δ, the same trace

distance condition ensures that Tα(ρ0, ρ1) ≥ τ as n → ∞, leading to the QSZK hardness
result in Theorem 3(2) and distinct query complexity lower bounds in Table 1.

Lastly, we explain the QSZK containment in the hard regime. Simply combining Theorem 4
and the QSZK containment of QSD from [77, 78] does not work, as the resulting QSZK
containment of QSDα[a, b] holds only for a(n)2/2 − b(n) ≥ 1/O(logn), which is even weaker
than the polarizing regime defined in Footnote 1. To address this, we establish a partial
polarization lemma for Tα (Lemma 25), which ensures that for quantum states ρ0 and ρ1
where T(ρ0, ρ1) is either at least a or at most b, we can construct new quantum states ρ̃0
and ρ̃1 such that Tα(ρ̃0, ρ̃1) is either at least 1

2 − 1
2e

−k or at most 1/16, as long as the
parameters a and b are in the polarizing regime. Theorem 3(2) follows by combining this
partial polarization lemma for Tα with the polarization lemma for T in [77].

1.4 Discussion and open problems
While the quantum ℓα distance Tα(·, ·) and its powered version Λα(·, ·) are almost computa-
tionally interchangeable for 1 ≤ α ≤ O(1), their behavior differs greatly when α = ∞:

The quantity T∞(ρ0, ρ1) corresponds to the largest eigenvalue λmax of (ρ0 − ρ1)/2.
The associated promise problem QSD∞ is BQP-hard and contains in QMA.8 However,
establishing a BQP containment appears challenging, as (ρ0 − ρ1)/2 does not directly
admit an efficiently computable basis – unlike its classical counterpart in [69], which does.

8 The verification circuit in the QMA containment simply follows from phase estimation [45], where a
(normalized) eigenvector corresponding to λmax serves as a witness state.
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The quantity Λ∞(ρ0, ρ1) takes values in {0, 1/2, 1} for any states ρ0 and ρ1, and is nonzero
if and only if the states are orthogonal, with at least one being pure. Thus, even the pure-
state-restricted variant of the associated promise problem, PurePoweredQSD∞[1, 0],
is C=P-hard (see [52, Appendix A] in the full version). Here, C=P = coNQP [2, 80], a
subclass of PP that provides a precise variant of BQP, ensuring acceptance for all yes
instances.

This fundamental difference between these quantities raises an intriguing question on QSD∞:
(a) What is the computational complexity of the promise problem QSD∞, defined by

T∞(·, ·)? Can we show that QSD∞ is also in BQP, or is it inherently more difficult?

Another open problem concerns quantitative bounds for QSDα:
(b) Can the query and sample bounds in Table 1 be improved, particularly for the regime

1 + Ω(1) ≤ α ≤ O(1)? Moreover, can tight bounds be established when the states have
small support, analogous to the classical case in [69, Table 1]?

1.5 Related works
Schatten p-norm estimation tr(|A|p) of O(logn)-local Hermitian A on n qubits to within
additive error 2n−pϵ∥A∥p for ϵ(n) ≤ 1/poly(n) and real p(n) ≤ poly(n) was shown to be
DQC1-complete in [19]. Given a unitary block-encoding of a matrix A, in [56], they presented
a quantum algorithm that estimates the Schatten p-norm (tr(|A|p))1/p to relative error ϵ for
integer p, where a condition number κ satisfying A ≥ I/κ is required for the case of odd p.

