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Abstract
Lipschitz continuity of algorithms, introduced by Kumabe and Yoshida (FOCS’23), measures
the stability of an algorithm against small input perturbations. Algorithms with small Lipschitz
continuity are desirable, as they ensure reliable decision-making and reproducible scientific research.
Several studies have proposed Lipschitz continuous algorithms for various combinatorial optimization
problems, but these algorithms are problem-specific, requiring a separate design for each problem.

To address this issue, we provide the first algorithmic meta-theorem in the field of Lipschitz
continuous algorithms. Our result can be seen as a Lipschitz continuous analogue of Courcelle’s
theorem, which offers Lipschitz continuous algorithms for problems on bounded-treewidth graphs.
Specifically, we consider the problem of finding a vertex set in a graph that maximizes or minimizes
the total weight, subject to constraints expressed in monadic second-order logic (MSO2). We
show that for any ε > 0, there exists a (1 ± ε)-approximation algorithm for the problem with
a polylogarithmic Lipschitz constant on bounded treewidth graphs. On such graphs, our result
outperforms most existing Lipschitz continuous algorithms in terms of approximability and/or
Lipschitz continuity. Further, we provide similar results for problems on bounded-clique-width
graphs subject to constraints expressed in MSO1. Additionally, we construct a Lipschitz continuous
version of Baker’s decomposition using our meta-theorem as a subroutine.
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1 Introduction

Lipschitz continuity of algorithms, introduced by Kumabe and Yoshida [14], is a measure
of an algorithm’s stability in response to errors or small perturbations in the input for
weighted optimization problems. Roughly speaking, it is the maximum ratio of the (weighted)
Hamming distance between the outputs of an algorithm for two different weights to the ℓ1
distance between those weights (see Section 2.4 for the precise definition). It is desirable for
algorithms to have small Lipschitz constants, as large constants can undermine the reliability
of decision-making and the reproducibility of scientific research.

Since its introduction, Lipschitz continuous algorithms have been proposed for various
optimization problems [14, 16]. However, we need to design a different algorithm and analyze
its Lipschitz continuity for each problem, which can be impractical. To address this limitation,
we present an algorithmic meta-theorem for Lipschitz continuous algorithms, which can be
seen as Lipschitz continuity analogue of celebrated Courcelle’s theorem [3].
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11:2 Courcelle’s Theorem for Lipschitz Continuity

To present our results, we first introduce some notation. Let G = (V,E) be a graph of
n vertices with treewidth tw, φ(X) be an MSO2 formula with a free vertex set variable X
(see Section 2.3 for details about logic), and w ∈ RV

≥0 be a weight vector. We consider the
problem of finding a vertex subset X ⊆ V such that G |= φ(X) and w(X) is maximized,
which we call the MSO2 maximization problem. We also consider the problem of finding X
such that w(X) is minimized, which we call the MSO2 minimization problem. Our main
results are the following.

▶ Theorem 1. For any ε ∈ (0, 1], there is a (1 − ε)-approximation algorithm for the MSO2
maximization problem with Lipschitz constant O

(
(f(tw, |φ|) + log ε−1 + log logn)ε−1 log2 n

)
,

where f is some computable function. The time complexity is bounded by O (f(tw, |φ|)n).

▶ Theorem 2. For any ε ∈ (0, 1], there is a (1 + ε)-approximation algorithm for the MSO2
minimization problem with Lipschitz constant O

(
(f(tw, |φ|) + log ε−1 + log logn)ε−1 log2 n

)
,

where f is some computable function. The time complexity is bounded by O (f(tw, |φ|)n).

We note that the trivial upper bound on Lipschitz constant is n [16]; therefore the bounds
in the theorems above are significantly smaller for fixed tw and φ. We also remark that
our meta-theorems yield randomized approximation algorithms. This is necessary since,
for most problems, it is known that exact or deterministic algorithms cannot be Lipschitz
continuous [14].

When the treewidth of the input graph is bounded by a constant, Theorems 1 and 2
provide algorithms that outperform existing algorithms in terms of approximability and/or
Lipschitz continuity:

For the minimum weight vertex cover problem, Theorem 2 yields an algorithm with a
better approximation ratio than the previous 2-approximation algorithm with Lipschitz
constant 4 [16], at the polylogarithmic sacrifice of the Lipschitz constant.
For the minimum weight feedback vertex set problem, Theorem 2 outperforms the previous
O(logn)-approximation algorithm with Lipschitz constant O(

√
n log3/2 n) [16] in terms

of both approximability and Lipschitz continuity.
For the maximum weight matching problem1, Theorem 1 yields an algorithm with a better
approximation ratio than the previous

( 1
8 − ε

)
-approximation algorithm with Lipschitz

constant O(ε−1) [14], at the polylogarithmic sacrifice of the Lipschitz constant.
For the shortest path problem, Theorem 2 slightly improves the Lipschitz continuity
compared to the previous (1 − ε)-approximation algorithm with Lipschitz constant
O(ε−1 log3 n) [14], without losing approximability.

For a fixed φ, by explicitly specifying the transitions in the dynamic programming
within the algorithm, we can provide more precise bounds on the function f that appears in
Theorems 1 and 2. In particular, considering the case that φ is an MSO2 formula representing
the independent set constraint, we have the following.

▶ Theorem 3. For any ε ∈ (0, 1], there is a (1−ε)-approximation algorithm for the maximum
weight independent set problem with Lipschitz constant O

(
(tw+log ε−1+log logn)ε−1 log2 n

)
.

The time complexity is bounded by 2O(tw)n.

