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Abstract
The classical rank aggregation problem seeks to combine a set X of n permutations into a single
representative “consensus” permutation. In this paper, we investigate two fundamental rank
aggregation tasks under the well-studied Ulam metric: computing a median permutation (which
minimizes the sum of Ulam distances to X) and computing a center permutation (which minimizes
the maximum Ulam distance to X) in two settings.

Continuous Setting: In the continuous setting, the median/center is allowed to be any permutation.
It is known that computing a center in the Ulam metric is NP-hard and we add to this by
showing that computing a median is NP-hard as well via a simple reduction from the Max-Cut
problem. While this result may not be unexpected, it had remained elusive until now and
confirms a speculation by Chakraborty, Das, and Krauthgamer [SODA ’21].

Discrete Setting: In the discrete setting, the median/center must be a permutation from the input
set. We fully resolve the fine-grained complexity of the discrete median and discrete center
problems under the Ulam metric, proving that the naive Õ(n2L)-time algorithm (where L is the
length of the permutation) is conditionally optimal. This resolves an open problem raised by
Abboud, Bateni, Cohen-Addad, Karthik C. S., and Seddighin [APPROX ’23]. Our reductions
are inspired by the known fine-grained lower bounds for similarity measures, but we face and
overcome several new highly technical challenges.
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1 Introduction

Suppose that n judges each rank the performances of L competitors. Given these rankings,
how can the judges agree on a single consensus ranking? This fundamental question lies at
the heart of a class of tasks known as rank aggregation, which has applications across various
fields, including social choice theory [11], bioinformatics [37], information retrieval [29],
machine learning [38], and recommendation systems [41], among others. Formally, the judges’
rankings can be represented as a set of n permutations X ⊆ SL. Then, for an appropriate
metric d(·, ·) on the space of permutations SL, the two most prominent rank aggregation tasks
are to compute a median permutation πM which minimizes

∑
π∈X d(πM , π) [33, 49, 50, 23],

or a center permutation πC which minimizes maxπ∈X d(πC , π) [8, 10, 43].
Among the metrics studied in this context, two stand out. The first one is the classic

Kendall’s tau distance which measures the number of disagreeing pairs between two per-
mutations, i.e., the number of pairs (i, j) for which one ranking orders i before j while
the other orders j before i. Kendall’s tau distance is well-motivated as it satisfies several
desirable properties beyond the scope of this paper (e.g., neutrality, consistency, and the
extended Condorcet property [33, 47]), and is also well-understood from a computational
point-of-view [23, 24]. For example, it is known that computing the median or center of just
four permutations is already NP-hard [23, 10]. Several approximation algorithms have also
been proposed for this metric [5, 46], culminating in a PTAS [34, 42] for approximating the
median under Kendall’s tau metric.

The other key metric is the Ulam distance which measures the minimum number of
relocation operations required to turn one permutation π into another permutation π′ – i.e.,
the minimum number of competitors whose ranks have to be adjusted in π so that it agrees
with π′. This metric offers a simpler and more practical alternative to Kendall’s tau metric
for rank aggregation tasks [20, 16, 19, 18]. Perhaps more importantly, the Ulam metric is
intimately linked to the more general edit metric on arbitrary strings, which enjoys countless
applications in computational biology [28, 42], specifically in the context of DNA storage
systems [27, 44], and beyond [35, 39]. Despite the significance of Ulam rank aggregation
problems and the extensive research dedicated to them [8, 16, 19, 18], some basic questions
remain unanswered. This is the starting point of our paper.

1.1 Question 1: Polynomial-Time Algorithms for Ulam Median?
The first basic question is whether polynomial-time algorithms exist for exactly computing
the center and median permutations under the Ulam metric. For almost all string metrics,
including the aforementioned Kendall’s tau metric but also metrics beyond permutations such
as the Hamming metric [26, 36, 4] or the edit metric [22, 40], median and center problems
are well-known and easily-proven to be NP-hard.1 Quite surprisingly, while it is known that
computing an Ulam center is NP-hard [8], the complexity of computing an Ulam median has
remained an open question. This is not due to a lack of interest – despite the absence of an
NP-hardness proof, Chakraborty, Das, and Krauthgamer have already initiated the study of
approximation algorithms for the Ulam median problem [16, 17], achieving a 1.999-factor
approximation in polynomial time. Our first contribution is that we finally provide this
missing hardness proof:

▶ Theorem 1. The median problem is NP-hard in the Ulam metric.

1 A notable exception is the Hamming median problem that can trivially be solved in polynomial time by
a coordinate-wise plurality vote.
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1.2 Question 2: Fine-Grained Complexity of Discrete Ulam Center and
Median?

How can we circumvent this new lower bound? There are two typical approaches. The first
is to resort to approximation algorithms as was done in [16, 17]. But there is a commonly-
studied second option for aggregation and clustering type problems: to restrict the solution
space to only the input set of permutations X and compute the best median or center from
it.2 The best median or center from the input set X is typically referred to as the discrete
median or the discrete center, respectively, of X. (In the same spirit, we will occasionally refer
to the unrestricted median and center, discussed in the previous subsection, as the continuous
median and continuous center, respectively.) Besides being a natural polynomial-time rank
aggregation task, computing discrete medians or centers has two other motivations. First,
it is easy to see that computing a discrete median/center yields a 2-approximation of the
(continuous) median/center problems. In fact, a key observation in [16] is that a discrete
median often provides a (2 − ε)-approximation for the (continuous) median, particularly
in practical DNA storage system instances where distances tend to be large. Second, the
discrete median and center problems have gained significant attraction for the easier Hamming
metric [2, 4] and harder edit metric [2], often leading to matching upper and lower bounds.
Studying the Ulam metric therefore serves as an interesting intermediate problem capturing
some – but not all – of the hardness of the edit metric.

Driven by these motivations, we study the fine-grained complexity of the discrete median
and discrete center problems with respect to the Ulam distance. That is, we aim to pinpoint
their precise polynomial run times.