The query complexity of N -dimensional quantum state certification (i.e., determine
whether two quantum states are identical or ϵ-far) with respect to trace distance was shown
to be O(N/ϵ) in [32]. The query complexity of trace distance estimation was shown to be
Õ(r5/ϵ6) in [71] and later improved to Õ(r/ϵ2) in [72], where r is the rank of the quantum
states, confirming a conjecture in [25] that low-rank trace distance estimation is in BQP.
Both Low-rank trace distance and fidelity estimations are known to be BQP-complete [1, 72].
Based on the approach of [72], space-bounded quantum state discrimination with respect to
trace distance was shown to be BQL-complete in [48]. In addition to trace distance, fidelity is
another important measure of the closeness between quantum states. The query complexity
of fidelity estimation was shown to be Õ(r12.5/ϵ13.5) in [76] and later improved to Õ(r5.5/ϵ6.5)
in [71] and to Õ(r2.5/ϵ5) in [33]. Recently, the query complexity of pure-state trace distance
and fidelity estimations was shown to be Θ(1/ϵ) in [70] and was recently extended in [29] to
estimating fidelity of a mixed state to a pure state.

In addition to the query complexity, the sample complexity has also been studied in the
literature. In [7], the sample complexity of N -dimensional quantum state certification was
shown to be Θ(N/ϵ2) with respect to trace distance and Θ(N/ϵ) with respect to fidelity. The
sample complexity of trace distance estimation is known to be Õ(r2/ϵ5) in [72] and that of
fidelity estimation is known to be Õ(r5.5/ϵ12), where r is the rank of quantum states. The
sample complexity of pure-state squared fidelity estimation is known to be Θ(1/ϵ2) via the
SWAP test [17], where the matching lower bound was given in [4]. Recently, the sample
complexity of pure-state trace distance and fidelity estimations was shown to be Θ(1/ϵ2)
in [73], which was achieved by using the samplizer in [75].

2 Preliminaries

We assume a fundamental knowledge of quantum computation and quantum information
theory. For an introduction, we refer the reader to the textbook [59].

ESA 2025
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We adopt the following notations throughout the paper: (1) [n] := {1, 2, . . . , n}; (2)
Õ(f) denotes O(f polylog(f)), while Ω̃(f) denotes Ω(f/polylog(f)); and (3) |0̄⟩ represents
|0⟩⊗a for integer a > 1. In addition, the Schatten α-norm of a matrix A is defined as
∥A∥α :=

(
tr(|A|α)

)1/α, where |A| :=
(
A†A

)1/2. For simplicity, we use the notation ∥A∥ to
denote the operator norm (equivalently, the Schatten ∞-norm) of a matrix A.

2.1 Closeness measures for quantum states
We start by defining the trace distance and providing useful properties of this distance:

▶ Definition 5 (Trace distance). Let ρ0 and ρ1 be two quantum states that are mixed in
general. The trace distance between ρ0 and ρ1 is defined by

T(ρ0, ρ1) := 1
2 tr(|ρ0 − ρ1|) = 1

2 tr
((

(ρ0 − ρ1)†(ρ0 − ρ1)
)1/2)

.

Notably, the trace distance is a distance metric (e.g., [79, Lemma 9.1.8]).

Next, we define the quantum ℓα distance and its powered version, which generalize the
trace distance (α = 1) using the Schatten norm. Notably, the quantum ℓα distance coincides
with the Hilbert-Schmidt distance when α = 2:

▶ Definition 6 (Quantum ℓα distance and its powered version). Let ρ0 and ρ1 be two quantum
states that are mixed in general. The quantum ℓα distance Tα(·, ·) and its powered version
Λα(·, ·) between ρ0 and ρ1 are defined as follows:

Tα(ρ0, ρ1) := 1
2∥ρ0 − ρ1∥α and Λα(ρ0, ρ1) := 1

2∥ρ0 − ρ1∥α
α.

Here, the Schatten α-norm of ρ0 − ρ1 is given by ∥ρ0 − ρ1∥α := (|ρ0 − ρ1|α)1/α.

By the monotonicity of the Schatten norm, e.g., [6, Equation (1.31)], it holds that:

∀α ≥ 1, 0 ≤ Λα(ρ0, ρ1) ≤ Tα(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤ 1.

As a corollary of the Davis convexity theorem [26], the quantum ℓα distance Tα(·, ·) also
serves as a distance metric, whereas its powered version Λα(·, ·) does not. Further inequalities
for the trace distance and the quantum ℓα distance are given in the full version, particularly
in [52, Section 2.1].