This result is surprising as the dependence of tw on the Lipschitz constant is subexponential
and, even more remarkably, linear. We note that through similar arguments, analogous
results hold for several other problems, such as the minimum weight vertex cover problem
and the minimum weight dominating set problem.

1 Although the output of this problem is an edge set rather than a vertex set, this problem can be
expressed by an MSO2 formula on a new graph G′ = (V ∪ E, {(v, e) : e is incident to v})
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We further demonstrate that Theorems 1 and 2 lead to Lipschitz continuous version
of Baker’s technique [1]. As a representative example, we consider the maximum weight
independent set problem on planar graphs, where a vertex subset X is an independent set of
a graph G if no two vertices in X are adjacent in G. We prove the following.

▶ Theorem 4. For any ε ∈ (0, 1], there is a (1 − ε)-approximation algorithm for
the maximum weight independent set problem on planar graphs with Lipschitz constant
O

(
(ε−1 + log logn)ε−1 log2 n

)
. The time complexity is bounded by 2O(ε−1)n.

Using similar algorithms, Lipschitz continuous PTASes can be obtained for many problems,
including the minimum weight vertex cover problem and the minimum weight dominating
set problem.

As a lower bound result, we prove that the Lipschitz constant of any (1−ε)-approximation
algorithm for some MSO2 maximization problem is large on general graphs, which justifies
considering the MSO2 maximization problem on a restricted graph class. Specifically, we
consider the max ones problem [6, 9], where the instance is a 3CNF formula over a variable
set X and a weight function w : X → R≥0, and the goal is to find a satisfying assignment
σ : X → {0, 1} that maximizes the weight

∑
x∈σ−1(1) w(x). It is easy to see that there exists

a fixed MSO2 formula φ(X) such that the max ones problem can be reduced to a problem
on bipartite graphs, where the task is to find a vertex set X that maximizes the weight∑

x∈X w(x) subject to φ. We show the following.

▶ Theorem 5. There exist ε, δ > 0 such that any (1 − ε)-approximation algorithm for the
max ones problem has Lipschitz constant Ω(nδ), where n is the number of variables.

We note that it is possible to construct an algorithm for the max ones problem with a
Lipschitz constant similar to that in Theorem 3, where tw denotes the treewidth of the
“incidence graph” of the 3CNF instance (see Section 4.2 for details). Since tw is upper
bounded by n for any instance, Theorem 5 implies that the dependency of the Lipschitz
constant on tw cannot be improved to two(1).

We also prove analogous meta-theorems when parameterizing by clique-width. Let an
MSO1 maximization (resp., minimization) problem be the variant of an MSO2 problem in
which the formula φ is restricted to MSO1. Denote by cw the clique-width of the graph G.
We then obtain the following.

▶ Theorem 6. For any ε ∈ (0, 1], there is a (1 − ε)-approximation algorithm for the MSO1
maximization problem with Lipschitz constant O

(
(f(cw, |φ|) + log ε−1 + log logn)ε−1 log2 n

)
,

where f is some computable function. The time complexity is bounded by O (f(cw, |φ|)n).

▶ Theorem 7. For any ε ∈ (0, 1], there is a (1 + ε)-approximation algorithm for the MSO1
minimization problem with Lipschitz constant O

(
(f(cw, |φ|) + log ε−1 + log logn)ε−1 log2 n

)
,

where f is some computable function. The time complexity is bounded by O (f(cw, |φ|)n).

We note that the functions f in Theorems 6 and 7 are much larger than those in Theorems 1
and 2. In particular, the bounds for Theorems 3 and 4 do not follow from Theorem 6.

1.1 Technical Overview
Now we provide a technical overview of our framework. Since the arguments for clique-width
are similar, we focus here on the treewidth results and omit the clique-width case.

For simplicity, here we consider the maximum weight independent set problem on a full
binary tree (a rooted tree in which every vertex has exactly 0 or 2 children). This corresponds
to the case where φ(X) = ∀x∀y((x ∈ X ∧ y ∈ X) → ¬adj(x, y)). Let w ∈ RV

≥0 be the weight
vector.

ESA 2025



11:4 Courcelle’s Theorem for Lipschitz Continuity

If we do not care about Lipschitzness, this problem can exactly be solved by the following
algorithm. For each vertex v ∈ V , define DP[v][0] to be an independent set in the subtree
rooted at v that does not include v with the maximum weight. Similarly, define DP[v][1] to
be an independent set in the subtree rooted at v with the maximum weight. If v is a leaf,
then DP[v][0] = ∅ and DP[v][1] = {v}. Otherwise, let u1 and u2 be the two children of v.
We have DP[v][0] = DP[u1][1] ∪ DP[u2][1], and DP[v][1] is the one with the larger weight of
Xv,0 := DP[u1][0] ∪ DP[u2][0] ∪ {v} and Xv,1 := DP[u1][1] ∪ DP[u2][1]. By performing this
dynamic programming in a bottom-up manner, the problem can be solved exactly.

However, this algorithm is not Lipschitz continuous. This is because when we compute
DP[v][1], which of Xv,0 or Xv,1 has a larger weight is affected by small changes in the weights.
To address this issue, we use the exponential mechanism [7]. Specifically, for some constant
c > 0, we select Xv,i with probability proportional to exp(c · w(Xv,i)). This approach
makes the algorithm Lipschitz continuous, with only a slight sacrifice in the approximation
ratio. Specifically, we can prove that by appropriately choosing c for a given ε′ ∈ (0, 1], the
increase in the Lipschitz constant can be bounded by Õ(ε′−1) by reducing the approximation
guarantee by a factor of 1 − ε′ at each vertex where the exponential mechanism is applied.

