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Abstract
We show the existence of length-constrained expander decomposition in directed graphs and undirected
vertex-capacitated graphs. Previously, its existence was shown only in undirected edge-capacitated
graphs [24, 21]. Along the way, we prove the multi-commodity maxflow-mincut theorems for
length-constrained expansion in both directed and undirected vertex-capacitated graphs. Based on
our decomposition, we build a length-constrained flow shortcut for undirected vertex-capacitated
graphs, which roughly speaking is a set of edges and vertices added to the graph so that every
multi-commodity flow demand can be routed with approximately the same vertex-congestion and
length, but all flow paths only contain few edges. This generalizes the shortcut for undirected
edge-capacitated graphs from [20]. Length-constrained expander decomposition and flow shortcuts
have been crucial in the recent algorithms in undirected edge-capacitated graphs [20, 23]. Our work
thus serves as a foundation to generalize these concepts to directed and vertex-capacitated graphs.
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1 Introduction

Expander decomposition found its early applications in property testing [17], clustering [32],
and approximation algorithms [10] and, for the last two decades, has been the crucial
ingredient in important developments of fast graph algorithms. This includes the first
almost-linear time algorithms for spectral sparsifiers and Laplacian solvers [46], approximate
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max flow [33, 45, 42], deterministic global min cut [35], exact max flow [12], as well as many
almost-optimal dynamic algorithms for minimum spanning trees [41], shortest paths [14, 4],
sparsifiers [5], k-edge-connectivity [30], minimum cuts [31, 16], and more [18]. Significant
effort [43, 8, 13, 7, 37, 36, 27, 1, 19, 11] has focused on constructing expander decomposition
itself. Below, we discuss two successful orthogonal generalizations of expander decomposition.

Vertex and Directed Expander Decomposition. In 2005, Chekuri, Khanna, and Shepherd
[10] showed that the construction of expander decomposition in undirected edge-capacitated
graphs naturally extends to work in undirected vertex-capacitated graphs and applies them
for approximating all-or-nothing vertex-capacitated flow problems. Later, this was extended
to directed graphs, an even more general setting [9].1

Since 2020, almost-linear time expander decomposition algorithms in these generalized
settings have been developed [3, 39, 27, 47] and found impressive applications. For the vertex-
capacitated ones, they were crucial for the fastest deterministic vertex connectivity algorithms
[44, 40] and data structures for connectivity queries under vertex failures [39, 38, 29]. For
the directed ones, they were used for dynamic algorithms in directed graphs [3] and the new
combinatorial approaches for exact max flow [15, 2].

Length-Constrained Expander Decomposition and Flow Shortcuts. More recently, Haeu-
pler, Räcke, and Ghaffari [24] introduced length-constrained expanders (LC-expanders). At
a very high level, these are graphs such that any “reasonable” demand can be routed with
low congestion and length. In contrast, normal expanders only guarantee low congestion.
[24] constructed LC-expander decomposition and applied it to show universally optimal
distributed algorithms. In general, LC-expander decomposition is much more effective for
problems that simultaneously concern length and congestion.

Based on the new decomposition, [20] introduced the notion of LC-flow shortcut2, a new
kind of graph augmentation. Roughly speaking, an LC-flow shortcut is a set of edges and
vertices added to the graph so that every multi-commodity flow demand can be routed with
approximately the same congestion and length, but all flow paths only have a few edges. We
use steps, which count the number of edges, to distinguish between edge lengths. This is
formalized as follows (see Section 2 for background).

▶ Definition 1 (Length-Constrained Flow Shortcut). Given a graph G = (V, E), we say an
edge set E′ (possibly with endpoints outside V ) is a t-step flow shortcut of G with length
slack λ and congestion slack κ if

(Forward Mapping) for every demand D routable in G with congestion 1 and length h, D

is routable in G ∪ E′ with congestion 1, length λh, and maximum step t, and
(Backward Mapping) for every demand D on V (G) routable in G ∪ E′ with congestion 1
and length h, D is routable in G with congestion κ and length h.

In any undirected edge-capacitated graph, [20] showed, for any ϵ > 0, the existence of
a O(1/ϵ2)-step LC-flow shortcut E′ of size |E′| ≤ O(n1+O(ϵ)polylog(n)) with length slack
O(1/ϵ3) and congestion slack nO(ϵ).3 Combined with newly developed close-to-linear time
LC-expander decomposition [21, 22], they also obtained a close-to-linear time construction
for LC-flow shortcuts albeit with worse quality.

1 In fact, expander decomposition was only implicit in [10, 9] as their definitions were specific to their
applications. The purely graph-theoretic definition was later formalized in [3].

2 It was called a low-step flow emulator in [20].
3 The shortcut E′ in [20] actually has O(1/ε4) length slack and O(1/ε2) maximum step, but this is only

because they tried to ensure that all endpoints of E′ are in V . Allowing endpoints outside V , one can
replace their router with a star and improve the quality to be as we stated.
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LC-flow shortcuts have led to significant further progress. This includes the first close-to-
linear time constant-approximation algorithm for minimum cost multi-commodity flow [20].
The dynamic but weaker version of flow shortcuts was also the key object in the first
deterministic dynamic constant-approximate distance oracle with O(nϵ) update time [23].