Lastly, we require the following relationship for additive error estimation between the
quantum ℓα distance and its powered version. The proof is provided in the full version,
specifically in [52, Proposition 2.5].

▶ Proposition 7 (Tα vs. powered Tα). The quantum ℓα distance Tα(·, ·) and its powered
version Λα(·, ·) are related through the equality Tα(ρ0, ρ1) = 2 1

α −1 · Λα(ρ0, ρ1) 1
α . Accordingly,

if x is an estimate of Λα(ρ0, ρ1) to within additive error ϵ, then 2 1
α −1 · x 1

α serves as an
estimate of Tα(ρ0, ρ1) to within additive error 2 1

α −1 · ϵ 1
α .

2.2 Closeness testing of quantum states via state-preparation circuits
We begin by defining the closeness testing of quantum states with respect to the trace
distance, denoted as QSD[a, b],9 and two variants of this problem:

9 While Definition 8 aligns with the classical counterpart of QSD defined in [66, Section 2.2], it is slightly
less general than the definition in [77, Section 3.3]. Specifically, Definition 8 assumes that the input
length m and the output length n are polynomially equivalent, whereas [77, Section 3.3] allows for cases
where the output length (e.g., a single qubit) is much smaller than the input length.
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▶ Definition 8 (Quantum State Distinguishability Problem, QSD, adapted from [77, Section 3.3]).
Let Q0 and Q1 be quantum circuits acting on m qubits (“input length”) and having n specified
output qubits (“output length”), where m(n) is a polynomial function of n. Let ρi denote the
quantum state obtained by running Qi on state |0⟩⊗m and tracing out the non-output qubits.
Let a(n) and b(n) be efficiently computable functions. Decide whether :

Yes: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≥ a(n);
No: A pair of quantum circuits (Q0, Q1) such that T(ρ0, ρ1) ≤ b(n).

Furthermore, we denoted the restricted version, where ρ0 and ρ1 are pure states, as PureQSD.

In this work, we consider the purified quantum access input model, as defined in [77], in
both white-box and black-box scenarios:

White-box input model: The input of the problem QSD consists of descriptions of
polynomial-size quantum circuits Q0 and Q1. Specifically, for b ∈ {0, 1}, the description
of Qb includes a sequence of polynomially many 1- and 2-qubit gates.
Black-box input model: In this model, instead of providing the descriptions of the
quantum circuits Q0 and Q1, only query access to Qb is allowed, denoted as Ob for
b ∈ {0, 1}. For convenience, we also allow query access to Q†

b and controlled-Qb, denoted
by O†

b and controlled-Ob, respectively.

In addition to query complexity, defined within the black-box input model, sample
complexity refers to the number of copies of quantum states ρ0 and ρ1 needed to accomplish
a specific closeness testing task. Useful lemmas on computational hardness and quantitative
lower bounds for query and sample complexities are available in the full version, specifically
in [52, Section 2.2].

2.3 Polynomial approximations
We now present useful tools on best uniform polynomial approximations. In addition,
definitions and lemmas on Chebyshev expansion and truncations can be found in the full
version, particularly in [52, Section 2.3.2].

Let f(x) be a continuous function defined on the interval [−1, 1] that we aim to approx-
imate using a polynomial of degree at most d. We define P ∗

d as a best uniform approximation
on [−1, 1] to f of degree d if, for any degree-d polynomial approximation Pd of f , it holds
that maxx∈[−1,1]|f(x) − P ∗

d (x)| ≤ maxx∈[−1,1]|f(x) − Pd(x)|.
The best uniform (polynomial) approximation of positive (constant) powers |x|α was

first established by Serge Bernstein [14, 13]. However, the focus here is on the best uniform
approximation of signed positive powers sgn(x)|x|α, as stated in Lemma 9. This result is
often attributed to Bernstein’s work (see, e.g., [68, Equation (10.2)]), and a proof of a more
general version can be found in [31, Theorem 8.1.1].