While this approach makes the algorithm Lipschitz continuous, the Lipschitz constant is
still too large when the height h of the tree is large. Specifically, to achieve an approximation
guarantee of 1 − ε, we need to set ε′ = ε

h , leading to a Lipschitz constant of h · Õ(ε′−1) =
Õ(ε−1h2). This is larger than the trivial bound n when h = O(n). We resolve this issue by
using the fact that any tree has a tree decomposition of width 5 and height O(logn) [2]. By
performing dynamic programming with the exponential mechanism on this tree decomposition,
we can obtain (1−ε)-approximation algorithm with Lipschitz constant Õ(ε−1). This argument
can be naturally extended to the case where G is a bounded treewidth graph. By following
the proof of Courcelle’s Theorem [3, 5], we further extend this argument to the case where φ
is a general MSO2 formula with a free vertex variable.

We prove Theorem 5 by leveraging a lower bound on a related notion of sensitivity for the
maximum cut problem [8], where sensitivity measures the change in the output with respect
to the Hamming distance under edge deletions [21]. Specifically, we reduce the maximum cut
problem, where stability is defined with respect to edge deletions, to the max ones problem,
where stability is measured with respect to weight changes.

1.2 Related Work
Lipschitz continuity of discrete algorithms is defined by Kumabe and Yoshida [14], and they
provided Lipschitz continuous approximation algorithms for the minimum spanning tree,
shortest path, and maximum weight matching problems. In a subsequent work [16], they
further provided such algorithms for the minimum weight vertex cover, minimum weight set
cover, and minimum weight feedback vertex set problems. In another work [15], they defined
Lipschitz continuity for allocations in cooperative games and provided Lipschitz continuous
allocation schemes for the matching game and the minimum spanning tree game.

A variant known as pointwise Lipschitz continuity has also been studied, which is defined
using the unweighted Hamming distance instead of the weighted Hamming distance. Kumabe
and Yoshida [14] defined pointwise Lipschitz continuity and provided pointwise Lipschitz
continuous algorithms for the minimum spanning tree and maximum weight bipartite match-
ing problems. Liu et al. [18] proposed the proximal gradient method as a general technique
for solving LP relaxations stably. Using this, they provided pointwise Lipschitz continuous
approximation algorithms for the minimum vertex (S, T )-cut, densest subgraph, maximum
weight (b-)matching, and packing integer programming problems.
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(Average) sensitivity, introduced by Varma and Yoshida [21] with preliminary ideas
by Murai and Yoshida [19], is a notion similar to Lipschitz continuity. While Lipschitz
continuity evaluates an algorithm’s stability against unit changes in the input weights,
(average) sensitivity evaluates an algorithm’s stability against (random) deletions of elements
from the input. Algorithms with small (average) sensitivity have been studied for several
problems, such as maximum matching [21, 23], minimum cut [21], knapsack problem [13],
Euclidean k-means [22], spectral clustering [20], and dynamic programming problems [12].
Recently, Fleming and Yoshida [8] constructed a PCP framework to prove the sensitivity
lower bound for the constraint satisfaction problem.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we describe the necessary
preliminaries on tree decomposition (Sections 2.1 and 2.2), logic (Section 2.3), and Lipschitz
continuity (Section 2.4). In Section 3, we prove Theorem 1 by providing a Lipschitz continuous
algorithm for the MSO2 maximization problem. Since the algorithm and analysis for MSO2
minimization are similar, we defer the proof of Theorem 2 to the full version. In Section 4,
we give a more precise Lipschitzness analysis for specific formulas φ, which includes the proof
of Theorem 3. Proofs of Theorems 4, 5, 6, and 7 are given in the full version.

2 Preliminaries

2.1 Tree Decomposition

Let G be a graph with n vertices. A pair (B, T ) consisting of a family B of subsets (called
bags) of V (G) and a rooted tree T whose vertex set is B is a (rooted) tree decomposition of
G if it satisfies the following three conditions.⋃

B∈B B = V (G).
For each edge e ∈ E(G), there is a bag B ∈ B such that e ⊆ B.
For each vertex v ∈ V (G), the set of bags {B ∈ B : v ∈ B} induces connected subgraph
in T .

For a tree decomposition (B, T ), we may refer to the root node, leaf nodes, and the height
of T as those of (B, T ), respectively. Moreover, (B, T ) is binary if T is a binary tree. The
width of a tree decomposition (B, T ) is the maximum size of a bag in B minus one. The
treewidth of G is the minimum possible width among all possible tree decompositions of G.
It is known that the tree decomposition of G of width at most 2k + 1 can be computed in
2O(k)n time [10], where k is the treewidth of G. Moreover, any tree decomposition of G of
width k can be transformed into a binary tree decomposition of width at most 3k + 2 and
height at most O(logn) [2]. Thus, we obtain the following lemma.

▶ Lemma 8 ([2, 10]). Let G be a graph with n vertices and k be the treewidth of G. Then,
a binary tree decomposition of G with width O(k) and height O(logn) can be computed in
2O(k)n time.

ESA 2025



11:6 Courcelle’s Theorem for Lipschitz Continuity

2.2 HR-algebra
We introduce the notions of HR-algebra2, which is one of the algebraic definitions of tree
decomposition. A k-graph is a tuple G = ⟨V,E, src⟩ of a set of vertices V , a set of edges E,
and a k-vector src ∈ (V ∪ {nil})k. We write the i-th element of a vector src by src(i). If
src(i) = u, we say that u is a i-source. We write the set {src(i) : i ∈ [k]} \ {nil} by src(G).