Discrete Ulam Center

The trivial algorithm for computing a discrete center is to explicitly compute the Ulam
distance dU (π, π′) for all pairs of permutations π, π′ ∈ X. We can then easily select the
permutation πC ∈ X minimizing maxπ∈X dU (πC , π). As the Ulam distance between two
length-L permutations can be computed in near-linear time3 Õ(L) using the well-known
patience sorting algorithm [6], the total time is Õ(n2L).

We prove that this simple algorithm is optimal, up to subpolynomial factors and condi-
tioned on a plausible assumption from fine-grained complexity:

▶ Theorem 2. Let ε > 0 and α > 0. There is no algorithm running in time O((n2L)1−ε)
that solves the discrete center problem in the Ulam metric for n permutations of length
L = Θ(nα), unless the Quantified Strong Exponential Time Hypothesis fails.

The Quantified Strong Exponential Time Hypothesis (QSETH) is a plausible generaliza-
tion of the by-now well-established Strong Exponential Time Hypothesis (SETH), postulating
that the CNF-SAT problem cannot be solved faster than brute-force search even when
only some variables are existentially quantified and others are universally quantified (see
Section 3.1 for the formal treatment) [12]. This hypothesis has already proven useful for
conditional lower bounds for a wide array of problems [12, 3, 2]. Besides, we remark that it
is impossible to obtain SETH-based lower bounds for the discrete center problem unless the
Nondeterministic Strong Exponential Time Hypothesis [15] is false (see Section 5.1).

2 Or alternatively, the best median/center among the permutations in another given set Y ⊆ SL; this is
typically referred to as the bichromatic discrete center/median problem, or as center/median problem
with facilities in the theory of clustering. All of our results also apply to these bichromatic variants.

3 We write Õ(T ) = T (log T )O(1) to suppress polylogarithmic factors.

ESA 2025
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We emphasize that these lower bounds applies to the full range of n versus L, as long as L

is at least polynomial in n. In the case when L is very small, ω(log n) < L < no(1), previous
work by Abboud, Bateni, Cohen-Addad, Karthik C. S. and Seddighin already established a
matching conditional lower bound of n2−o(1) [2].

It is interesting to compare Theorem 2 with the state of the art for discrete center
problems in the Hamming metric (say, over a constant-size alphabet) and the edit metric. For
concreteness, consider the case L = Θ(n) (i.e., the input consists of n strings/permutations
of length roughly n). Then, on the one hand, the discrete center problem in the Hamming
metric can be solved in time O(nω) [2, 4], where ω < 2.3714 is the exponent of matrix
multiplication [7]. On the other hand, the discrete center problem in the edit metric
cannot be solved in time n4−Ω(1) unless QSETH fails [2]. Therefore, remarkably, Theorem 2
indeed places the discrete center problem in the Ulam metric as a problem of intermediate
complexity n3±o(1). This answers an explicit open question posed by Abboud, Bateni,
Cohen-Addad, Karthik C. S., and Seddighin [2].

Discrete Ulam Median

The trivial algorithm for the discrete median problem is exactly the same as for the center
problem: First compute all pairwise distances dU (π, π′), then select the permutation πM

minimizing
∑

π∈X dU (πM , π). It also runs in time Õ(n2L). So perhaps one could also hope
that a matching lower bound follows from our Theorem 2. Unfortunately, this turns out to
be true only for a restricted subproblem.4 Nevertheless, with considerable technical overhead
we manage to prove essentially the same matching lower bound:

▶ Theorem 3. Let ε > 0 and α ≥ 1. There is no algorithm running in time O((n2L)1−ε)
that solves the discrete median in the Ulam metric for n permutations of length L = Θ(nα),
unless the SETH fails.

In comparison to Theorem 2, Theorem 3 has the advantage that it conditions on the
weaker assumption SETH (thus constituting a stronger lower bound). However, the applicable
range of parameters is more restricted (α ≥ 1 forces the permutations to have length Ω(n)).

2 Proof Overview

In this section, we provide the proof overviews of Theorems 1, 2, and 3. We avoid some
technicalities to highlight the core ideas – for instance, some subpolynomial factors have
been dropped. Complete proofs can be found in Sections 4, 5, and 6, respectively.

2.1 NP-Hardness for Continuous Median in the Ulam Metric
In this section, we provide a high-level sketch of our NP-hardness proof for the continuous
median problem in the Ulam metric. Our starting point is the Max-Cut problem5. Given a
Max-Cut instance G = (V, E) where V = [n], our goal is to construct a set of permutations
of length O(n) such that the median of these permutations encodes the cut in G of maximum
size.

4 Namely, the bichromatic discrete median problem mentioned in Footnote 2.
5 Recall that the Max-Cut problem is, given an undirected graph G = (V, E) to compute a vertex partition

V = A ⊔ B maximizing the number of edges from A to B.
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To achieve this, we first set up a natural correspondence between cuts in G and per-
mutations of length O(n). However, since there are many more permutations than cuts, not
all permutations will represent valid cuts. To ensure that only relevant permutations are
considered, we construct two special permutations:

πL = 1 ◦ 2 ◦ · · · ◦ (n − 1) ◦ n ◦ X1 ◦ X2,

πR = X1 ◦ n ◦ (n − 1) ◦ · · · ◦ 2 ◦ 1 ◦ X2,

for some fixed long permutations X1, X2. The simple key insight is that any median of
πL and πR has the following form: it starts with some subset A ⊆ [n] of the symbols in
increasing order, followed by X1, followed by the symbols in [n]\A in decreasing order, finally
followed by X2. Thus, medians of πL, πR will naturally encode cuts of the form (A, [n] \ A)
in G.

To further enforce that the median represents a maximum cut, we include additional
permutations in our instance. Specifically, for each edge e ∈ E, we include two permutations,
π1

e and π2
e , which reward picking solutions that correspond to partitions that cut e. This

ensures that the final median permutation encodes a maximum cut of G. The precise
construction and formal analysis of these edge-cutting permutations π1

e , π2
e is detailed in

Section 4.