▶ Lemma 9 (Best uniform approximation of signed positive powers, adapted from [31, Theorem
8.1.1]). For any positive real (constantly large) order α, let P ∗

d ∈ R[x] be the best uniform
polynomial approximation for f(x) = sgn(x)|x|α of degree d =

⌈
(βα/ϵ)1/α

⌉
, where βα is a

constant depending on α. Then, for sufficiently small ϵ, maxx∈[−1,1] |P ∗
d (x) − f(x)| ≤ ϵ.

2.4 Quantum algorithmic toolkit
In this subsection, we recap the quantum singular value transformation. Additional quantum
algorithmic tools, including useful quantum algorithmic subroutines and the quantum
samplizer can be found in the full version, specifically in [52, Sections 2.4.2 and 2.4.3].
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2.4.1 Quantum singular value transformation

We start by defining block-encoding:

▶ Definition 10 (Block-encoding). A linear operator A on an (n+a)-qubit Hilbert space is said
to be an (α, a, ϵ)-block-encoding of an n-qubit linear operator B, if ∥α(⟨0|⊗a ⊗ In)A(|0⟩⊗a ⊗
In) −B∥ ≤ ϵ, where In is the n-qubit identity operator and ∥·∥ is the operator norm.

Then, we state the quantum singular value transformation:

▶ Lemma 11 (Quantum singular value transformation, [34, Theorem 31]). Suppose that unitary
operator U is a (α, a, ϵ)-block-encoding of Hermitian operator A, and P ∈ R[x] is a polynomial
of degree d with |P (x)| ≤ 1

2 for x ∈ [−1, 1]. Then, we can implement a quantum circuit Ũ
that is a (1, a+ 2, 4d

√
ϵ/α+ δ)-block-encoding of P (A/α), by using O(d) queries to U and

O((a+ 1)d) one- and two-qubit quantum gates. Moreover, the classical description of Ũ can
be computed in deterministic time poly(d, log(1/δ)).

3 Efficient quantum algorithms for estimating quantum ℓα distance

In this section, we present efficient quantum algorithms for estimating the quantum ℓα

distance Tα(ρ0, ρ1) when α ≥ 1 + Ω(1). These algorithms utilize either queries to state-
preparation circuits or samples of the states ρ0 and ρ1. The core of our approach is an
efficient uniform approximation to signed positive constant power functions (Lemma 12),
which provides a uniform error bound over the entire interval [−1, 1].

This uniform polynomial approximation enables a query-efficient quantum algorithm for
estimating Tα(ρ0, ρ1) through its powered version Λα(ρ0, ρ1), as shown in Theorem 14. As a
result, we establish a BQP containment of the promise problem QSDα defined in Section 4.
Additionally, by leveraging the multi-samplizer in [73], we devise a sample-efficient quantum
algorithm for estimating Tα(ρ0, ρ1), detailed in Theorem 16.

3.1 Efficient uniform approximations of signed positive powers

Using the averaged Chebyshev truncation specified in [52, Section 2.3.2] in the full version,
we provide an efficiently computable uniform polynomial approximation of signed positive
constant powers (see also [52, Lemma 3.1]):

▶ Lemma 12 (Efficient uniform polynomial approximation of signed positive powers). Let
α be a positive real (constantly large) number. For any ϵ ∈ (0, 1/2), there is a degree-d
polynomial Pd ∈ R[x], where d =

⌈
(β′

α/ϵ)
1/α

⌉
and β′

α is a constant depending on α, that can

be deterministically computed in Õ(d) time. For sufficiently small ϵ, it holds that:

max
x∈[−1,1]

∣∣∣∣1
2 sgn(x)|x|α − Pd(x)

∣∣∣∣ ≤ ϵ and max
x∈[−1,1]

|Pd(x)| ≤ 1.