Let G and H be k-graphs. The parallel-composition of G and H, denoted by G // H, is
the graph generated by the following procedure. First, create the disjoint union of G and H,
and identify the (non-nil) vertices srcG(i) and srcH(i) for each i ∈ [k]. Finally, remove all
the self-loops and multi-edges. Let B be a non-empty subset of [k]. The source forgetting
operation fgB is the function that maps a k-graph G to a k-graph G′ such that VG = VG′ ,
EG = EG′ , and srcG′(i) = nil if i ∈ B, and srcG′(i) = srcG(i) otherwise.

▶ Definition 9 (HR-algebra). A term of a HR-algebra over k-graphs is either
a constant symbol i, ij, or ∅ denoting a k-graph ⟨{v}, ∅, src⟩ with src(i) = v, a k-graph
⟨{u, v}, {{u, v}}, src⟩ with src(i) = u and src(j) = v, or the empty graph, respectively;
t // s for any terms t and s;
fgB(t) for any term t and any B ⊆ [k].

We may associate a term with the graphs represented by it. A term of an HR-algebra t can
be decomposed into the parse tree in the usual way, called the (rooted) HR-parse tree of t.
The height of a HR-parse tree is the maximum distance from the root to a leaf. It is known
that tree decompositions are equivalent to HR-parse trees in the following sense.

▶ Proposition 10 (see e.g. [4]). The treewidth of a graph is at most k if and only if the
graph can be denoted by a term of a HR-algebra over (k + 1)-graphs.

Moreover, binary tree decomposition can be transformed into an HR-parse tree with approx-
imately the same height.

▶ Proposition 11 (⋆). Given a rooted binary tree decomposition (B, T ) of G with width k
and height h, we can compute a HR-parse tree over (k + 1)-graph denoting G with height
O(log k + h).

The proof of Proposition 11 is essentially the same as the proof of Proposition 10 but we
give in the full version.

2.3 Monadic Second-Order Logic
We provide a slightly less formal definition of monadic second-order (MSO) logic over k-
graphs for accessibility (see, e.g., [17] for more formal definition). An atomic formula is a
formula of the form s = t, adj(s, t), t ∈ X, and Boolean constants True and False. Here,
adj(s, t) is the predicate that represents whether s and t are adjacent. A monadic second-
order formula over k-graphs is a formula built from atomic formulas, the usual Boolean
connectives ∧,∨,¬,→, first-order quantifications ∃x and ∀x (quantifications over vertices),
and second-order quantifications ∃X and ∀X (quantification over sets of vertices). The
notation φ(X) indicates that φ has exactly one free variable X. The quantifier height (or
quantifier rank) of a formula φ, denoted by |φ|, is the maximum depth of quantifier nesting
in φ (see e.g. [17] for a formal definition). The counting monadic second-order (CMSO) logic

2 The acronym HR stands for hyperedge replacement [4].
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is an expansion of MSO logic that have additional predicates Cardm,r(X) for a second-order
variable X, meaning |X| ≡ m (mod r). A CrMSOq-formula is a CMSO formula φ such that
the quantifier height of φ is at most q and r′ ≤ r holds for any predicate Cardm,r′ in φ. For
a logical formula φ and a graph G, we write G |= φ when graph G satisfies the property
expressed by φ.

There are two variants of MSO logic: MSO1 (or simply MSO), which is described
above, allows quantification over vertices and sets of vertices only, and MSO2 which allows
quantification over edges and sets of edges as well. It is well known that, for any graph G

and MSO2-formula φ, there exists an MSO1 formula φ′ such that G |= φ ⇐⇒ G′ |= φ′,
where G′ is the incidence graph, obtained by subdividing each edge of G (with two colors
meaning the original and the subdivision vertices) (see e.g. [11]). It is easy to see that the
treewidth of the incidence graph is at most the treewidth of the original graph. Thus, since
this paper focuses on graphs with bounded treewidth, we mainly consider MSO1. However,
all the theorems are held for MSO2 and graphs of bounded treewidth.

We introduce some more notations. For a set V , two families A ⊆ 2V and B ⊆ 2V

are separated if A ∩ B = ∅ for all A ∈ A, and B ∈ B. We write A ∪ B by A ⊎ B if
A ∩B = ∅, and A ⊠ B := {A ∪B : A ∈ A, B ∈ B} if A and B are separated. For a formula
φ(X) and a graph G, the set of vertex sets satisfying φ is denoted by sat(G,φ), that is,
sat(G,φ) = {A : G |= φ(A)}.

The following theorem is a key of the MSO model-checking algorithm [3, 4].

▶ Theorem 12 ([4]). Let r, q, k be positive integers. Let φ(X) be a CrMSOq-formula over
k-graphs with a second-order free variable X. Then, the following hold.
1. For any B ⊆ [k], there exists a CrMSOq-formula ψ(X) such that for any k-graph G, we

have

sat(fgB(G), φ) = sat(G,ψ).

2. There exists a family of tuples {θi(X), ψi(X)}i∈[p] of CrMSOq-formulas with a free variable
X such that, for any k-graphs G and H,

sat(G // H,φ) =
⊎

i∈[p]

{S ∪ P : S ∈ sat(G, θi), P ∈ sat(H,ψi)}.

It is known that, for any r, q, k, up to logical equivalence, there are only finitely many different
CrMSOq-formulas φ(X) over k-graphs (see e.g., [17]). Thus, we can obtain a linear-time
algorithm, based on dynamic programming over trees, for CrMSOq model checking over
bounded treewidth. Courcelle and Mosbah [5] adjusted Theorem 12 to address optimization,
counting, and other problems. We use a slightly modified version of the theorem of Courcelle
and Mosbah.