However, all applications of LC-expander decomposition until now are limited to undi-
rected edge-capacitated graphs.

1.1 Our Results
To extend the reach of the expander decomposition paradigm further, the history above
suggests the following research question:

Can we construct length-constrained expander decomposition and flow shortcuts
beyond undirected edge-capacitated graphs?

Indeed, we answer this question affirmatively. In this paper, we focus on the existential
results, but the arguments naturally give polynomial-time algorithms. For future work, we are
working towards almost-linear-time constructions, which would lead to further applications
for minimum cost (multi-commodity) flow in vertex-capacitated and directed graphs. Below,
we discuss our contribution in more detail.

Length-Constrained Directed and Vertex Expander Decompositions. We formalize the no-
tions of length-constrained expanders in directed graphs and in undirected vertex-capacitated
graphs. Then, we show the existence of length-constrained expander decomposition in
directed graphs (Theorem 10) and in undirected vertex-capacitated graphs (Theorem 11).
Along the way, we also show that the definition of length-constrained expanders based on
cuts is almost equivalent to the characterization based on multi-commodity flow (Theorems 9
and 12). This can be viewed as a version of the approximate multicommodity maxflow
mincut theorem [34] but for length-constrained expansion in directed and vertex-capacitated
graphs. While this part does not require technical novelty, it is an important foundation for
our paper and, we believe, for future work using this concept.

Length-Constrained Vertex-Capacitated Flow Shortcuts. Our main technical contribution
(Theorem 14) is to show that, for any undirected vertex-capacitated graph and any ϵ > 0, there
exists a 2O( 1

ϵ )-step flow shortcut E′ of size |E′| = O(n1+O(ϵ)polylog(n)) with length slack
O(1/ϵ3) and congestion slack nO(ϵ). This generalizes the flow shortcut of [20] in undirected
edge-capacitated graphs.

Our trade-off between size, length slack, and congestion slack matches the one of [20].
However, our step-bound is 2O( 1

ϵ ) instead of O(1/ϵ2). This is due to technical barriers unique
to vertex-capacitated graphs, which also requires us to use very different analysis. We leave
as a very interesting open problem if it is possible to obtain poly(1/ϵ) steps.

We note that obtaining similar LC-flow shortcuts on directed graphs is currently out
of reach because it would give the breakthrough on reachability shortcuts. Given a graph
G = (V, E), an edge set E′ is a t-step reachability shortcut of G if, for every pair of vertices
u, v ∈ V , u can reach v in G if and only if u can reach v in G ∪ E′ using at most t steps.
Observe that an LC-flow shortcut in a directed graph is strictly stronger than a reachability
shortcut. It is a major open problem whether there exists a no(1)-step reachability shortcut
of size n1+o(1).4

4 When endpoints of E′ must be in V , [26, 28, 6] already showed that there is no Ω(n1/4)-step reachability
shortcut of size O(n). The lower bounds extend to the shortcut of size n1+ϵ with a worse step bound.

ESA 2025



107:4 LC-Directed Expander Decomposition and LC-Vertex-Capacitated Flow Shortcuts

2 Preliminaries

We give some brief background on length-constrained expansion. A demand D : V ×V → R≥0
assigns value to pair of vertices (u, v) and D is h-length is it assigns non-zero values only
to vertex pairs of distance distG(u, v) ≤ h in G. A demand D is routable with congestion κ

and length λ if there exists a multi-commodity flow routing D with congestion κ and length
λ. D respects a node-weighting A : V → R≥0 if for each vertex u,

∑
v D(u, v) ≤ A(u). Let

|A| =
∑

u∈V A(u). For any s ≥ 1, A is (h, s)-length ϕ-expanding in G if every h-length A-
respecting demand is routable with length hs and congestion O( log n

ϕ ).5 A length-constrained
cut C assigns to each edge an integral length increase, and G−C is the graph G applied with
the length increase from cut C. We informally say that G is a length-constrained expander
(LC-expander) if a node-weighting A whose support is the whole vertex set V is expanding
in G. An (h, s)-length ϕ-expander decomposition for A is a length-constrained cut C such
that A is (h, s)-length ϕ-expanding in G− C.

We use standard graph terminology, deferring details to the full version for further
(standard) preliminaries for directed graphs and vertex-capacitated graphs.

2.1 Our Techniques
Next, we give a technical overview of our LC-flow shortcut on vertex-capacitated graphs.
We will explain how the strategy used in [20] fails in our setting and how we overcome
the obstacle. For simplicity, here we only consider graphs with unit capacity. Also, we
only construct a slightly weaker notion of LC-flow shortcut in the sense that, it receives an
additional length parameter h and the forward mapping only guarantees that every demand
routable in G with length h′ ≤ h and congestion 1 is routable in G ∪ E′ with length λh,
congestion 1 and step t.

G = (V,E) G′ = (V ∪ rS , E ∪ E′)

rS

Figure 1 An LC-flow shortcut of a low-diameter LC-expander.

Warm-up: Shortcutting LC-expanders. Before explaining the obstacle, we first show how
to shortcut an LC-vertex expander as a warm-up. Suppose that a node-weighting A is
(h, s)-length ϕ-vertex expanding in G. Say, A := 1V (i.e., A(v) = 1 for all v ∈ V ).