2.2 Fine-Grained Lower Bound for Discrete Center in the Ulam Metric
Our proof of the lower bound for the discrete center problem in the Ulam metric relies on
two key components. The first is a reduction from the Orthogonal Vectors (OV) problem to
the problem of computing the Ulam distance between two permutations. Specifically, we
seek a pair of functions that, given two sets of binary vectors as inputs, independently output
two permutations whose Ulam distance is small if and only if there exists an orthogonal pair
of vectors in the input sets. This falls into a well-established framework in the fine-grained
complexity literature [9, 13, 1]: Given two sets of roughly L binary vectors, one constructs
“coordinate gadgets”, “vector gadgets”, and “OR-gadgets” to produce a pair of length-L
strings whose edit distance encodes the existence of an orthogonal pair.

Clearly such a reduction cannot exist for the Ulam distance under SETH. The Ulam
distance between two permutations can be computed in near-linear time by a simple reduction
to the longest increasing subsequence problem [45], and thus, if there were a way to transform
sets of O(L) many vectors into permutations of length L such that the existence of an
orthogonal pair in the sets could be determined via an Ulam distance computation of these
permutations, then that would imply a near-linear time algorithm for OV, falsifying SETH! In
light of this observation, we start with O(

√
L) vectors in the OV instance. The constructions

of the coordinate and vector gadgets are similar to the edit distance reduction. However,
during the construction of the OR-gadgets, there is a quadratic blowup resulting in length L

permutations with the desired properties. A detailed construction of these gadgets can be
found in Section 5.

The second component in our proof is a reduction from a problem called ∃∀∃∃-Orthogonal
Vectors. In this problem, we are given four sets A, B, C, E of binary vectors and we have
to decide if there exists a ∈ A, such that for all b ∈ B, there exist c ∈ C, e ∈ E such that
a, b, c, e are orthogonal6. If |A| = |B| = n and |C| = |E| =

√
L, then this problem has a

6 We say that vectors a, b, c, e ∈ {0, 1}d are orthogonal if
∑

i∈[d] a[i]b[i]c[i]e[i] = 0.

ESA 2025
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O((n2L)1−Ω(1)) lower bound under the Quantified Strong Exponential Time Hypothesis.
Given such sets A, B, C, E, we proceed as follows. First, for each a ∈ A, we construct the set
Va of

√
L vectors by taking the pointwise product of a with all

√
L vectors in C. There will

be n such sets Va, one for each choice of a ∈ A. Similarly, for each b ∈ B, we construct the
set Wb of

√
L vectors by taking the pointwise product of b with all

√
L vectors in C. We

then run the OV to Ulam distance reduction from before on these sets to obtain two sets of
n-many permutations of length L. Finally, we show that there exists a permutation in the
first set with small Ulam distance to every permutation in the second set if and only if the
starting ∃∀∃∃-OV instance is a YES-instance.

To go from these two sets to the final discrete center instance, we append additional
symbols to each permutation and introduce a new permutation that is far from every
permutation in the second set. This ensures that the center indeed comes from the first set
completing the reduction. We defer the details to Section 5.

2.3 Fine-Grained Lower Bound for Discrete Median in the Ulam Metric

Our lower bound proof for the discrete median problem follows a similar initial approach as
our proof for the center lower bound, with only one difference: instead of starting with an
∃∀∃∃-OV instance, we begin with a ∃∃∃∃-OV (also known as 4-OV) instance. Given this
4-OV instance, we retrace the same steps to construct two sets, X and Y , each containing n

permutations of length L. As in the center proof, we show that there exists a permutation in
X whose total Ulam distance to all elements in Y is small if and only if the original 4-OV
instance is a YES-instance.

However, going from these two sets to the standard single-set version of the discrete
median problem is technically very challenging. In fact, such challenges were addressed in
the past in the context of the closest pair problem [21, 32], and more generally identified as
the task of reversing color coding [14], typically requiring extremal combinatorial objects
which are then composed with the input in a black-box manner.

In this paper, we transform the bichromatic instance to a monochromatic one, in multiple
steps but in a white-box manner using the structure of the input instance. The first key
observation is that all pairwise Ulam distances within X can be computed much faster
than the naive O(n2L) time bound, specifically, in O(n2

√
L) time. This speedup is possible

because the permutations in X are not arbitrary but outputs formed during our OV to Ulam
distance reduction. Thus, in O(n2

√
L) time, we can compute the total Ulam distance of each

x ∈ X to all other elements in X.
Once these n distance sums are computed, we initiate a balancing procedure. This

procedure iteratively appends additional symbols to each permutation in X ∪ Y such that:

For every permutation in X, the sum of its Ulam distances to all other elements in X

becomes equal.

The relative Ulam distances between permutations across the sets remain unchanged.

For every permutation in Y , the sum of its Ulam distances to all other elements in Y

becomes very large.
We show that this balancing procedure can be performed efficiently without significantly
increasing the permutation lengths. Finally, we include all modified permutations into a
single set, and output that as our final discrete median instance. The details turn out to be
quite involved, and we direct the reader to Section 6 for further details.
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3 Preliminaries

Sets, Strings and Permutations

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. We denote by Sn the set of all
permutations over [n]. Throughout the paper, we treat any permutation s ∈ Sn as a string
over the alphabet [n] with no repeating symbols, and we write s := s[1]s[2] . . . s[n]. Given
k strings s1, s2, . . . , sk over some alphabet, we denote by ⃝i∈[k] si the concatenated string
s1s2 . . . sk. We will often require strings that can be obtained by adding some fixed “offset”
to each symbol of some other canonical string7. For every nonnegative integer k and string
of length n, we let ∆k(s) := (s[1] + k)(s[2] + k) . . . (s[n] + k). In other words, ∆k(s) is the
string obtained by adding k to each symbol of s. We will also often require strings that
are obtained by restricting some string to some sub-alphabet. Given any string s over the
alphabet Σ and any sub-alphabet Σ′ ⊆ Σ, we denote by s|Σ′ to be string obtained from s

by deleting all symbols that are not in Σ′. Given a, b ∈ {0, 1}d, we write ⟨a, b⟩ for the inner
product of a and b, i.e., ⟨a, b⟩ =

∑
i∈[d] a[i]b[i]. We further write a ⊙ b for the pointwise

product a and b, i.e., a ⊙ b ∈ {0, 1}d is the vector satisfying (a ⊙ b)[i] = a[i]b[i] for all i ∈ [d].