Let nosrc(X) ≡
∧

i∈[k](src(i) ̸∈ X), and φ↾S(X) denote φ(X ∪ S) ∧ nosrc(X) for a set
S ⊆ src(G).

▶ Observation 13. Let G be a k-graph, and φ(X) be a formula with a free set variable X.
Then, we have sat(G,φ) =

⊎
S⊆src(G) sat(G,φ↾S) ⊠ {S}.

The proof of Corollary 14 is given in the full version.

▶ Corollary 14 (⋆). Let r, q, k be positive integers. Let φ(X) be a CrMSOq-formula over
k-graphs with a second-order free variables X. Then, for all S ⊆ src(G), the following hold.
1. For any B ⊆ [k], there exists a CrMSOq-formula ψ(X) such that for any k-graph G, we

have

sat(fgB(G), φ↾S) =
⊎

S′⊆B

sat(G,ψ↾S∪S′) ⊠ {S′}.

ESA 2025



11:8 Courcelle’s Theorem for Lipschitz Continuity

2. There exists a family of tuples {θi↾Si
(X), ψi↾S′

i
(X)}i∈[p] of CrMSOq-formulas with a free

variable X such that, for any k-graphs G and H,

sat(G // H,φ↾S) =
⊎

i∈[p]

sat(G, θi↾Si
) ⊠ sat(H,ψi↾S′

i
).

Moreover, Si ∪ S′
i = S for all i ∈ [p].

Then, we can design an algorithm for an (C)MSO maximization (minimization) problem
over graphs of bounded treewidth. For simplicity, we assume that the given graph G

has no sources, that is, src(G) = ∅. Let t be a term denoting Gt and φ(X) be the
(C)MSO-formula describing the constraint of the problem. We recursively compute the value
opt(t′, φ′↾S) = max{w(A) : G |= φ′↾S(A)} for any subterm t′ of t and MSO-formula φ′↾S as
follows, where w ∈ RV

≥0 is the given weight vector and w(X) =
∑

x∈X wx for any X ⊆ V (G).
If t′ is of the form fgB(t′′), then opt(fgB(t′′), φ′↾S) = maxS′⊆B{opt(t′′, ψ↾S∪S′) + w(S′)},
where, ψ is the formula obtained from Corollary 14. If t′ is of the form t1 // t2, then
opt(t′, φ′↾S) = maxi∈[p]{opt(t1, θ↾Si

) + opt(t2, ψ↾S′
i
)}, where, {θi↾Si

(X), ψi↾S′
i
(X)}i∈[p] are

the formulas obtained from Corollary 14. Then, opt(t, φ↾∅) is the maximum value for the
problem since t has no sources. In the following, for simplicity, we may omit the ↾S notation
and consider only formulas φ such that sat(G,φ) does not contain any sources.

In the above setting, the graphs are considered without any special vertex sets (called as
colors) or special vertices (called as labels). However, for k-graphs with a constant number
of colors and/or labels, an appropriate HR-algebra and logics can be defined, and the similar
results for Corollary 14 hold (see e.g. [4, 17]).

2.4 Lipschitz Continuity
We formally define Lipschitz continuity of algorithms. As this is sufficient for this work, we
only consider algorithms for vertex-weighted graph problems. The definition can be naturally
extended to other settings, such as edge-weighted problems. Let G = (V,E) be a graph. For
vertex sets X,X ′ ⊆ V and weight vectors w,w′ ∈ RV

≥0, we define the weighted Hamming
distance between (X,w) and (X ′, w′) by

dw((X,w), (X ′, w′)) :=

∥∥∥∥∥∑
v∈X

1vwv −
∑

v∈X′

1vw
′
v

∥∥∥∥∥
1

=
∑

v∈X∩X′

|wv − w′
v| +

∑
v∈X\X′

wv +
∑

v∈X′\X

w′
v,

where 1v ∈ {0, 1}V denotes the characteristic vector of v, that is, the vector 1v,u = 1 holds
if and only if u = v. For two probability distributions X and X ′ over subsets of V , we define

EM ((X , w), (X ′, w′)) := inf
D

E(X,X′)∼D [dw((X,w), (X ′, w′))] ,

where the minimum is taken over couplings of X and X ′, that is, distributions over pairs of
sets such that its marginal distributions on the first and second coordinates are equal to X
and X ′, respectively. Consider an algorithm A, that takes a graph G = (V,E) and a weight
vector w ∈ RV

≥0 as an input and outputs a vertex subset X ⊆ V . We denote the output
distribution of A for weight w as A(w). The Lipschitz constant of A is defined by

sup
w,w′∈R≥0,

w ̸=w′

EM ((A(w), w), (A(w′), w′))
∥w − w′∥1

.



T. Gima, S. Kumabe, and Y. Yoshida 11:9

For two random variables X and X ′, the total variation distance between them is given as:

TV (X,X ′) := inf
D

Pr
(X,X′)∼D

[X ̸= X ′] ,

where the minimum is taken over couplings between X and X ′, that is, distributions over
pairs such that its marginal distributions on the first and the second coordinates are equal to
X and X ′, respectively. For an element u ∈ V , we use 1u ∈ RV

≥0 to denote the characteristic
vector of u, that is, 1u(u) = 1 and 1u(v) = 0 for v ∈ V \ {u}. The following lemma indicates
that, to bound the Lipschitz constant, it suffices to consider pairs of weight vectors that
differ by one coordinate.

▶ Lemma 15 ([14]). Suppose that there exist some c > 0 and L > 0 such that

EM ((A(G,w), w), (A(G,w + δ1u), w + δ1u)) ≤ δL

holds for all w ∈ RV
≥0, u ∈ V and 0 < δ ≤ c. Then, A is L-Lipschitz.