More specifically, the degree-d uniform approximation of signed positive powers (see
Lemma 9) ensures that the degree-(2d − 1) averaged Chebyshev truncation (given in [52,
Equation 2.3]) achieves almost the same approximation error bound, with efficiently comput-
able Chebyshev coefficients. The complete proof is available in the full version, specifically
in [52, Section 3.1].
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3.2 Quantum ℓα distance estimation for constantly large α > 1

3.2.1 Query-efficient quantum algorithm for estimating powered Tα

We now present efficient quantum query algorithms for estimating Λα(ρ0, ρ1) and Tα(ρ0, ρ1),
as presented in [52, Lemma 3.2] in the full version, and the complete proof is provided in [52,
Section 3.2.1]:

▶ Lemma 13 (Powered quantum ℓα distance estimation via queries). Suppose that Q0 and
Q1 are unitary operators that prepare purifications of mixed quantum states ρ0 and ρ1,
respectively. For every constantly large α ≥ 1 + Ω(1), there is a quantum query algorithm that
estimates Λα(ρ0, ρ1) to within additive error ϵ by using O(1/ϵ1+ 1

α−1 ) queries to Q0 and Q1.

By combining Proposition 7 with Lemma 13 for additive error ϵα, we obtain a quantum
query algorithm for estimating Tα(ρ0, ρ1) when α ≥ 1 + Ω(1) is constantly large, as also
stated in [52, Theorem 3.3] in the full version:

▶ Theorem 14 (Quantum ℓα distance estimation via queries). Suppose that Q0 and Q1 are
unitary operators that prepare purifications of mixed quantum states ρ0 and ρ1, respectively.
For every constantly large α ≥ 1 + Ω(1), there is a quantum query algorithm that estimates
Tα(ρ0, ρ1) to within additive error ϵ by using O(1/ϵα+1+ 1

α−1 ) queries to Q0 and Q1.

3.2.2 Sample-efficient quantum algorithm for estimating powered Tα

We proceed by describing efficient quantum sample algorithms for Λα(ρ0, ρ1) and Tα(ρ0, ρ1),
as stated in Lemma 15 and in [52, Lemma 3.4] in the full version. Our sample algorithms are
obtained by combining the quantum query algorithm from Lemma 13 with the samplizer [74,
75]. The corresponding explanatory framework is presented in in [52, Algorithm 1], and the
detailed proof is given in [52, Section 3.2.2].

▶ Lemma 15 (Powered quantum ℓα distance estimation via samples). For every constantly
large α ≥ 1 + Ω(1), Λα(ρ0, ρ1) can be estimated to within additive error ϵ on a quantum
computer by using Õ(1/ϵ3+ 2

α−1 ) samples of ρ0 and ρ1.

By combining Proposition 7 with Lemma 15 for additive error ϵα, we obtain a quantum
sample algorithm for estimating Tα(ρ0, ρ1) when α ≥ 1 + Ω(1) is constantly large, as also
stated in [52, Theorem 3.5] in the full version:

▶ Theorem 16 (Quantum ℓα distance estimation via samples). For every constantly large
α ≥ 1 + Ω(1), there is a quantum sample algorithm that estimates the quantum ℓα distance
Tα(ρ0, ρ1) to within additive error ϵ by using Õ(1/ϵ3α+2+ 2

α−1 ) samples of ρ0 and ρ1.

4 Hardness and lower bounds for α constantly above 1

We begin by introducing a generalization of QSD from [77], where the trace distance is
replaced with the quantum ℓα distance as the closeness measure:

▶ Definition 17 (Quantum State Distinguishability Problem with Schatten α-norm, QSDα).
Let Q0 and Q1 be quantum circuits acting on m qubits (“input length”) and having n specified
output qubits (“output length”), where m(n) is a polynomial function of n. Let ρi denote the
quantum state obtained by running Qi on state |0⟩⊗m and tracing out the non-output qubits.
Let a(n) and b(n) be efficiently computable functions. Decide whether :

Yes: A pair of quantum circuits (Q0, Q1) such that Tα(ρ0, ρ1) ≥ a(n);
No: A pair of quantum circuits (Q0, Q1) such that Tα(ρ0, ρ1) ≤ b(n).

