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Abstract
Graph Burning models a contagion spreading in a network as a process such that in each step one
node is infected and also the infection spreads to all neighbors of previously infected nodes. Formally,
the burning number b(G) of a given graph G = (V, E), possibly with edge lengths, is the minimum
number g such that there exists a sequence of nodes v1, . . . , vg satisfying the property that for each
w ∈ V there exists i ∈ {1, . . . , g} so that the distance between w and vi is at most g − i.

We present an elegant deterministic 2.314-approximation algorithm for the Graph Burning
problem on general graphs with arbitrary edge lengths. This algorithm matches the approximation
ratio of the previous randomized 2.314-approximation algorithm and improves on the previous
deterministic 3-approximation algorithm.
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1 Introduction

Graph Burning was introduced by Bonato et al. [2, 1] as a model of a contagion or information
spreading in social networks. It demonstrates how strategically selecting a sequence of nodes
to “infect” while letting this infection spread over time may reach the entire network relatively
quickly. Formally, we study the following process, where burned nodes in a graph represent
the infected part of the network.

We are given a graph G and a sequence S of length g where the individual elements
S1, . . . , Sg of the sequence are either nodes of the graph or “null”. At time t = 0, no nodes
are burned. At time t = 1, we burn node S1. At each time step t > 1, all neighbors of
already burned nodes also become burned and we also burn node St unless St is “null”. If all
nodes are burned at time t = g, we call S a burning sequence of G of length g. The burning
number b(G) of a graph G is the length of its shortest burning sequence.

We can also view a burning sequence as a set of centers where the center (v, r) corresponds
to Sg−r being the node v, ensuring that any node w with distance d(w, v) ≤ r is burned.
This generalizes naturally in the presence of arbitrary edge lengths and showcases the relation
of Graph Burning to the k-Center problem. We call r the radius of center (v, r).

We know that b(G) ≤ |V (G)| holds for all graphs. If we prove that some algorithm finds
a valid burning sequence of length g in polynomial time whenever g ≥ ⌊ρ b(G)⌋ for some ρ,
then we can create a ρ-approximation algorithm for the Graph Burning problem by trying
all possible values of g. For the rest of this paper, we talk about these algorithms that
take the target value of g as input and take as granted that they imply the corresponding
approximation algorithms.
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1.1 Our results
We present a simple α-approximation algorithm for the Graph Burning problem on graphs
with arbitrary edge lengths where α = 2e2/(e2−1) < 2.314. We use this value of α throughout
the paper.

1.2 Previous results
Bonato and Kamali [3] adapted a well-known greedy 2-approximation algorithm for the
k-Center problem into a (3− 2/b(G))-approximation algorithm for Graph Burning. A direct
greedy algorithm was given by García-Díaz, Pérez-Sansalvador, and Rodríguez-Hénríquez [5].
We are not aware of any better deterministic algorithms for general graphs.

Lieskovský, Sgall, and Feldmann [11] gave a randomized (α + ε)-approximation algorithm
for Graph Burning as well as a pair of lower bounds – 4/3 for graphs with unit-length edges
and 2 for graphs with edge lengths. Their algorithm repeatedly selects an arbitrary uncovered
node and uses randomization to select a radius, creating a new center. Martingales are used
to estimate the number of centers needed and a collision resolution method inspired by linear
probing prevents the creation of multiple centers with the same radius.

Approximation algorithms and approximation schemes were developed for various special
graph classes by Bonato and Kamali [3], Bonato and Lidbetter [4] and others, ultimately
resulting in a PTAS for graphs of small treewidth by Lieskovský and Sgall [10].

2 Definitions and algorithm

In this section we first establish some fundamental concepts and then describe our algorithm.
The concepts established in this section will be crucial for the analysis of our algorithm in
the following two sections.

2.1 Fundamental concepts
For the analysis of our algorithm, we fix a graph G and some optimal solution opt, which
we will view as set of centers (v, r) with radii from 0 to b(G)− 1. In the interest of clarity
we will, for the rest of this paper, use “centers” exclusively to refer to centers in this optimal
solution while the algorithm will be modifying a “sequence” of nodes of some given length g,
until it becomes a valid burning sequence of the graph.

We assign each node w ∈ V to a unique center copt(w) that is covering it (i.e., d(w, v) ≤ r),
thus creating a partition of the set of nodes of the graph.