Ulam Distances and Common Subsequences

The Hamming distance between two equal-length strings x and y, denoted by dH(x, y), is
the number of locations where x and y have different symbols. Let π := π[1]π[2] . . . π[n] ∈ Sn

be a permutation and i, j ∈ [n] be distinct positions. A symbol relocation operation from
position j to position i in π constitutes of deleting the jth symbol of π and reinserting it at
position i. More formally, if π̃ ∈ Sn is the permutation obtained after applying a symbol
relocation from position j to position i in π, then:

π̃ :=
{

π[1]π[2] . . . π[j − 1]π[j + 1] · · · π[i − 1]π[j]π[i]π[i + 1] · · · π[n], if j < i,

π[1]π[2] · · · π[i − 1]π[j]π[i]π[i + 1] · · · π[j − 1]π[j + 1] · · · π[n], if j > i.

Given π, π′ ∈ Sn, the Ulam distance between π and π′, denoted by dU (π, π′), is the minimum
number of symbol relocation operations required to transform π into π′. We will further
denote by LCS(x, y) the length of a longest common subsequence of two strings x and y. We
will frequently use the following fact throughout the paper, which relates the Ulam distance
between two permutations to the length of their longest common subsequence.

▶ Fact 4 ([6]). For every π, π′ ∈ Sn, we have dU (π, π′) = n − LCS(π, π′).

3.1 Hardness Assumptions
Our results are conditional on several hardness assumptions and hypotheses, which we list in
this section. The first one is the Strong Exponential Time Hypothesis, which is a standard
assumption in the theory of fine-grained complexity.

▶ Hypothesis 5 (Strong Exponential Time Hypothesis (SETH)). For all ε > 0, there exists
q ≥ 3 such that no algorithm running in time O(2(1−ε)n) can solve the q-SAT problem on n

variables.

7 Here we are treating the symbols of a string as integers themselves.

ESA 2025
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More specifically, for one of our lower bounds, we will need the following corollary of SETH,
which we dub Unbalanced 4-OVH.

▶ Hypothesis 6 (Unbalanced 4-OVH). For all ε > 0, no algorithm can, given sets A, B, C, E ⊆
{0, 1}d with |A| = n, |B|, |C|, |E| = nΘ(1) and ω(log n) < d < no(1), determine if there exists
a ∈ A, b ∈ B, c ∈ C, e ∈ E such that

∑
i∈[d] a[i]b[i]c[i]e[i] = 0 in time O((|A||B||C||E|)1−ε).

It is well-known that SETH in conjunction with the sparsification lemma [30] implies Unbal-
anced 4-OVH [48]. We will also make use of the following strengthening of SETH.

▶ Hypothesis 7 (∃∀∃SETH). For all ε > 0 and 0 < α < β < 1, there exists q ≥ 3, such that
given a q-CNF formula ϕ over the variables x1, x2, . . . , xn, no algorithm running in time
O(2(1−ε)n) can determine if the following is true:

∃x1, . . . , x⌈αn⌉∀x⌈αn⌉+1, . . . , x⌈βn⌉∃x⌈βn⌉+1, . . . , xn ϕ(x1, x2, . . . , xn).

We note that ∃∀∃SETH is a special case of the Quantified SETH proposed by Bringmann and
Chaudhury [12] – a hypothesis about the complexity of deciding quantified q-CNF formulas
with a constant number of quantifier blocks where each block contains some constant fraction
of the variables. We do not formally define Quantified SETH in all of its generality since we
only require three quantfier alternations. In fact, the specific hardness assumption we need
is the following which is implied by ∃∀∃SETH.

▶ Hypothesis 8 (Unbalanced ∃∀∃∃OVH). For all ε > 0, no algorithm can, given sets A, B, C,

E ⊆ {0, 1}d with |A| = n, |B|, |C|, |E| = nΘ(1) and ω(log n) < d < no(1), determine if there
exists a ∈ A such that for all b ∈ B, there exist c ∈ C, e ∈ E such that

∑
i∈[d] a[i]b[i]c[i]e[i] = 0

in time O((|A||B||C||E|)1−ε).

4 NP-Hardness of Continuous Median in the Ulam Metric

In this section, we prove Theorem 1. Before we do so, we first formally define the continuous
median problem in the Ulam metric.

Continuous Ulam Median

Input: A set S ⊆ Sn of permutations and an integer d.

Question: Is there a permutation π∗ ∈ Sn such that
∑

π∈S
dU (π, π∗) ≤ d?

The main result of this section is the following. All missing proofs in this section can be
found in the full version of this paper [25].

▶ Theorem 9. Continuous Ulam Median is NP-hard.

Proof. We will reduce from the Max Cut problem, which is NP-hard [31]. Let G = (V, E)
be a Max Cut instance with V = [n]. From G, we will construct a Continuous Ulam
Median instance S ⊆ SN consisting of permutations of length N := 3n + 2. On a high level,
our construction will work as follows. We will first construct many copies of two special
permutations that will force every median of S to take on a very specific structure. All
permutations of this structure will naturally encode cuts of the vertex set V . Then for
each edge e in G, we will construct permutations that reward choosing a median that “cuts”
e. Thus, we will end up with a set of permutations whose overall median will encode the
maximum cut of G. Details follow.
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To describe our construction, it will be convenient to define the following two strings,
both of length (n + 1):

X1 := (n + 1) ◦ (n + 2) ◦ · · · ◦ (2n + 1),
X2 := (2n + 2) ◦ (2n + 3) ◦ · · · ◦ (3n + 2).

Next, we define the two special permutations πL, πR ∈ SN alluded to earlier:

πL := 1 ◦ 2 ◦ · · · ◦ (n − 1) ◦ n ◦ X1 ◦ X2,

πR := X1 ◦ n ◦ (n − 1) ◦ · · · ◦ 2 ◦ 1 ◦ X2.

We make the observation that every median of the set {πL, πR} naturally encodes a cut of
the vertex set V .