Moreover, we denoted the restricted version, where ρ0 and ρ1 are pure states, as PureQSDα.
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In the remainder of this section, we establish rank-dependent inequalities between the
quantum ℓα distance and the trace distance (Theorem 18) in Section 4.1. These inequalities
facilitate reductions that demonstrate the BQP hardness (Theorem 21) and derive quantitative
lower bounds on queries and samples (Theorem 22) for PureQSDα in Section 4.2.

4.1 Rank-dependent inequalities between Tα and the trace distance
We generalize the rank-dependent inequalities between the (squared) Hilbert-Schmidt distance
and the trace distance, as demonstrated in [24, Appendix G] and [25, Theorem 1] for the
case of α = 2, to all 1 ≤ α ≤ ∞:

▶ Theorem 18 (Tα vs. T). Let ρ0 and ρ1 be quantum states. The following holds:
(1) For any α in the range 1 ≤ α < ∞,

21− 1
α · Tα(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤ 2

(
rank(ρ0)1−α + rank(ρ1)1−α

)− 1
α · Tα(ρ0, ρ1).

(2) For α = ∞, 2 · T∞(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤ 2 min{rank(ρ0), rank(ρ1)} · T∞(ρ0, ρ1).

It is worth noting that Item 1 and Item 2 in Theorem 18 are consistent, specifically

lim
α→∞

(
rank(ρ0)1−α + rank(ρ1)1−α

)− 1
α = min{rank(ρ0), rank(ρ1)}.

Additionally, the inequalities in Theorem 18 sharpen the inequalities between the trace norm
and the Schatten norm (see, e.g., [6, Equation (1.31)]):

∀1 ≤ p ≤ ∞, ∥A∥p ≤ ∥A∥1 ≤ r
1−1/p
A · ∥A∥p. (2)

By considering the maximum rank of ρ0 and ρ1, we can derive a simplified form of
Theorem 18 for convenience:

▶ Corollary 19 (Tα vs. T, simplified). For any quantum states ρ0 and ρ1, the following holds:

∀1 ≤ α < ∞, 21− 1
α ·Tα(ρ0, ρ1) ≤ T(ρ0, ρ1) ≤ (2 max{rank(ρ0), rank(ρ1)})1− 1

α ·Tα(ρ0, ρ1).

Moreover, for pure quantum states, Theorem 18 yields the following equality:

▶ Corollary 20 (Tα = T for pure states). For any pure states |ψ0⟩⟨ψ0| and |ψ1⟩⟨ψ1|, we have:

∀1 ≤ α ≤ ∞, 21− 1
α · Tα(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) = T(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|).

The proof of Theorem 18 (see also [52, Theorem 4.2] in the full version) relies
on the positive semi-definite matrices ς0 and ς1, defined for each b ∈ {0, 1} as ςb :=
1
2
(
(−1)b(ρ0 − ρ1) + |ρ0 − ρ1|

)
. These matrices are orthogonal and satisfy the relation

ρ0 − ρ1 = ς0 − ς1. The complete proof is provided in [52, Section 4.1].

4.2 Computational hardness and lower bounds
We first state the computational hardness result of PureQSDα with 1 ≤ α ≤ ∞, obtained
by a reduction from PureQSD, which is BQP hard [64], as stated in Theorem 21 and in [52,
Theorem 4.5]. The proof can be found in the full version, specifically in [52, Section 4.2].

▶ Theorem 21 (PureQSDα is BQP-hard). For any 1 ≤ α ≤ ∞ and n ≥ 2, it holds that:

PureQSDα

[
2 1

α −1 ·
(
1 − 2−n

)
, 2 1

α −1−n
]

is BQP-hard.
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Next, we provide lower bounds on the query and sample complexities for PureQSDα by
reducing to those for PureQSD in [70], as presented in Theorem 22 and in [52, Theorem 4.6].
The proof is provided in the full version, particularly in [52, Section 4.2].