In our algorithm, we use the following procedures softmax and softmin. These procedures
are derived from the exponential mechanism in the literature of differential privacy [7] and
frequently appear in the literature on Lipschitz continuity [14, 16]. Here, we organize them
into a more convenient form for our use. Let p ∈ Z≥1, x1, . . . , xp ∈ R≥0, and ϵ ∈ (0, 1]. The
softmax of x1, . . . , xp is taken as follows. If maxi∈[p] xi = 0, we set softargmaxϵ

i∈[p]xi to be
an arbitrary index i with xi = 0 and softmaxϵ

i∈[p]xi = 0. Assume otherwise. First, we sample
c uniformly from

[
2ϵ−1 log(2pϵ−1)

maxi∈[p] xi
, 4ϵ−1 log(2pϵ−1)

maxi∈[p] xi

]
. Let i∗ be a probability distribution over [p]

such that

Pr [i∗ = i] = exp(cxi)∑
i′∈[p] exp(cxi′) .

holds for all i ∈ [p]. Then, we define softargmaxϵ
i∈[p]xi := i∗ and softmaxϵ

i∈[p]xi := xi∗ . We
have the following. The proofs of Lemmas 16 and 17 are given in the full version.

▶ Lemma 16. We have E
[
softmaxϵ

i∈[p]xi

]
≥ (1 − ϵ) maxi∈[p] xi.

▶ Lemma 17. Let δ > 0 and assume δ ≤ maxi∈[p] xi

4ϵ−1 log(2pϵ−1) . Let x′
1, . . . , x

′
p ∈

R≥0 be numbers such that xi ≤ x′
i ≤ xi + δ holds for all i ∈ [p]. Then,

TV
(

softargmaxϵ
i∈[p]xi, softargmaxϵ

i∈[p]x
′
i

)
≤ 10ϵ−1 log(2pϵ−1)δ

maxi∈[p] xi
.

Similarly, the softmin of x1, . . . , xp is taken as follows. If mini∈[p] xi = 0, we set
softargminϵ

i∈[p]xi be an arbitrary index i with xi = 0 and softminϵ
i∈[p]xi = 0. Assume

otherwise. First, we sample c uniformly from
[

2ϵ−1 log(2pϵ−1)
mini∈[p] xi

, 4ϵ−1 log(2pϵ−1)
mini∈[p] xi

]
. Let i∗ be a

probability distribution over [p] such that

Pr [i∗ = i] = exp(−cxi)∑
i′∈[p] exp(−cxi′) .

holds for all i ∈ [p]. Then, we define softargminϵ
i∈[p]xi := i∗ and softminϵ

i∈[p]xi := xi∗ . We
have the following. The proofs of Lemmas 18 and 19 are given in the full version.

▶ Lemma 18. We have E
[
softminϵ

i∈[p]xi

]
≤ (1 + ϵ) mini∈[p] xi.

▶ Lemma 19. Let δ > 0 and assume δ ≤ mini∈[p] xi

4ϵ−1 log(2pϵ−1) . Let x′
1, . . . , x

′
p ∈

R≥0 be numbers such that xi ≤ x′
i ≤ xi + δ holds for all i ∈ [p]. Then,

TV
(

softargminϵ
i∈[p]xi, softargminϵ

i∈[p]x
′
i

)
≤ 10ϵ−1 log(2pϵ−1)δ

mini∈[p] xi
.
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3 Lipschitz Continuous Algorithms for MSO2 Optimization Problems

In this section, we prove Theorems 1–3. Since the proofs are similar to that for Theorem 1,
we provide most of the proof of Theorem 2 in the full version. In Section 3.1, we define
the notations and give a brief overview of the algorithm. Section 3.2 handles the base case,
where the graph consists of a single vertex. Sections 3.3 and 3.4 analyze the impact of the
parallel composition and the forget operations, respectively, on approximability and the
Lipschitz constant. In Section 3.5, we put everything together to prove Theorem 1. Finally,
in Section 4.1, we provide a more refined analysis for the special case of the maximum weight
independent set problem to prove Theorem 3.

3.1 Definitions
For a graph G, a weight vector w, and an MSO2 formula φ, we define

optw[G,φ] = max
S⊆V (G),G|=φ(S)

w(S). (1)

for maximization problems and

optw[G,φ] = min
S⊆V (G),G|=φ(S)

w(S). (2)

for minimization problems. If sat(G,φ) = ∅, we define optw[G,φ] = nil. For graphs G
and MSO2 formulas φ with sat(G,φ) ̸= ∅, our algorithm recursively computes the vertex
set DPw[G,φ] that approximately achieves the maximum in Equation (1) or minimum in
Equation (2). When it is clear from the context, we omit the subscript w and simply
write opt[G,φ] and DP[G,φ]. We perform the dynamic programming algorithm using the
formulas defined in Corollary 14 over the parse tree of a term obtained from Lemma 8 and
Proposition 11. Specifically, at every stage of the algorithm, it is guaranteed that each
X ∈ sat(G,φ) satisfies X ⊆ V (G) \ src(G). Furthermore, our algorithm is randomized. Thus,
DP[G,φ] can be considered as a probability distribution over vertex sets in sat(G,φ).

To bound the approximation ratio, for a weight vector w ∈ RV
≥0, we bound the ratio

between E [w(DP[G,φ])] and opt[G,φ]. To bound the Lipschitz constant, for a weight vector
w ∈ RV

≥0, u ∈ V , and δ > 0, we bound EM (DPw[G,φ],DPw+δ1u
[G,φ]). From now on, we

will concentrate on maximizing problems. The algorithm for minimization problems is similar
to that for maximization problems, while the detail of the analysis is slightly differ. We
discuss the minimization version in the full version.