For every center (v, r) we denote the set of nodes assigned to it as V (v, r). We say that a
center (v, r) is covered by a sequence S if all nodes in V (v, r) are burned by the sequence.

A central part of our algorithm is the process for modifying the sequence. We view the
sequence S as a queue of length g and use the procedure push(v, S) to add v to the front
of the sequence and remove the last element. Thus if S = S1, S2, S3, . . . , Sg−1, Sg, then
push(v, S) = v, S1, S2, S3, . . . , Sg−1.

Our algorithm works in cycles, selecting one unburned node and pushing it into the
sequence in each cycle. Note that cycles are distinct from the time steps in the definition of
the Graph Burning problem. We number the cycles starting from 0. We say that a center
(v, r) is serviced whenever any node in V (v, r) is selected by the algorithm.

Suppose that a w ∈ V (v, r) is selected in cycle i. At the start of cycle i + 1, w is at
the start of the burning sequence, ensuring that all nodes within distance g − 1 from it are
burned by the sequence. With each further cycle, the node is moved to later position in the
sequence, reducing the area it ensures the burning of.



M. Lieskovský 108:3

▶ Observation 1. If center (v, r) is serviced in cycle i, then it will be covered at the start of
cycles i + 1 to i + g − 2r.

2.2 Our algorithm
The algorithm is given a graph G and a guess g for the burning number. It starts with a
sequence of length g where all elements are “null”, which obviously leaves all nodes unburned.
While any such unburned nodes remain, the algorithm selects one of them arbitrarily and
pushes it into the sequence. When no unburned nodes remain, the sequence S is a valid
burning sequence of G.

Algorithm 1 Deterministic Approximation Algorithm for Graph Burning.

1: function Burn(graph G, g ∈ N)
2: S ← queue containing g “null” elements
3: while an unburned node exists do
4: select arbitrary unburned node v

5: S ← push(v, S)
6: return S

3 Simple results

In this section, we analyse our algorithm at three different levels of detail, resulting in
gradually improving approximation ratios. We also show a general observation about the
Graph Burning problem in Subsection 3.3. The results from this section will play a minor
role in the handling of some special cases by the final analysis of our algorithm in Section 4.

3.1 Proof of 3-approximation
This simple proof matches the previous result of Bonato and Kamali.

▶ Lemma 2. Assuming g ≥ 3b(G)−2, the algorithm always concludes in at most b(G) cycles.

Proof of Lemma 2. Given that centers have radius at most b(G)− 1, any center serviced
before cycle b(G) will, by Observation 1, still be covered at the start of cycle b(G). Given
that there are at most b(G) centers, the algorithm concludes no later than at the start of
cycle b(G) as all centers will be covered. ◀

3.2 Easy improvement
Observe what might happen if we were to run the algorithm with g = 3b(G) − 3. If the
algorithm services the center with radius b(G)−1 in cycle 0, then it is possible that this center
is no longer covered at the start of cycle b(G), preventing the algorithm from concluding.
Fortunately, this can be fixed by running the algorithm for one more cycle as the second
largest center, with radius b(G)− 2, can stop being covered no earlier than at the start of
cycle b(G) + 2

▶ Lemma 3. Assuming g ≥ 3b(G)− 3, the algorithm always concludes in at most b(G) + 1
cycles.

ESA 2025
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Proof of Lemma 3. Let us separate the 1 “large” center with r = b(G)− 1 and the b(G)− 1
“small” centers with r ≤ b(G)− 2. Any small serviced center will be covered at the start of
cycle b(G) + 1.

At the start of cycle b(G)−1, at least b(G)−1 centers have been serviced and are covered,
leaving at most one center uncovered. Over the next 2 cycles, only the single large center
can become uncovered. Thus the algorithm concludes no later than at the start of cycle
b(G) + 1 as all centers will be covered. ◀

3.3 General observation
Note that slight improvements such as Lemma 3 are generally easy for Graph Burning, as
demonstrated by the following observation:

▶ Observation 4. If, for some ρ ≥ 2, there exists an algorithm A that, assuming g ≥ ⌊ρ b(G)⌋,
always finds a burning sequence of length g in O(f(n)) time, then, for any k ≤ b(G), there
exists an algorithm B that always finds a burning sequence of length g− k in O(nkf(n)) time.