5 Our definition in the paper (Definition 7) is actually cut-based. This almost-equivalent flow-based
definition follows from Theorem 12 and is more convenient in this overview.
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Suppose further that G has diameter at most h. In this case, our shortcut is simply a star
S connecting each original vertex v to a Steiner vertex rS with an (hs)-length A(v)-capacity
edge. We can shortcut any feasible flow in G with 2 steps. An illustrative example is shown in
Figure 1. The length slack is O(s) since an h-length original feasible flow is mapped forward
to a (2hs)-length feasible flow in the star. The congestion slack is O(log n/ϕ) because any
feasible flow in the star induces an h-length A-respecting demand. Since A is (h, s)-length
ϕ-expanding in G, we route such demand in G with congestion O(log n/ϕ) and without
length increasing.

In general, the diameter can be large. Thus, we can construct a sparse neighborhood
cover to decompose the graph into clusters with diameter h, such that (1) for each vertex v,
there is a cluster containing all vertices within distance h/s from v, and (2) each vertex is
inside nO(1/s) clusters. Then, we can construct a shortcut by adding an (hs)-edge-length
star on each cluster. By a similar argument, we obtain a flow shortcut graph for (h/s)-length
original flows with length slack O(s2), congestion slack O(nO(1/s) log n/ϕ) and step 2.

So far, when we build an LC-flow shortcut for an LC-expander, the vertex-capacitated
setting presents no difficulties compared to the edge-capacitated setting, because the above
simple approach works in both settings. However, the differences between the two settings
arise when generalizing this approach to general graphs via expander hierarchies.

Previous Approach: Shortcutting General Graphs via Boundary-Linkedness. The key
idea of [20] is to exploit a hierarchy of boundary-linked LC-expander decomposition, defined
as follows. Let G be an edge-unit-capacity graph. Initialize the node-weight A0 = degG. For
each level 0 ≤ i ≤ d, compute a cut Ci+1 ⊆ E of size |Ci+1| ≈ ϕ|Ai| such that Ai + degCi+1

is (h, s)-length ϕ-expanding in G− Ci+1 where degCi+1(v) counts the number of Ci+1-edges
incident to v.6 The cut Ci+1 is called the boundary-linked LC-expander decomposition for
Ai because it gives a stronger expansion guarantee of Ai + degCi+1 instead of just Ai. Then,
we set Ai+1 := degCi+1 and continue to the next level i + 1. By setting ϕ = 1/(nO(1/s)nε),
we have that d = O(1/ε) and Ad+1 = 0.

From the above construction, we conclude that, for each i, Ai + Ai+1 is (h, s)-length
ϕ-expanding in G− Ci+1. Therefore, as we have seen in the warm-up, we can add stars on
the support of Ai + Ai+1 so that any flows routing h-length (Ai + Ai+1)-respecting demands
in G− Ci+1 can be shortcut.

Now consider a feasible h-length flow in G. The boundary-linkedness suggests a natural
bottom-up shortcut scheme. For each flow path P , we can think of routing P ’s head packet
and tail packet (initially at P ’s left and right endpoints, denoted by u0 and v0) to the same
place via shortcuts. Take the head packet as an example. Start with u0 ∈ supp(A0) = V .
At each level 0 ≤ i ≤ d− 1, let ui+1 be the left endpoint of the first P ∩ Ci+1-edge behind
ui. By definition, ui+1 ∈ supp(Ai+1) and P ’s subpath between ui and ui+1 is disjoint from
Ci+1, so we can use star graphs at level i to route the head packet from ui to ui+1 within 2
steps. In sum, each of the head and tail packets is routed from the bottom up until they
reach ud, vd ∈ supp(Ad), and the top-level star graphs can route them together. The total
number of steps is O(d) = O(1/ϵ)7.

6 In the actual construction, Ci+1 assigns fractional values to edges and is called a moving cut, defined in
Section 3. Here, we assume Ci+1 is a classic edge cut for simplicity.

7 We note that the step bound in [20] is O(1/ϵ2) because they used powers of expander graphs instead of
star graphs to avoid creating vertices outside G, which brought another O(1/ϵ) factor.

ESA 2025
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The Obstacle from Vertex Cuts. The overall strategy of the above approach is to shortcut
flow paths from a vertex of Ai to an endpoint of edges in Ci+1. This was possible since the
boundary-linked expander decomposition guarantees that Ai + degCi+1 is expanding.

In the vertex-capacitated graph, however, the cut Ci+1 ⊆ V is now a vertex set. To follow
the same strategy, we have two natural options. We shortcut flow from a vertex of Ai to
either (1) a vertex in Ci+1, or (2) a neighbor of Ci+1.

In the first case, the strategy requires that Ai + Ci+1 is expanding in G − Ci+1. This
is trivially impossible because Ci+1 is not even in the graph G− Ci+1. In the second case,
let N(Ci+1) denote the neighbors of Ci+1 that are not in Ci+1. The strategy requires
Ai + N(Ci+1) is expanding in G−Ci+1. However, possibly N(Ci+1) is very big and has size
|N(Ci+1)| = Ω(n|Ci+1|). It is unlikely that expander decomposition exists to guarantee the
expansion of such a large node-weighting. Even if it exists, we would set Ai+1 = N(Ci+1)
and, hence, we cannot guarantee |Ai+1| ≪ |Ai|. So the number of levels of the hierarchy is
unbounded.