▶ Theorem 22 (Quantitative lower bounds for PureQSDα). For any 1 ≤ α ≤ ∞ and
0 < ϵ < 2 1

α −2, there exist n-qubit pure states |ψ0⟩ and |ψ1⟩ such that deciding whether
Tα(|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|) is at least ϵ or exactly 0 requires:
(1) Queries: In the purified quantum access model, the quantum query complexity is Ω(1/ϵ).

(2) Samples: The quantum sample complexity is Ω(1/ϵ2).

5 Quantum ℓα distance estimation for α > 1 near 1

In this section, we establish that QSDα is QSZK-complete for 1 ≤ α ≤ 1 + 1
n (see also [52,

Theorem 5.1] in the full version), extending the prior result that QSD (α = 1) is QSZK-
complete, as shown in [77]:

▶ Theorem 23 (QSDα is QSZK-complete for α > 1 near 1). Let a(n) and b(n) be efficiently
computable functions such that 0 ≤ b < a ≤ 1. Then, for any 1 ≤ α ≤ 1 + 1

n , it holds that:

For any a(n)2 − b(n) ≥ 1/O(logn),QSDα[a, b] is in QSZK.

Moreover, QSDα[a, b] is QSZK-hard if a(n) ≤ 1/2 − 2−nτ −1 and b(n) ≥ 2−nτ − 1
n+1 for every

constant τ ∈ (0, 1/2) and sufficiently large integer n.

The main challenge in proving Theorem 23 is to establish a QSZK containment of QSDα

under the polarizing regime a(n)2 − b(n) ≥ 1/O(logn).10 A direct approach, combining
the inequalities between T and Tα (Corollary 19) with the QSZK containment of QSD
from [77, 78], only yields a QSZK containment of QSDα[a, b] under a weaker regime, a(n)2/2−
b(n) ≥ 1/O(logn). To circumvent this, we provide a (partial) polarization lemma for Tα

(Lemma 25), which enables us to achieve the desired QSZK containment in Theorem 23.

The remainder of this section establishes the QSZK containment of QSDα in Section 5.1.
We then show the QSZK hardness of QSDα (Theorem 26) and derive quantitative lower
bounds on query complexity (Theorem 27) and sample complexity (Theorem 28) in Section 5.2.

5.1 QSZK containment via a partial polarization lemma for Tα

▶ Theorem 24 (QSDα is in QSZK). Let a(n) and b(n) be efficiently computable functions
satisfying 0 ≤ b < a ≤ 1. Then, the following holds:

For any α ∈
[
1, 1 + 1

n

]
and any a(n)2 − b(n) ≥ 1

O(logn) ,QSDα[a, b] is in QSZK.

The proof of Theorem 24 (see also [52, Theorem 5.2] in the full version) can be found
in [52, Section 5.1]. The main technical tool is a partial polarization lemma for Tα (see
also [52, Lemma 5.3]), which ensures that any pair (a, b) within the polarizing regime can be
made constantly separated:

10 Notably, similar to the classical cases [12], by reducing to the Quantum Jensen-Shannon Divergence
Problem (QJSP) or the Measured Quantum Triangular Discrimination Problem (measQTDP)
introduced in [51], the QSZK containment of QSDα holds slightly beyond the polarizing regime.
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▶ Lemma 25 (A partial polarization lemma for Tα). Let Q0 and Q1 be quantum circuits that
prepare quantum states ρ0 and ρ1, respectively. There is a deterministic procedure that, given
an input (Q0, Q1, a, b, k) where a(n)2 − b(n) ≥ 1/O(logn), outputs new quantum circuits Q̃0
and Q̃1 that prepare the states ρ̃0 and ρ̃1, respectively. The resulting states satisfy that:

For any α ∈ [1, 1 + 1/n], Tα(ρ0, ρ1) ≥ a =⇒ Tα(ρ̃0, ρ̃1) ≥ (1 − e−k)/2,
Tα(ρ0, ρ1) ≤ b =⇒ Tα(ρ̃0, ρ̃1) ≤ 1/16.