Proof of Observation 4. Algorithm B is given a graph G and a guessed burning number g.
For each of the O(nk) possible length-k prefixes of a burning sequence of length g − k, it
uses algorithm A to look for a burning sequence of length g − 2k for the uncovered part of
the graph.

One of those prefixes is P = v1, v2, v3, . . . , vk such that all (vi, b(G) − i) are centers of
opt. Since g− k ≥ b(G), these k centers are covered by any burning sequence of length g− k

that starts with prefix P . The uncovered part of the graph thus has a burning number at
most b(G)− k and algorithm A will be able to find a burning sequence of length g − 2k. ◀

3.4 More significant improvement
In order to motivate further exploration of our algorithm, let us now show that our algorithm
is indeed capable of finding burning sequences of length ρ b(G) where ρ < 3. In particular,
we demonstrate that g ≥ 8

3 b(G) is sufficient and the algorithm concludes in
⌈ 4

3 b(G)
⌉

cycles.
We use Observation 1 to show how long each center stays covered after being serviced.

At the start of each cycle of our algorithm, each center of opt is in one of the following three
states.
1. Untouched - this center has not been serviced yet and might thus be uncovered.
2. Covered - this center has been serviced in the last g − 2r cycles and thus is covered.
3. Expired - this center has last been serviced more than g − 2r cycles ago and thus might

not be covered any more.

For the purposes of our analysis, we will divide the cycles of the algorithm into two
phases, with each phase shorter than b(G) cycles. During the first phase, the algorithm is
only servicing untouched centers. When sufficiently many cycles have passed for a center to
possibly become expired, the algorithm enters the second phase. During the second phase,
the algorithm services the remaining untouched centers and any expired centers. The second
phase concludes before any center can expire for the second time and we show that all centers
must be covered.

We divide the centers into a smaller number of large centers and a larger number of small
centers. Small centers are the centers with r < 2

3 b(G). When serviced, these remain covered
for > 4

3 b(G) cycles, which is at least the number of cycles used by the algorithm. Thus
they do not become expired. Large centers are the centers with r ≥ 2

3 b(G). When serviced,
these remain covered until the end of the phase, but might expire during the second phase if
covered during the first phase.
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After carefully setting the length of the phases, we show that sufficiently many small
centers must be serviced during the first phase so that any untouched small centers and
all large centers can be serviced during the second phase. This ensured that all centers are
covered even if all the large centers have expired.

▶ Lemma 5. Assuming g ≥ 8
3 b(G), the algorithm always concludes in at most

⌈ 4
3 b(G)

⌉
cycles.

Proof of Lemma 5. A center (v, r) is called large if r ≥ 2
3 b(G). Note that there are at most⌊ 1

3 b(G)
⌋

large centers. The remaining centers are small; they have radius r < 2
3 b(G) and

there are at most
⌈ 2

3 b(G)
⌉

small centers. The first phase consists of
⌈ 2

3 b(G)
⌉

cycles and the
second phase consists of

⌊ 2
3 b(G)

⌋
cycles.

All centers have r ≤ b(G)−1. By Observation 1, any center serviced during the first phase
is still covered at the start of cycle

⌈ 2
3 b(G)

⌉
. Thus, at the end of the first phase,

⌈ 2
3 b(G)

⌉
centers have been serviced and are covered, leaving at most

⌊ 1
3 b(G)

⌋
uncovered centers.

Small centers have r < 2
3 b(G) and thus any serviced small center will still be covered at

the start of cycle
⌈ 4

3 b(G)
⌉
. Thus, during the second phase, only the large centers can become

uncovered and there are at most
⌊ 1

3 b(G)
⌋

large centers. In total, no more than
⌊ 2

3 b(G)
⌋

centers need to be serviced during the second phase, and the algorithm concludes no later
than at the end of the second phase. ◀

4 2.314-approximation ratio

The entirety of this section is devoted to the proof of the following theorem, which is the
main result of this paper.

▶ Theorem 6. Assuming g ≥ ⌊αb(G)⌋, the algorithm always concludes in at most O((b(G))2)
cycles.

First, we focus on a single center (v, r). In an approach inspired by problems such as
Bamboo Garden [7][9] and Pinwheel Scheduling [8][6], we imagine a timer that starts at 1, is
reset to zero whenever the algorithm services the center, and otherwise increases with every
cycle so that the timer is ≥ 1 whenever the center might be uncovered.