In either option, this overall strategy fails in the vertex-capacitated graphs. At a very
high level, this is because edges have two endpoints while vertices may have an unbounded
number of neighbors.

Our Approach: Top-Down Analysis without Boundary-linkedness. We construct a similar
hierarchy of LC-vertex expander decomposition without boundary-linkedness as follows. Let
G = (V, E) be a vertex-unit-capacity graph. Initialize node-weighting A0 = 1V . At each
level 0 ≤ i ≤ d, computes a cut Ci+1 ⊆ V such that Ai is (h, s)-length ϕ-vertex-expanding
in G − Ci+1, and set Ai+1 := 1Ci+1 . In particular, the top level d has Cd+1 = ∅. The
LC-vertex-expander decomposition guarantees |Ci+1| ≈ ϕ|Ai|, so the number d of levels is
O(1/ϵ) by choosing proper ϕ.

Next, we construct the shortcut as follows. For each i, by the expansion of Ai, we can add
stars on the support of Ai into our shortcut so that any flows routing h-length Ai-respecting
demands in G− Ci+1 can be shortcut. To analyze the shortcut quality, we will no longer
try to route from Ai to Ai+1 as in the edge-capacitated setting, because we no longer have
boundary-linkedness guarantee.

Our analysis is instead top-down. At each level i, we shortcut the current flow path
as much as possible, and then the prefix and suffix that have not yet been shortcut will
be deferred to lower levels as subproblems. To be more concrete, say our initial goal is to
shortcut a flow path P in a feasible h-length original flow. At each level 0 ≤ i ≤ d, assume
we will receive a subpath P ′ of P with length at most h in G− Ci+1 (note that P is a valid
input to the top level d because Cd+1 is empty). We will shortcut P ′ using star graphs at
levels up to i as follows (see Figure 2 for an illustration when i = 1).

u

u

x1 y1
vLevel 1

Level 0

F

F ′

x′1 y′1

y′1

v
x′1

Figure 2 A toy example of forward mapping given we have 2 levels in total. Crossings represent
cut vertices in C1 along the witness path Pu,v.
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Step 1. Let xi and yi be the first and last P ′-vertices in supp(Ai) respectively. We can
easily shortcut the subpath P ′[xi, yi] (i.e. the subpath from xi to yi) within 2 steps using
the star graphs at level i.

Step 2. Let x′
i be the P ′-vertex right before xi and let y′

i be the P ′-vertex right after yi.
We regard shortcutting the prefix P ′[u, x′

i] and the suffix P ′[y′
i, v] as two subproblems at

level i− 1, where u, v are endpoints of P ′. Note that both P ′[u, x′
i] and P ′[y′

i, v] has length
at most h in G− Ci because they are disjoint from Ci by definition.

Step 3. After the recursion, we obtain shortcuts for both P ′[u, x′
i] and P ′[y′

i, v]. The
shortcut for P ′ is given by concatenating shortcuts for P ′[u, x′

i], P ′[xi, yi] and P ′[y′
i, v] using

two original edges (x′
i, xi) and (yi, y′

i).
It is not hard to see the final step bound is 2O(d) = 2O(1/ϵ) since the recursion has d levels

and each level has two branches. We note that the actual argument is more complicated
because the cuts Ci are actually moving cuts which have fractional cut values, and there is
no clear partition of P ′ into 3 parts.

3 Length-Constrained Directed Expansion

In this section, we follow the theory of length-constrained expansion and extend it to
the setting of directed graphs. We start with the generalization of notations from length-
constrained expanders, which serves as the foundation for subsequent results. Next, we
characterize length-constrained expansion in directed graphs with routing, and show the
existence of length-constrained directed expander decomposition.

Basic Concepts of Length-Constrained Directed Expansion. The following definition of
moving cuts and separation was introduced by Haeupler, Wajc and Zuzic in [25].

▶ Definition 2 (Length-Constrained Cut). An h-length moving cut C : E 7→ {0, 1
h , 2

h , . . . , 1}
assigns to each edge e a fractional cut value between zero and one which is a multiple of 1

h .
The size of C is defined as |C| =

∑
e u(e) · C(e). The length increase associated with the

h-length moving cut C is denoted with ℓC,h and defined as assigning an edge e the length
increase ℓC,h(e) = h · C(e). Any moving cut which only assigns cut values equal to either 0
or 1 is called a pure moving cut. We define the degree of a moving cut over vertex v to be
degC(v) =

∑
e∋v uG(e) · C(e).

▶ Definition 3 (h-Length Separated Demand). For any demand D and any h-length moving
cut C, we define the amount of h-length separated demand as the sum of demands between
vertices that are h-length separated by C. We denote this quantity with seph(C, D), i.e.,

seph(C, D) =
∑

u,v:distG−C(u,v)>h

D(u, v).

▶ Definition 4 (h-Length Sparsity of a Cut C for Demand D). For any demand D and any
h-length moving cut C with seph(C, D) > 0, the h-length sparsity of C with respect to D is
the ratio of C’s size to how much demand it h-length separates i.e.,

sparsh(C, D) = |C|
seph(C, D) .

ESA 2025
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Above we generalize the definition of length-constrained moving cut w.r.t arbitrary
directed h-length demand. However, for the definition of a directed length-constrained
expander, we restrict to symmetric h-length demands.