3.2 Base Case
Here we consider the base case. Let G be a graph with a single vertex v and no edges, where
v is a source of G, and φ be an MSO2 formula such that sat(G,φ) is nonempty and contains
no set containing v. In particular, we have sat(G,φ) = {∅}. We set DP[G,φ] := ∅. Since
w(∅) = 0, it is clear that w (DP[G,φ]) = opt[G,φ] = 0. Furthermore, it is obvious that

EM (DPw[G,φ],DPw+δ1u [G,φ]) = EM(∅, ∅) = 0.

3.3 Parallel Composition
Next, we consider the parallel composition. Let

sat(G // H,φ) =
⊎

i∈[p]

sat(G, θi) ⊠ sat(H,ψi). (3)
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Assume we have already computed DP[G, θi] and DP[H,ψi] for each i ∈ [p]. We compute
DP[G // H,φ]. For each i ∈ [p], we denote opti := opt[G, θi] + opt[H,ψi]. By definition,
we have maxi∈[p] opti = opt[G // H,φ]. Then, we take i∗ = softargmaxε

i∈[p]opti and define
DP[G // H,φ] := DP[G, θi∗ ] ∪ DP[H,ψi∗ ]. First we analyze the approximation ratio.

▶ Lemma 20. Let 0 < α ≤ 1 and suppose E [w(DP[G, θi])] ≥ αopt[G, θi] and
E [w(DP[H,ψi])] ≥ αopt[H,ψi] hold for all i ∈ [p]. Then, we have E [w (DP[G // H,φ])] ≥
(1 − ε)αopt[G // H,φ].

Proof. We have

E [w(DP[G // H,φ])] = E [w(DP[G, θi∗ ] ∪ DP[H,ψi∗ ])] ≥ αE [opt[G, θi∗ ] + opt[H,ψi∗ ]]

= αE
[
softmaxε

i∈[p]opti

]
≥ (1 − ε)αmax

i∈[p]
opti = (1 − ε)αopt[G // H,φ]. ◀

Now we analyze the Lipschitz constant. We denote the variable i∗ corresponding to
the weight w and w + δ1u by i∗

w and i∗
w+δ1u

, respectively. We note that DPw[G, θi] and
DPw+δ1u

[G, θi] are the same as a distribution unless u ∈ V (G) \ srcG. The same also holds
for H. Since V (G) \ srcG and V (H) \ srcH are disjoint, without loss of generality, we can
assume the DPw[H,ψi] and DPw+δ1u

[H,ψi] are the same as a distribution. We have the
following.

▶ Lemma 21. Let β ∈ R≥0 and suppose EM (DPw[G, θi],DPw+δ1u [G, θi]) ≤ β holds for all
i ∈ [p]. Then, we have EM (DPw[G // H,φ],DPw+δ1u

[G // H,φ]) ≤ 30ε−1 log(2pε−1)δ + β.

Proof. We have

EM (DPw[G // H,φ],DPw+δ1u
[G // H,φ])

≤ TV
(
i∗

w, i
∗
w+δ1u

) (
optw[G // H,φ] + optw+δ1u

[G // H,φ]
)

+ max
i∈[p]

(EM (DPw[G, θi],DPw+δ1u
[G, θi]))

≤ 10ε−1 log(2pε−1)δ
optw[G // H,φ]

(
optw[G // H,φ] + optw+δ1u

[G // H,φ]
)

+ β ≤ 30ε−1 log(2pε−1)δ + β,

where the last inequality is from ε ≤ 1 and δ ≤ optw[G // H,φ]. ◀

3.4 Forget
Here we consider forget operation. Let B ⊆ srcG and

sat(fgB(G), φ) =
⊎

i∈[p]

sat(G,φi) ⊠ {Si}. (4)

Assume we have already computed DP[G,φi] for each i ∈ [p]. We compute DP[fgB(G), φ].
We first sample c ∈ R>0 uniformly from

[
2 log(2pε−1)
εopt[G,φ,S] ,

4 log(2pε−1)
εopt[G,φ,S]

]
. For each i ∈ [p], we

denote opti = opt[G,φi] + w(Si). By definition, we have maxi∈[p] opti = opt[fgB(G), φ].
Then, we take i∗ = softargmaxε

i∈[p]opti and define DP[fgB(G), φ] := DP[G,φi∗ ] ∪ Si∗ . First
we analyze the approximation ratio.

▶ Lemma 22. Let 0 < α ≤ 1 and suppose E [w(DP[G,φi])] ≥ αopt[G,φi] holds for all i ∈ [p].
Then, we have DP[fgB(G), φ] ≥ (1 − ε)αopt[fgB(S), φ].

Proof. We have

E [w(DP[G,φ])] = E [w(DP[G,φi∗ ] ∪ Si∗)] ≥ E [αopt[G,φi∗ ] + w(Si∗)] ≥ αE [opt[G,φi∗ ] + w(Si∗)]

= αE
[
softmaxε

i∈[p]opti

]
≥ (1 − ε)αmax

i∈[p]
opti = (1 − ε)αopt[fgB(G), φ]. ◀
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Now we analyze the Lipschitz constant.

▶ Lemma 23. Let β ∈ R≥0 and suppose EM (DPw[G,φi],DPw+δ1u [G,φi]) ≤ β holds for all
i ∈ [p]. Then, we have EM (DPw[fgB(G), φ],DPw+δ1u

[fgB(G), φ]) ≤ 31ε−1 log(2pε−1)δ + β.