▶ Definition 10. For a nonnegative integer r ≤ n, let A = {a1, a2, . . . , ar} and B =
{b1, b2, . . . , bn−r} be sets such that A⊔B = [n], a1 < a2 < · · · < ar and b1 > b2 > · · · > bn−r.
Define πA,B ∈ SN as:

πA,B := a1 ◦ a2 ◦ · · · ◦ ar ◦ X1 ◦ b1 ◦ b2 ◦ · · · ◦ bn−r ◦ X2.

Furthermore, define S∗
N ⊆ SN as:

S∗
N := {π ∈ SN : π = πA,B for some pair of sets A, B with A ⊔ B = [n]}.

Clearly, permutations in S∗
N naturally encode cuts of [n]. We will first show that every

permutation in S∗
N has the same sum of Ulam distances to πL and πR.

▶ Lemma 11. For every π ∈ S∗
N , dU (π, πL) + dU (π, πR) = n.

Next, we show that any permutation that is not in S∗
N has strictly larger sum of Ulam

distances to πL and πR.

▶ Lemma 12. Let π /∈ S∗
N . Then dU (π, πL) + dU (π, πR) ≥ n + 1.

The final pieces in our construction are the “edge gadgets”, which we now define. For
each edge e = {i, j} ∈ E, where i < j, define the following two strings:

π1
e = j ◦ i ◦ X1 ◦ X2 ◦ 1 ◦ 2 ◦ · · · ◦ (i − 1) ◦ (i + 1) ◦ · · · ◦ (j − 1) ◦ (j + 1) ◦ · · · ◦ n,

π2
e = X1 ◦ i ◦ j ◦ X2 ◦ 1 ◦ 2 ◦ · · · ◦ (i − 1) ◦ (i + 1) ◦ · · · ◦ (j − 1) ◦ (j + 1) ◦ · · · ◦ n.

The role of the edge gadgets associated with an edge e is to reward choosing partitions of
the vertices that cut e. This is formalized in the following lemma.

▶ Lemma 13. Let π ∈ S∗
N such that π = πA,B with A ⊔ B = [n] and e ∈ E. Then we have

the following:

dU (π1
e , π) + dU (π2

e , π) =
{

2n − 2, if e is cut by the partition (A, B),
2n − 1, otherwise.

Now let SE = {π1
e : e ∈ E}∪{π2

e : e ∈ E} and Saux be the set consisting of t := |E|(2n−1)
copies of πL and πR. Our final Continuous Ulam Median instance will be the multiset

S := SE ∪ Saux.
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We now show that G has a cut of size at least k if and only if the median of S has cost at
most k′, where k′ = |E|(2n − 1) − k + tn. For the completeness case, assume there exist
sets A, B with A ⊔ B = n such that the partition (A, B) cuts at least k edges in G. Denote
by E(A, B) the set of all edges cut by the partition (A, B). Now consider the permutation
πA,B ∈ Sn and note that:∑

π∈S

dU (πA,B , π) =
∑

π∈SE

dU (πA,B , π) +
∑

π∈Saux

dU (πA,B , π)

=

(∑
e∈E

(dU (πA,B , π1
e) + dU (πA,B , π2

e))

)
+ t(dU (πA,B , πL) + dU (πA,B , πR))

=

 ∑
e∈E(A,B)

(dU (πA,B , π1
e) + dU (πA,B , π2

e))


+

 ∑
e/∈E(A,B)

(dU (πA,B , π1
e) + dU (πA,B , π2

e))

+ tn

= (|E(A, B)|(2n − 2) + (|E| − |E(A, B)|)(2n − 1)) + tn

= |E|(2n − 1) − |E(A, B)| + tn ≤ |E|(2n − 1) − k + tn.

For the soundness case, assume that there exists π∗ ∈ SN whose median cost to S is at
most k′. We can further assume that π∗ ∈ S∗

N since otherwise, every π̃ ∈ S∗
N will have a

median cost that is at most that of π∗. Indeed, assume that π∗ /∈ S∗
N and fix any π̃ ∈ S∗

N .
We have:∑

π∈S

dU (π∗, π) =
∑

π∈Saux

dU (π∗, π) +
∑

π∈SE

dU (π∗, π)

≥ t(n + 1) + 0 = tn + t

= tn + |E|(2n − 1) ≥ tn +
∑

π∈SE

dU (π̃, π)

=
∑

π∈Saux

dU (π̃, π) +
∑

π∈SE

dU (π̃, π) =
∑
π∈S

dU (π̃, π).

Thus, the assumption that π∗ ∈ S∗
N is without loss of generality. Then, we have π∗ = πA,B

for sets A, B with A ⊔ B = [n]. We claim that the partition (A, B) cuts at least k edges in G.
Indeed, since

∑
π∈Saux

dU (π∗, π) = tn, we have
∑

π∈SE
dU (π∗, π) ≤ k′−tn = |E|(2n−1)−k =

k(2n − 2) + (|E| − k)(2n − 1). Then, by Lemma 13 the partition (A, B) cuts at least k

edges. ◀

▶ Remark 14. Although our NP-hardness reduction produces multisets instead of sets, it is
not to hard to turn them into sets by appending a unique permutation to each permutation
without affecting the structure of the solution. See [25, Appendix B] for details.

5 Fine-Grained Complexity of Discrete Center in the Ulam Metric

In this section, we prove Theorem 2. We first formally define the discrete center problem in
the Ulam metric.
The main result of this section is the following. All missing proofs in this section can be
found in the full version of the paper [25].
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Discrete Ulam Center

Input: A set S ⊆ SL of permutations such that |S| = n and an integer τ .

Question: Is there a permutation π∗ ∈ S such that maxπ∈S dU (π, π∗) ≤ τ?

▶ Theorem 15. Let ε > 0 and α > 0. There is no algorithm running in time O((n2L)1−ε)
that solves the Discrete Ulam Center problem for n permutations of length L = Θ(nα),
unless ∃∀∃SETH fails.