▶ Definition 5 ((h, s)-Length Sparsity of a Cut w.r.t. a Node-Weighting). The (h, s)-length
sparsity of any h · s-length moving cut C with respect to a node-weighting A is defined as:

spars(h,s)(C, A) = min
A-respecting h-length symmetric demand D

sparsh·s(C, D).

Intuitively, (h ·s)-length sparsity of a cut measures how much it h ·s-length separates h-length
demand w.r.t its own size. Furthermore, for a given node-weighting, we associate the sparsest
cut w.r.t the node-weighting with its conductance.

▶ Definition 6 ((h, s)-Length Conductance of a Node-Weighting). The (h, s)-length conductance
of a node-weighting A in a graph G is defined as the (h, s)-length sparsity of the sparsest
h · s-length moving cut C with respect to A, i.e.,

cond(h,s)(A) = min
h·s-length moving cut C

spars(h,s)(C, A).

▶ Definition 7 ((h, s)-Length ϕ-Expanding Node-Weightings). We say a node-weighting A is
(h, s)-length ϕ-expanding if the (h, s)-length conductance of A in G is at least ϕ.

To see the connection, in the full version, we explain how our notion of length-constrained
directed expansion generalizes the non-length-constrained version. Lastly, we give the formal
definition of length-constrained directed expander decompositions as follows:

▶ Definition 8 (Length-Constrained Directed Expander Decomposition). Given a graph G =
(V, E), a directed (h, s)-length ϕ-expander decomposition for a node-weighting A with length
slack s and cut slack κ is an h · s-length cut C of size at most κ · ϕ|A| such that A is
(h, s)-length ϕ-expanding in G− C.

Routing Characterization of Length-Constrained Directed Expansion. The definition of
ϕ-expanding characterizes the sparsity of moving cuts in directed graphs. With the routing
characterization, we further show that sparsity is closely related to demand routing.

▶ Theorem 9 (Routing Characterization of Length-Constrained Directed Expanders). Given a
directed graph G and node-weighting A, for any h ≥ 1, ϕ < 1 and s ≥ 1 we have:

If A is (h, s)-length ϕ-expanding in G, then every A-respecting h-length symmetric demand
can be routed in G with congestion at most O( log N

ϕ ) and length at most h · s.
If A is not (h, s)-length ϕ-expanding in G, then some A-respecting h-length symmetric
demand cannot be routed with congestion at most 1

2ϕ and length at most h·s
2 .

The proof idea of Theorem 9 is similar to the undirected case as shown in [24], and for
completeness, we restate and adapt the proof for the directed setting in the full version.

Existence of Length-Constrained Directed Expander Decompositions. Now, we prove the
existence of length-constrained directed expander decompositions. The following theorem
formally states the result:

▶ Theorem 10. For any G = (V, E), a node-weighting A, h > 1, α ≥ 1, ϕ < 1 and a length
slack parameter s = O(log n), there is a directed (h, s)-length ϕ-expander decomposition for
A with cut slack κ = O(nO( 1

s ) log n).
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The proof of Theorem 10 closely follows the undirected-case proof in [24], and we append it
in the full version for completeness. The basic idea is that, unless the graph is already an
(h, s)-length ϕ-expander for node-weighting A, we can repeatedly identify and apply cuts
with (h, s)-sparsity less than ϕ. The union of these cuts ultimately renders the graph as
an (h, s)-length ϕ-expander. To bound for the total size of all cuts, we sum individual cut
sizes. However, since each cut size depends on the sparsity associated with different demands,
analysis becomes complex. Thus, we first introduce a special base demand, called exponential
demand to relate all other demands in terms of sparsity. Using this, we apply a potential
argument to prove the above main theorem.

In the full version, we further discuss boundary-linked LC-directed expander decomposition
(also called linked LC-directed expander decomposition). Expander decompositions with
boundary-linkedness have been shown to be very useful in the length-constrained undirected
setting and the classic (i.e. non-length-constrained) setting.

4 Length-Constrained Vertex Expansion

In this section we extend the theory of length-constrained expander decomposition to vertex-
capacitated graphs. The basic concepts of length-constrained vertex expansion are analogous
to those of length-constrained directed expansion in Section 3. The major difference is that
now a moving cut C can assign cut values to both vertices and edges. See the full version for
preliminaries and formal description of the basic concepts of vertex-capacitated graphs.

The main results of this section is the existence of length-constrained expander decom-
position for vertex-capacitated graphs (Theorem 11) and the routing characterization of
length-constrained vertex expanders (Theorem 12).

▶ Theorem 11 (Existential (h, s)-length Expander Decomposition for Vetex-Capacitated Graphs).
For any vertex-capacitated graph Gvc = (Vvc, Evc), node-weighting Avc, h > 1, ϕ < 1 and a
length slack parameter s = O(log n), there is an (h, s)-length ϕ-expander decomposition for A

with cut slack κ = O(nO( 1
s ) log n).

▶ Theorem 12 (Routing Characterization of Length-Constrained Vertex Expanders). Given a
vertex-capacitated graph Gvc and node-weighting Avc, for any h ≥ 1, ϕ < 1 and s ≥ 1 we
have:

If Avc is (h, s)-length ϕ-expanding in Gvc, then every h-length Avc-respecting demand can
be routed in Gvc wth congestion at most O( log N

ϕ ) and dilation at most h · s.
If Avc is not (h, s)-length ϕ-expanding in Gvc, then some h-length Avc-respecting demand
cannot be routed with congestion at most 1

6ϕ and dilation at most h·s
2 .