Here, the states ρ̃0 and ρ̃1 are defined over Õ
(
nk

O
(

b ln(2/a2)
a2−b

))
qubits. Moreover,

when k ≤ O(1) or a2 − b ≥ Ω(1), the time complexity of the procedure is
poly

(
|Q0|, |Q1|, k, exp

( b ln(1/a2)
a2−b

))
.

In analogy with polarization lemmas for various classical [12, 21, 66] and quantum [51, 77]
closeness measures, the proof of Lemma 25 proceeds by separately reducing the errors on
both sides of the problem QSDα. This is achieved using the XOR lemma ([52, Lemma 5.4])
and the direct product lemma ([52, Lemma 5.5]) for Tα. The full statements of these two
lemmas, along with the full proofs of all three, are given in the full version, particularly
in [52, Section 5.1].

5.2 Computational hardness and lower bounds for α > 1 near 1
▶ Theorem 26 (QSDα is QSZK-hard). For any positive constant δ > 0 that can be made
arbitrarily small, the following holds for sufficiently large n:
(1) For any 1 ≤α≤ 1+ 1

n1+δ , ∀τ ∈ (0, 1/2), QSDα

[
1−γδ,τ (n), γ′

δ,τ (n)
]

is QSZK-hard, where

γδ,τ (n) := 1 − 2− n+1
n1+δ+1 + 2−nτ − n+1

n1+δ+1 and γ′
δ,τ (n) := 2−nτ − 1

n1+δ+1 .
(2) For any 1+ 1

n1+δ <α≤1+ 1
n , ∀τ ∈ (0, 1/2), QSDα

[ 1
2 −2−nτ−1, 2−nτ− 1

n+1
]

is QSZK-hard.

The proof of Theorem 26 (see also [52, Theorem 5.6]), based on reductions to QSD that
is QSZK-hard [77, 78], is provided in the full version, particularly in [52, Section 5.2]. For
any n-qubit state ρ of rank r, let ρU be the corresponding n-qubit state whose eigenvalues
are uniformly distributed over the support of ρ. Next, we can establish the following lower
bounds (see also [52, Theorem 5.7]), and the proof also can be found in [52, Section 5.2]:

▶ Theorem 27 (Query complexity lower bounds for QSDα). The following query complexity
lower bounds hold in the purified quantum query access model, depending on the range of α,
where δ > 0 is a constant that can be made arbitrarily small:
(1) For any 1 + 1

n1+δ < α ≤ 1 + 1
n and 0 < ϵ ≤ 2 1

α −2, there exist an n-qubit state ρ of rank
r and the corresponding state ρU such that deciding whether Tα(ρ, ρU) is at least ϵ or
exactly 0 requires Ω(r1/3) queries.

(2) For any 1 ≤ α ≤ 1 + 1
n1+δ , there exist a constant ϵ > 0 such that, for some n-qubit state

ρ of rank r and the corresponding state ρU, estimating Tα(ρ, ρU) to within additive error
ϵ requires Ω̃(r1/2) queries.

By leveraging the same reduction used to prove Theorem 27(1), the rank-dependent sample
complexity lower bound (given in [52, Lemma 2.10(2)] in the full version) for estimating the
trace distance T(·, ·) can be extended to the quantum ℓα distance Tα(·, ·) with 1 ≤ α ≤ 1+ 1

n ,
as also stated in [52, Theorem 5.8]:

▶ Theorem 28 (Sample complexity lower bound for QSDα). For any 1 ≤ α ≤ 1 + 1
n and

0 ≤ ϵ ≤ 2 1
α −2, there exists an n-qubit state ρ of rank r and the corresponding state ρU such

that deciding whether Tα(ρ, ρU) is at least ϵ or exactly 0 requires Ω
(
r/ϵ2

)
samples of ρ.
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