Proof. We have

EM (DPw[fgB(G), φ],DPw+δ1u
[fgB(G), φ])

≤ TV
(
i∗

w, i
∗
w+δ1u

) (
optw[fgB(G), φ] + optw+δ1u

[fgB(G), φ]
)

+ max
i∈[p]

(EM (DPw[G,φi] ∪ Si,DPw+δ1u
[G,φi] ∪ Si))

≤ 10ε−1 log(2pε−1)δ
optw[fgB(G), φ]

(
optw[fgB(G), φ] + optw+δ1u

[fgB(G), φ]
)

+ max
i∈[p]

(EM (DPw[G,φi],DPw+δ1u
[G,φi])) + max

i∈[p]
[dw((Si, w), (Si, w + δ1u))]

≤ 30ε−1 log(2pε−1)δ + β + δ ≤ 31ε−1 log(2pε−1)δ + β. ◀

3.5 Putting Together
Let G = (V,E) be a graph with treewidth k. From Lemma 8 and Proposition 11, we can
compute a HR-parse tree t over (k + 1)-graph denoting G with height O(log k + logn) ≤
O(logn). We perform the dynamic programming algorithm on this parse tree. We have the
following.

▶ Lemma 24. Let ε ∈ (0, 1] and h be the height of t. Our algorithm outputs a solution
X ∈ sat(G,φ) such that E[w(X)] ≥ (1 − hε)opt[G,φ]. The Lipschitz constant is bounded by
31hε−1 log(2pmaxε

−1), where pmax is the maximum of p among all update formulas (3) or (4)
that the algorithm uses.

Proof. The approximability bound is obtained by repeatedly applying Lemmas 20 and 22 and
(1 − ε)h ≥ 1 − hε. The Lipschitzness bound is obtained by repeatedly applying Lemmas 21
and 23. ◀

Since pmax is bounded by a function of k and |φ|, we have the following.

Proof of Theorem 1. The claim follows by substituting ε, h, and k in Lemma 24 with
ε

Θ(log n) , O(logn), and 3k + 2, respectively. ◀

4 Special Cases

4.1 Independent Set
From the proof of Theorem 1, f(k, φ) in Theorem 1 is bounded by log(2pmax). Particularly,
if pmax is bounded by 2O(k), the Lipschitz constant depends linearly on k. Here, we prove
Theorem 3 for the maximum weight independent set problem by showing that pmax ≤ 2O(k).
Similar arguments can be applied to several other problems, such as the minimum weight
vertex cover problem and the minimum weight dominating set problem. For a k-graph G

and S ⊆ src(G), let

φS(X) ≡ ∀x(x ∈ src(G) → ¬x ∈ X) ∧ ∀x∀y(((x ∈ X ∨ x ∈ S) ∧ (y ∈ X ∨ y ∈ S)) → ¬adj(x, y)).
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In words, sat(G,φS) is the family of subsets X of V such that X is disjoint from src(G) and
X ∪ S is an independent set of G. Then, we have

sat(fgB(G), φS) =
⊎

S′⊆B

sat(G,φS∪S′) ⊠ {S′}, sat(G // H,φS) = sat(G,φS) ⊠ sat(H,φS).

Particularly, we have pmax ≤ 2O(k) and therefore Theorem 3 is proved.

4.2 Max Ones
Recall that in max ones problem, we given a 3CNF formula Φ over a variable set X and a
weight function w : X → R≥0, the goal is to find a satisfying assignment σ : X → {0, 1}
that maximizes the weight

∑
x∈σ−1(1) w(x). We reduce the problem to a graph problem. Let

GΦ = (X ∪ X̄ ∪ C, E) be the graph such that X is the variable set of Φ, X̄ = {x̄i : xi ∈ X},
C is the clause set of Φ, {xi, x̄i} ∈ E for all xi ∈ X, {Cj , xi} ∈ E iff clause Cj contains xi

as a positive literal, and {Cj , x̄i} ∈ E iff clause Cj contains xi as a negative literal. Let
w′(x) = w(x) if x ∈ X, and otherwise w′(x) = 0. Note that the treewidth of GΦ is at most
2|X|.

Here, the notations a ∈ A ∪ B, a ∈ A ∩ B, a ∈ A \ B, ∀a ∈ A ψ, and ∃a ∈ A ψ are
syntactic sugar defined in the usual sense. For a k-graph G and S,D ⊆ src(G), let

φS,D(A) ≡ ∃B

 ∀a ∈ A ∪ S ∀b ∈ B (a ∈ X ∧ b ∈ X̄ ∧ ¬adj(a, b))
∧ ∀x ∈ X ∪ X̄ ∀y ∈ X ∪ X̄ (adj(x, y) → (x ∈ A ∪ S ∪B ∨ y ∈ A ∪ S ∪B)
∧ ∀s ∈ src(G) (¬s ∈ A) ∧ ∀c ∈ C \D ∃x ∈ A ∪ S ∪B (adj(x, c))

 .
The first and the second rows says that A∪S and B represent the sets σ−1(1) and σ−1(0) of
an assignment σ, respectively. The third row says that A has no sources, and all clauses except
in D are satisfied by the σ defined by A∪S and B. Then, the max ones problem is equivalent
to find a vertex set Y maximizes the weight

∑
x∈Y w

′(x) and satisfies GΦ |= φ∅,∅(Y ). Here,
we have

sat(fgB(G), φS,D) =
{⊎

S′⊆B sat(G,φS∪S′,D) ⊠ {S′} if D ∩B = ∅,
∅ otherwise

sat(G // H,φS,D) =
⊎

D1∩D2=D
D1,D2⊆src(G)

sat(G,φS,D1) ⊠ sat(H,φS,D2).

Particularly, we have pmax ≤ 2O(k).
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