The proofs of above are in the full version. We introduce a reduction that transforms
vertex-capacitated graphs into directed edge-capacitated graphs to show the equivalence,
which is crucial for the proofs of Theorem 11 and Theorem 12.

5 Length-Constrained Vertex-Capacitated Flow Shortcuts

In this section, we show the existence of LC-flow shortcuts in vertex-capacitated graphs.
The Definition 13 below generalizes Definition 1 of LC-flow shortcuts in the sense that an
additional length parameter h is given and the forward mapping only holds for demands
routable in G with congestion 1 and length at most h.
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Algorithm 1 LC-FlowShortcut(G, ϵ, h).

1: Initialize A0 = uV (G), where uV (G) denotes the vertex capacity function of G.
2: Initialize s = 1/ϵ, ϕ = 1/(nϵκ) (κ = O(nO(1/s) log n) is the cut slack from Theorem 11).
3: Initialize i← 0.
4: while |Ai| > 0 do
5: for j from 1 to ⌈log2 h⌉ do
6: hj ← 2j , hcov,j = 4hj , hdiam,j = hcov,j · s.
7: Ci+1,j ← an (hdiam,j , s)-length ϕ-expander decomposition of Ai in G by Theo-

rem 11.
8: Ni,j ← a neighborhood cover with covering radius hcov,j , diameter hdiam,j in

G− Ci+1,j by Theorem 2.1 in the full version.
9: Hi,j =

⋃
S∈Ni,j

HS , where HS is the hjs-length Ai-capacitated star graph on S.
10: end for
11: Ai+1 =

∑
j

hdiam,j ·s
hj

· degCi+1,j
= 4s2 ·

∑
j degCi+1,j

.
12: end while
13: Return E′ =

⋃
i,j E(Hi,j).

▶ Definition 13 (Length-Constrained Flow Shortcut). Given a graph G = (V, E), we say an
edge set E′ (possibly with endpoints outside V ) is an t-step h-LC-flow shortcut of G with
length slack λ and congestion slack κ if

(Forward Mapping) for every demand D routable in G with congestion 1 and length h′ ≤ h,
D is routable in G ∪ E′ with congestion 1, length λh′, and maximum step t, and
(Backward Mapping) for every demand D on V (G) routable in G ∪ E′ with congestion 1
and length h′, D is routable in G with congestion κ and length h′.

We note that in [20] there is an analogous but weaker definition of h-LC-flow shortcut,
in which the forward mapping only guarantee that D is routable in G ∪ E′ with length λh

instead of λh′ (and the same congestion and step). That is, the length slack in Definition 13
is competitive in the sense that it upper bounds the ratio between the lengths of the shortcut
flow and the original flow. Hence, by choosing a sufficiently large h, the total length of
vertices and edges in G, an h-LC-flow shortcut is automatically an LC-flow shortcut.

▶ Theorem 14. Given a vertex-capacitated graph G with parameters ϵ = Ω( 1
log n ), there exists

a t-step LC-flow shortcut E′ with length slack O(1/ϵ3), congestion slack O(nO(ϵ) log3 n/ϵ2),
t = 2O( 1

ϵ ) and size |E′| ≤ O(n1+O(ϵ) log n/ϵ2).

Theorem 14 is the main theorem of this section. In what follows, actually we will focus
on constructing h-LC-flow shortcut. Setting h = (m + n)N gives the LC-flow shortcut in
Theorem 14.

5.1 The Construction
The construction of the flow shortcut graph G′ is given by Algorithm 1. The star graphs in
Algorithm 1 are formally defined in Definition 15.

▶ Definition 15 (Star Graphs). Given a graph G with a node-weighting A and a length
parameter h, the h-length A-capacitated star graph on some S ⊆ V (G), denoted by HS, has

V (HS) = (supp(A) ∩ S) ∪ {rS} and E(HS) = {(v, rS) | v ∈ V (HS) \ {rS}},
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where the vertex rS is a Steiner vertex serving as the center and V (HS) \ {rS} are original
vertices. The length and capacity of each original vertex is unchanged, while rS has length 1
and capacity

∑
v∈S A(v). Each edge (v, rS) has length h and capacity A(v).

In short, Algorithm 1 mainly constructs a length-constrained expander hierarchy

{Ai, Ci+1,j | 0 ≤ i ≤ d, 1 ≤ j ≤ ⌈log2 h⌉}

where d is the largest i such that |Ai| > 0. We point out that Cd+1,j is a zero cut for all
j. Then the shortcut graph G′ is obtained by adding star graphs on neighborhoods of each
LC-expander G− Ci+1,j .

We remark that we do LC-expander decompositions with different length parameters hj

at one level because we aim at a shortcut graph with length slack significantly smaller than
its step bound. Intuitively, if we only use LC-expanders with length parameter around h to
shortcut an original h-length flow path P , then inevitably each step will have length around
h, which means the length slack cannot go far below the number of steps. Now, providing
LC-expanders with different length parameters, when we want to shortcut a subpath of P

with length h′ far smaller than h, we can choose the appropriate LC-expander to obtain
a shortcut with length around h′ instead of h. Another benefit is that this automatically
gives a competitive length slack (this is why in Definition 13 we define the length slack of
h-LC-flow shortcut to be competitive).