Second, we look at all the centers of opt and consider the sum of their timers. This sum
starts at b(G) and, if g is large enough, decreases with every cycle. Given that all centers
must be covered if the sum is less than 1, we proceed to show that g ≥ ⌊αb(G)⌋ is indeed
large enough, completing the proof.

Proof of Theorem 6. Let us define a potential Φi(v, r) for center (v, r) at the start of the
i-th cycle as follows:

Φ0(v, r) = 1 (1)

Φi+1(v, r) =


0 if center (v, r) was serviced

during the i-th cycle

Φi(v, r) + 1
g − 2r

otherwise
(2)

Observe that, if Φi(v, r) < 1, then center (v, r) is covered at the start of the i-th cycle.
We now define the overall potential at the start of the i-th cycle as the sum of potentials

for all centers of opt and observe that, whenever Φi < 1, all centers must be covered.

Φi =
∑

(v,r)∈opt

Φi(v, r)

ESA 2025
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We claim that if center (v, r) is serviced in cycle i, then

Φi+1 = Φi + ∆−
(

1 + 1
g − 2r

)
where

∆ =
b(G)−1∑

r=0

1
g − 2r

.

The positive term ∆ accounts for the increase of the potential of all centers. The negative
term (1 + 1/(g − 2r)) accounts for the change of the potential of the serviced center (v, r).
This is because Φi(v, r) ≥ 1 must be true for (v, r) to be serviced in cycle i and Φi+1(v, r) = 0
if (v, r) was serviced in cycle i, which means that the potential is not only decreased by 1,
but also does not increase by 1/(g − 2r) already included in ∆.

We will show that ∆ ≤ 1 for g ≥ ⌊αb(G)⌋. To see that this implies the theorem, first
observe that 1 + 1/(g− 2r) ≥ 1 + 1/g and thus we will get Φi+1 ≤ Φi− 1/g. Since Φ0 = b(G),
algorithm concludes in at most g · b(G) cycles. For g ≤ 8

3 b(G) the theorem follows directly,
while for g > 8

3 b(G) we use Lemma 5 to get the conclusion of the theorem.
It remains to prove that ∆ ≤ 1. The value of α was set to satisfy the following integral

equation:∫ b(G)

0

1
αb(G)− 2x

dx =
[
− ln (αb(G)− 2x)

2

]b(G)

x=0
= ln(α)− ln(α− 2)

2 = 1.

We express ∆ as a similar integral:

∆ =
b(G)−1∑

r=0

1
g − 2r

=
∫ b(G)

0

1
g − 2 ⌊x⌋ dx.

To complete the proof, it is now sufficient to show that the following holds:∫ b(G)

0

1
g − 2 ⌊x⌋ dx ≤

∫ b(G)

0

1
αb(G)− 2x

dx.

We first observe that this holds whenever g ≥ αb(G), using a straightforward substitution
for g and a simple upper bound on ⌊x⌋. This makes it possible for us to get an α-approximation
algorithm by using Observation 4.

Finally, we give a full proof of ∆ ≤ 1 for all g ≥ ⌊αb(G)⌋. We separate the integration
into intervals where 2 ⌊x⌋ is constant, seeking to prove for all natural a < b(G):∫ a+1

a

1
g − 2 ⌊x⌋ dx ≤

∫ a+1

a

1
αb(G)− 2x

dx.

The following trivially holds:∫ a+1

a

1
g − 2 ⌊x⌋ dx =

∫ a+1

a

1
g − 2a

dx = 1
g − 2a

.

Consider the function f(z) = 1/(g + 1− 2z). It is convex on (−∞, (g + 1)/2) and thus for
every z < b(G) ≤ g/2 we have f(z) ≤

∫ z+1/2
z−1/2 f(x) dx. Using this for z = a + 1/2 we get the

following:

1
g − 2a

= f(a + 1/2) ≤
∫ a+1

a

f(x) dx =
∫ a+1

a

1
g + 1− 2x

dx ≤
∫ a+1

a

1
αb(G)− 2x

dx

where the last inequality follows from g + 1 ≥ ⌊αb(G)⌋ + 1 ≥ αb(G). This concludes the
proof of ∆ ≤ 1 and thus the proof of Theorem 6. ◀
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5 Conclusion

We have shown a simple deterministic algorithm for Graph Burning that achieves good
approximation ratios when thoroughly analysed. Despite this, a significant gap remains
between our result and the lower bounds of [11].
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