The key step in the proof of Theorem 15 is a reduction from Orthogonal Vectors to Ulam
Distance, i.e., to construct a pair of functions that, given a set of n binary vectors of length
d each as input, outputs, independently of each other, a pair of permutations whose Ulam
distance is small if and only if there exists an orthogonal pair of vectors in the input sets.

▶ Theorem 16. There exists a pair of functions f and g such that for all sets A, B ⊆ {0, 1}d

with |A| = |B| = n, the following holds.
f(A), g(B) ∈ S(5d−1)n2 , i.e., both f and g output permutations of length (5d − 1)n2.
If there exists (a, b) ∈ A × B such that ⟨a, b⟩ = 0, then the Ulam distance between f(A)
and g(B) is at most 3n2d − 1. Otherwise, the Ulam distance between f(A) and g(B) is
exactly 3n2d.
Both f and g are computable in time O(n2d).

Equipped with Theorem 16, Theorem 15 follows in a straightforward manner. For details,
the reader is referred to [25].

5.1 The Need for Quantifiers
Our lower bound for Discrete Ulam Center is based on a plausible generalization of
the Strong Exponential Time Hypothesis, namely ∃∀∃SETH. One could ask if we could
get a similar lower bound under the weaker but more standard SETH instead. We remark
that this is impossible unless the Nondeterministic Strong Exponential Time Hypothesis
(NSETH) [15] is false. This is because Discrete Ulam Center can be solved in (co-
)nondeterministic time Õ(nL) with the following simple algorithm. We first guess the center
πC and compute d∗ := maxπ∈X dU (πC , π). Then for each permutation π, we guess the
furthest permutation π′ ∈ X and verify that dU (π, π′) ≥ d∗, thereby certifying that our guess
πC is optimal. In light of this algorithm, a O((n2L)1−Ω(1)) fine-grained lower bound based
on SETH would contradict NSETH.

6 Fine-Grained Complexity of Discrete Median in the Ulam Metric

In this section, we prove a tight fine-grained lower bound for the Discrete Ulam Median
problem conditioned on SETH. We first give a formal statement of the problem.

Discrete Ulam Median

Input: A set S ⊆ SL of permutations such that |S| = n and an integer τ .

Question: Is there a permutation π∗ ∈ S such that
∑

π∈S
dU (π, π∗) ≤ τ?
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This section is organized as follows. In Section 6.1, we start with a simple lower bound
for the bichromatic version of the problem that essentially follows from the proof for the
Discrete Ulam Center problem from before. Going from the bichromatic version to
the standard monochromatic version defined above is presented in Section 6.2. This step
is technically very involved: we show that any set of n permutations can be balanced in
such a way that the sum of Ulam distances from each permutation to all the others is
(approximately) equal (see Theorem 19).

6.1 Hardness for Bichromatic Instances
In this subsection, we give a fine-grained lower bound for the Bichromatic Discrete Ulam
Median problem. In this problem, we given two sets X, Y of permutations and an integer τ ,
and the goal is to determine if there exists x ∈ X such that

∑
y∈Y dU (x, y) ≤ τ .

▶ Theorem 17. Let ε > 0 and α > 0. There is no algorithm running in time O((n2L)1−ε)
that solves the Bichromatic Discrete Ulam Median problem for n permutations of
length L = Θ(nα), unless the SETH fails.

Proof. The proof is almost identical to the first half of the proof of Theorem 15. The only
difference is the starting problem, which is 4-OV (i.e., ∃∃∃∃OV) instead of ∃∀∃∃OV. Given
a 4-OV instance A, B, C, E ⊆ {0, 1}d where |A| = |B| = n, |C| = |E| = m = nΘ(1) and
ω(log n) < d < no(1), we retrace the proof of Theorem 15 and construct the sets X and Y .
Finally, we set τ := 3m2nd − 1. Once again, by Theorem 16, it is not hard to see that there
exists x ∈ X such that

∑
y∈Y dU (x, y) ≤ τ if and only if the starting 4-OV instance is a

YES-instance. The conclusion then follows from Unbalanced 4-OVH. ◀

6.2 Hardness for Monochromatic Instances
Finally, in this subsection, we provide a fine-grained lower bound for the Monochromatic
Discrete Ulam Median problem. To do so, we need the following technical results (which
is one of our main contributions), whose proofs can be found in the full version of the
paper [25].

▶ Lemma 18 (Embedding the Hamming Metric on Small Alphabets). Let a1, . . . , an ∈ {0, 1, 2}L.
In time O(nL) we can construct permutations π1, . . . , πn ∈ S3L such that dH(ai, aj) =
dU (πi, πj) for all i, j ∈ [n].

▶ Theorem 19 (Full Balancing). Let n and L be integers such that n is divisible by 4 and let
k1, . . . , kn ∈ [O(nL)]. Given k1, . . . , kn, in time Õ(n2 + nL) we can construct permutations
π1, . . . , πn, τ ∈ S

Õ(n+L) and an integer d with the following two properties:
Writing di =

∑
j ̸=i dU (πi, πj), it holds that |(ki + di) − d| ≤ 1 for all i ∈ [n].

It holds that dU (π1, τ) = · · · = dU (πn, τ).

Using the above theorem, we now prove the following:

▶ Theorem 20. Let ε > 0 and α ≥ 1. There is no algorithm running in time O((n2L)1−ε)
that solves the (Monochromatic) Discrete Ulam Median problem for n permutations
of length L = Θ(nα), unless the SETH fails.

Proof. We follow the same reduction as in Theorem 17, which, given an initial 4-OV instance
produces an instance (X, Y ) of Bichromatic Discrete Ulam Median on n permutations
of length L. During the reduction, we can set everything up so that L = Ω(n). Without loss
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of generality, we may also assume that n is divisible by 4 by adding some dummy vectors
in the initial 4-OV instance if necessary. Let x1, . . . , xn denote the permutations in X and
let y1, . . . , yn denote the permutations in Y . As a first preprocessing step, concatenate each
permutation xi (or yi) two times to itself (using fresh symbols when necessary) so that each
permutation becomes of length 3L and the median distance mini

∑
j dU (xi, yj) becomes a

multiple of 3.
We first make the observation that the Ulam distance between any two permutations in

X can be computed very quickly – in time that is proportional to the square root of the
length of the permutations.