We first argue the size bound of E′. Observe that, in Algorithm 1, we have |Ci+1,j | ≤
κϕ|Ai| ≤ |Ai|/nϵ by Theorem 11. In Algorithm 1, the width of each neighborhood cover
Ni,j is ω = nO(1/s)s = nO(ϵ)/ϵ by Theorem 2.1 in the full version. Furthermore, because in
Algorithm 1 we have |Ai+1| ≤ 4s2 ∑

j′ |Ci+1,j′ | ≤ 4s2 log h|Ai|/nϵ = O(log N/(ϵ2nϵ))|Ai|, we
can upper bound d by d ≤ O(log |A0|/ log(ϵ2nϵ/ log N)) = O(1/ϵ). Finally, by the algorithm,
we have

|E′| ≤ O(d log h) · ω · n = O(n1+O(ϵ) log n/ϵ2).

Next we show the quality of the shortcut. Before that, we introduce a helper lemma
Lemma 16, which shows the demands that each Hi,j can route within small steps. We defer
its proof to the full version.

▶ Lemma 16. For each i, j, any demand D̂ that is hcov,j-length in G−Ci+1,j , Ai-respecting
and uV (G)-respecting can be routed in Hi,j with length 2hdiam,js + 1, congestion 1 and step 2.

Now we show that the shortcut E′ constructed by Algorithm 1 has length slack O(1/ϵ3),
congestion slack nO(ϵ) and step 2O(1/ϵ). To do this, it suffices to show the quality of the
forward mapping and backward mapping, i.e. Lemma 17 and Lemma 18, whose proofs are
given in Section 5.2 and the full version. Let G′ = G ∪ E′ be the shortcut graph.

▶ Lemma 17 (Forward Mapping). For any feasible h-length flow F in G, there is a feasible
flow F ′ routing Dem(F ) in G′ with leng(F ′) ≤ leng(F ) ·O(1/ϵ3) and step(F ′) ≤ 2O(1/ϵ).

▶ Lemma 18 (Backward Mapping). For any feasible flow F ′ in G′ such that V (Dem(F ′)) ⊆
V (G), there is a flow F routing Dem(F ′) in G with leng(F ) ≤ leng(F ′) and cong(F ) ≤ nO(ϵ).
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5.2 Forward Mapping: Proof of Lemma 17
We will employ a top-down argument. Start from the top level d. At the beginning of
processing a level i ≥ 0, we are given a feasible flow Fi with the following invariant: each flow
path P ∈ path(Fi) has leng(P, G−Ci+1,j) ≤ hcov,j = 4hj , where j is the minimum index s.t.
hj ≥ leng(P, G) (which means hj/2 ≤ leng(P, G) ≤ hj). Initially at the top level d, we set
Fd = F . Note that Fd satisfies the invariant above because Cd+1,j is a zero cut for any j.

First, at the bottom level i = 0, we can easily shortcut every flow path in F0. For each
star graph H0,j , we assign it a demand D̂0,j which sums over Dem(P ) for each flow path
P ∈ path(F0) such that j is the minimum index with hj ≥ leng(P, G). Observe that each
D̂0,j is an hcov,j-length in G−C1,j and A0-respecting, so it can be routed in H0,j with length
2hdiam,js + 1, congestion 1 and step 2 by Lemma 16.

From now on we consider levels i ≥ 1. When processing a level i, for each flow path
P ∈ path(Fi), we may shortcut some subpaths of P using shortcut edges in H. The subpaths
of P that have not been shortcut will be added to Fi−1, meaning that they are deferred to
lower levels to get shortcut. At the end, the final Fi−1 should ensure the invariants above,
and we proceed to the lower level i− 1.

Now we will explain the shortcut at a level i ≥ 1 in detail. Fix a flow path P ∈ path(Fi).
Let j be the minimum index such that hj ≥ leng(P, G). We consider two cases.

Case 1: Defer. When 4s2 ·
∑

j′ Ci,j′(P ) ≤ 3, we simply add P to Fi−1. We have

leng(P, G− Ci,j) = leng(P, G) + hdiam,j · s · Ci,j(P ) ≤ 4hj ≤ hcov,j ,

where the inequality is by leng(P, G) ≤ hj , hdiam,j = 4shj and Ci,j(P ) ≤ 3/(4s2). Therefore,
in this case, the flow path added to Fi−1 satisfies the invariant.

Case 2: Shortcut. Now suppose 4s2 ·
∑

j′ Ci,j′(P ) > 3. Let u and v be P ’s endpoints.
We say u is the left side and v the right side. For each 0 ≤ k ≤ |P |, we refer to wk as the
P -vertex with k steps away from u. In particular, w0 = u and w|P | = v.

We now define two functions x : V (P )→ R denoting the budgets of P -vertices from the
left and the right respectively: for each vertex wk ∈ V (P ),

xP (wk) = 4s2
∑

j′

Ci,j′(wk−1, wk) + Ci,j′(wk) + Ci,j′(wk, wk+1).

In particular,

xP (w0) = 4s2
∑

j′

Ci,j′(w0) + Ci,j′(w0, w1) and

xP (w|P |) = 4s2
∑

j′

Ci,j′(w|P |−1, w|P |) + Ci,j′(w|P |).

Let kL be the minimum index such that
∑

0≤k≤kL
xP (wk) ≥ 1, and symmetrically let

kR be the maximum index such that
∑

kR≤k≤|P | xP (wk) ≥ 1. To avoid clutter, we let
L = {w0, ..., wkL

} and R = {wkR
, ..., w|P |}. The following Claim 19 says that L and R have

at most one common vertex.

▷ Claim 19. kL ≤ kR.
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Proof. By the definition of kL and kR, we have∑
0≤k≤kL−1

xP (wk) < 1 and
∑

kR+1≤k≤|P |

xP (wk) < 1.

However,
∑

0≤k≤|P | xP (wk) ≥ 4s2 ∑
j′ Ci,j′(P ) > 3. This means there exists a vertex wk

with kL − 1 < k < kR + 1, which implies kL ≤ kR ◁

We assign each vertex w ∈ L∪R a load x′
P (w) ≤ xP (w), satisfying that

∑
w∈L x′

P (w) = 1
and

∑
w∈R x′

P (w) = 1. We consider the following three-phase strategy to route Fi(P ) flow
units from u to v. Phase 1: the vertex u sends Fi(P ) flow units and each w ∈ L receives
Fi(P )x′

P (w) units. Phase 2: Each vertex w ∈ L sends Fi(P )x′
P (w) units and each vertex

w ∈ R receives Fi(P )x′
P (w) units. Phase 3: Each vertex w ∈ R sends exactly Fi(P )x′

P (w)
units, and the vertex v receives Fi(P ) units.

The First and Third Phases. Roughly speaking, for the first and third phases, we will add
their corresponding original flows into Fi−1, meaning that they will be deferred to lower
levels to get shortcut.

Regarding the first phase, recall that for each wk ∈ L, we want to route Fi(P )x′(wk)
units from u to wk. To do this, we add into Fi−1 a flow path Pk = P [w0, wk−1] with value
Fi(P ) ·x′(wk). That is, we require the lower levels to give a shortcut that routes Fi(P ) ·x′(wk)
from u to wk−1 (the P -vertex one step closer to u than wk). Then, we route Fi(P )x′(wk)
units from wk−1 to wk using the original edge (wk−1, wk) ∈ E(G).

The third phase is handled in a similar way. For each wk ∈ R, we route Fi(P )x′(wk) flow
units from wk to wk+1 using the original edge (wk−1, wk), and then we add into Fi−1 a flow
path Pk = P [wk+1, v] with value Fi(P ) · x′(wk).

To proceed to the lower level i− 1, it remains to show that the flow paths added into
Fi−1 satisfy the invariant. Consider a flow path Pk = P [u, wk−1] added from the first phase
(where wk ≤ L, i.e. 0 ≤ k ≤ kL). We want to show that leng(Pk, G − Ci,jk

) ≤ hcov,jk
,

where jk is the minimum index such that hjk
≥ leng(Pk, G). By the definition of the

budget function x, we have
∑

j′ Ci,j′(Pk) ≤ 1
4s2

∑
0≤k′≤k−1 xP (wk′) < 1/(4s2), where the

second inequality is by k ≤ kL and
∑

0≤k′≤kL−1 xP (wk′) < 1 (from the definition of kL). In
particular, Ci,jk

(Pk) ≤ 1/(4s2). Because Ci,jk
is an (hdiam,jk

s)-length moving cut, we have

leng(Pk, G− Ci,jk
) = leng(Pk, G) + hdiam,jk

· s · Ci,jk
(Pk) ≤ 2hjk

≤ hcov,jk
,

as desired, where the first inequality uses hdiam,jk
= 4shjk

. By a similar argument, we can
show that each flow path added from the third phase also satisfies the invariant, so we will
not explain it in detail.

The Second Phase. The second phase is where the shortcut happens. We define an arbitrary
(multi-commodity) demand D̂i,P capturing this single-commodity demand. Namely, D̂i,P

satisfies that (1) |D̂i,P | = Fi(P ); (2) for each w ∈ L, D̂i,P (w, ·) = Fi(P )x′
P (w); and (3) for

each w ∈ R, D̂i,P (·, w) = Fi(P )x′
P (w). We will assign D̂i,P to Hi,j , meaning that we route

D̂i,P using shortcut edges in Hi,j .
By the above assignment, for each Hi,j at level i, its total assigned demand, denoted by

D̂i,j , sums over D̂i,P of all P ∈ path(Fi) s.t. j is the minimum index with hj ≥ leng(P, G).
The following Lemma 20 showing that D̂i,j can be routed with low steps, small length and
congestion 1, and we defer the proof to the full version.
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▶ Lemma 20. For each Hi,j at level i, its total assigned demand D̂i,j can be routed in Hi,j

with length 2hdiam,js + 1, congestion 1 and step 2.

Quality of the Forward Mapping. It remains to show that Dem(F ) can be routed in
G′ = G ∪

⋃
i,j Hi,j with length leng(F ) ·O(1/ϵ3), congestion 1 and step 2O(1/ϵ). The proof

for this can be found in the full version.
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