▶ Observation 21. Let x, x′ ∈ X. Then dU (x, x′) can be computed in time O(L1/2+o(1)).

Proof. Since x ∈ X, there exist T = {t1, t2, . . . , tm} ⊆ {0, 1}d such that x = f(T ) ◦ f(T ) ◦
f(T ), where f is the function from Theorem 16 and each concatenation is done using
a fresh set of symbols. Similarly, there exist T ′ = {t′

1, t′
2, . . . , t′

m} ⊆ {0, 1}d such that
x′ = f(T ′) ◦ f(T ′) ◦ f(T ′), where again each concatenation is with a fresh set of symbols.

Therefore, we have dU (x, x′) = 3m
∑

i∈[m] dH(ti, t′
i). Thus, dU (x, x′) can be found by

computing the Hamming distance between two bit strings of length md. Further recall that
L = O(m2d). Therefore, md = O(L1/2+o(1)) and the conclusion follows. ◀

By Observation 21, we can compute in time O(n2L1/2+o(1)) all pairwise distances
dU (xi, xj). Let ki :=

∑
j ̸=i dU (xi, xj); clearly we have that ki ≤ 3nL. Thus, we may

apply Theorem 19 to obtain permutations π1, . . . , πn, τ ∈ SL′ , where L′ = Õ(n + L) = Õ(L),
with

|(ki +
∑
j ̸=i

dU (πi, πj)) − D| ≤ 1

for some integer D and for all i ∈ [n], and with M := dU (π1, τ) = · · · = dU (πn, τ).
Additionally, let K := 10(3L+L′). Compute some length-O(K) permutations µ, η1, . . . , ηn

such that dU (µ, ηi) = K and such that
∑

j dU (ηi, ηj) = nK. For instance, viewing
µ, η1, . . . , ηn as 0-1-strings under the Hamming distance to be embedded by Lemma 18,
take µ to be the all-0 string of length 2K, let half of the strings ηi be the string 0K1K and
let the other half of the strings ηi be the string 1K0K .

We are now ready to construct the Monochromatic Discrete Ulam Median in-
stance Z. We include into Z the following 2n permutations:8

x′
i := xi πi µ (for i ∈ [n]), and

y′
i := yi τ ηi (for i ∈ [n]).

We claim that this construction is correct in the following sense: (1) All discrete medians
of Z are strings x′

i. (2) Whenever x′
i is a discrete median in Z, then xi is a discrete median

in (X, Y ). (3) There is some discrete median xi in (X, Y ) such that x′
i is a discrete median

in Z. The proofs of all three claims easily follow from the following calculations. On the one
hand, the median distance for each x′

i is

8 As always, we use fresh symbols when necessary to ensure that the resulting strings are permutations.
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∑
z∈Z

dU (x′
i, z) =

∑
j

dU (x′
i, x′

j) +
∑

j

dU (x′
i, y′

j)

=
∑

j

(dU (xi, xj) + dU (πi, πj) + dU (µ, µ))

+
∑

j

(dU (xi, yj) + dU (πi, τ) + dU (µ, ηi))

= ki +
∑

j

dU (πi, πj) +
∑

j

dU (xi, yj) + nM + nK

=
∑

j

dU (xi, yj) + nM + nK + D ± 1.

On the other hand, the median distance for each y′
i is∑

z∈Z

dU (y′
i, z) =

∑
j

dU (y′
i, x′

j) +
∑

j

dU (y′
i, y′

j) ≥
∑

j

dU (ηi, µ) +
∑

j

dU (ηi, ηj) = 2nK.

Comparing these two terms, and recalling that
∑

j dU (xi, yj)+nM +D ≤ 3nL+nL′ +nL′ <

nK, it is clear that the median distance of any y′
i is always significantly larger that the median

distance of any x′
i proving (1). Recalling further that all median distances

∑
j dU (xi, yj)

in the original instance are multiples of 3, the ±1 term in the first computation becomes
irrelevant, completing the proofs of claims (2) and (3).

Finally we comment on the running time. The original reduction, along with the
computation of the values ki takes time Õ(nL + n2L1/2+o(1)). Running Theorem 19 takes
time Õ(n2 + nL), and the final instance Z can be implemented in negligible overhead. ◀

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 59–78. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.14.

2 Amir Abboud, MohammadHossein Bateni, Vincent Cohen-Addad, Karthik C. S., and Saeed
Seddighin. On complexity of 1-center in various metrics. In Nicole Megow and Adam D.
Smith, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA,
volume 275 of LIPIcs, pages 1:1–1:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.APPROX/RANDOM.2023.1.

3 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. Scheduling lower bounds
via AND subset sum. J. Comput. Syst. Sci., 127:29–40, 2022. doi:10.1016/J.JCSS.2022.01.
005.

4 Amir Abboud, Nick Fischer, Elazar Goldenberg, Karthik C. S., and Ron Safier. Can you solve
closest string faster than exhaustive search? In Inge Li Gørtz, Martin Farach-Colton, Simon J.
Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA
2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 3:1–3:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ESA.2023.3.

5 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008. doi:10.1145/1411509.1411513.

6 David Aldous and Persi Diaconis. Longest increasing subsequences: from patience sorting to the
Baik-Deift-Johansson theorem. Bulletin of the American Mathematical Society, 36(4):413–432,
1999.

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.1
https://doi.org/10.1016/J.JCSS.2022.01.005
https://doi.org/10.1016/J.JCSS.2022.01.005
https://doi.org/10.4230/LIPICS.ESA.2023.3
https://doi.org/10.1145/1411509.1411513


N. Fischer, E. Goldenberg, M. Habib, and Karthik C. S. 111:15

7 Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei
Zhou. More asymmetry yields faster matrix multiplication. In Yossi Azar and Debmalya
Panigrahi, editors, Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2025, New Orleans, LA, USA, January 12-15, 2025, pages 2005–2039.
SIAM, 2025. doi:10.1137/1.9781611978322.63.

8 Christian Bachmaier, Franz J. Brandenburg, Andreas Gleißner, and Andreas Hofmeier. On
the hardness of maximum rank aggregation problems. J. Discrete Algorithms, 31:2–13, 2015.
doi:10.1016/J.JDA.2014.10.002.

9 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1137/
15M1053128.

10 Therese Biedl, Franz-Josef Brandenburg, and Xiaotie Deng. On the complexity of crossings in
permutations. Discret. Math., 309(7):1813–1823, 2009. doi:10.1016/J.DISC.2007.12.088.

11 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors.
Handbook of Computational Social Choice. Cambridge University Press, 2016. doi:10.1017/
CBO9781107446984.

12 Karl Bringmann and Bhaskar Ray Chaudhury. Polyline simplification has cubic complexity. J.
Comput. Geom., 11(2):94–130, 2020. doi:10.20382/JOCG.V11I2A5.

13 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20
October, 2015, pages 79–97. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.15.

14 Boris Bukh, Karthik C. S., and Bhargav Narayanan. Applications of random algebraic
constructions to hardness of approximation. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 237–244.
IEEE, 2021. doi:10.1109/FOCS52979.2021.00032.

15 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis
and consequences for non-reducibility. In Madhu Sudan, editor, Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January
14-16, 2016, pages 261–270. ACM, 2016. doi:10.1145/2840728.2840746.

16 Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Approximating the median
under the ulam metric. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 761–775.
SIAM, 2021. doi:10.1137/1.9781611976465.48.

17 Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Clustering permutations:
New techniques with streaming applications. In Yael Tauman Kalai, editor, 14th Innovations in
Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge,
Massachusetts, USA, volume 251 of LIPIcs, pages 31:1–31:24. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ITCS.2023.31.

18 Diptarka Chakraborty, Syamantak Das, Arindam Khan, and Aditya Subramanian. Fair rank
aggregation. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022. URL: http://papers.nips.cc/paper_files/paper/
2022/hash/974309ef51ebd89034adc64a57e304f2-Abstract-Conference.html.

19 Diptarka Chakraborty, Kshitij Gajjar, and Agastya Vibhuti Jha. Approximating the center
ranking under ulam. In Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2021, December 15-17, 2021, Virtual Conference, volume 213 of LIPIcs, pages
12:1–12:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
FSTTCS.2021.12.

ESA 2025

https://doi.org/10.1137/1.9781611978322.63
https://doi.org/10.1016/J.JDA.2014.10.002
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1016/J.DISC.2007.12.088
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.20382/JOCG.V11I2A5
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS52979.2021.00032
https://doi.org/10.1145/2840728.2840746
https://doi.org/10.1137/1.9781611976465.48
https://doi.org/10.4230/LIPICS.ITCS.2023.31
http://papers.nips.cc/paper_files/paper/2022/hash/974309ef51ebd89034adc64a57e304f2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/974309ef51ebd89034adc64a57e304f2-Abstract-Conference.html
https://doi.org/10.4230/LIPICS.FSTTCS.2021.12
https://doi.org/10.4230/LIPICS.FSTTCS.2021.12


111:16 Hardness of Median and Center in the Ulam Metric

20 Graham Cormode, S. Muthukrishnan, and Süleyman Cenk Sahinalp. Permutation editing
and matching via embeddings. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen,
editors, Automata, Languages and Programming, 28th International Colloquium, ICALP 2001,
Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science,
pages 481–492. Springer, 2001. doi:10.1007/3-540-48224-5_40.

21 Roee David, Karthik C. S., and Bundit Laekhanukit. On the complexity of closest pair via polar-
pair of point-sets. SIAM J. Discret. Math., 33(1):509–527, 2019. doi:10.1137/17M1128733.

22 Colin de la Higuera and Francisco Casacuberta. Topology of strings: Median string is np-
complete. Theor. Comput. Sci., 230(1-2):39–48, 2000. doi:10.1016/S0304-3975(97)00240-5.

23 Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and Mary Ellen Zurko, editors,
Proceedings of the Tenth International World Wide Web Conference, WWW 10, Hong Kong,
China, May 1-5, 2001, pages 613–622. ACM, 2001. doi:10.1145/371920.372165.

24 Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient similarity search and classification via
rank aggregation. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors, Proceedings
of the 2003 ACM SIGMOD International Conference on Management of Data, San Diego,
California, USA, June 9-12, 2003, pages 301–312. ACM, 2003. doi:10.1145/872757.872795.

25 Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S. Hardness of median and
center in the ulam metric. CoRR, abs/2504.16437, 2025. doi:10.48550/arXiv.2504.16437.

26 Moti Frances and Ami Litman. On covering problems of codes. Theory Comput. Syst.,
30(2):113–119, 1997. doi:10.1007/S002240000044.

27 Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M. LeProust, Botond
Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance information
storage in synthesized DNA. Nat., 494(7435):77–80, 2013. doi:10.1038/NATURE11875.

28 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

29 Donna Harman. Ranking algorithms. In William B. Frakes and Ricardo A. Baeza-Yates,
editors, Information Retrieval: Data Structures & Algorithms, pages 363–392. Prentice-Hall,
1992.

30 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/JCSS.2001.1774.

31 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

32 Karthik C. S. and Pasin Manurangsi. On closest pair in euclidean metric: Monochromatic is
as hard as bichromatic. Comb., 40(4):539–573, 2020. doi:10.1007/S00493-019-4113-1.

33 John G. Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591, 1959.
34 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In David S.

Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory
of Computing, San Diego, California, USA, June 11-13, 2007, pages 95–103. ACM, 2007.
doi:10.1145/1250790.1250806.

35 Teuvo Kohonen. Median strings. Pattern Recognit. Lett., 3(5):309–313, 1985. doi:10.1016/
0167-8655(85)90061-3.

36 J. Kevin Lanctôt, Ming Li, Bin Ma, Shaojiu Wang, and Louxin Zhang. Distinguishing string
selection problems. Inf. Comput., 185(1):41–55, 2003. doi:10.1016/S0890-5401(03)00057-9.

37 Xue Li, Xinlei Wang, and Guanghua Xiao. A comparative study of rank aggregation methods
for partial and top ranked lists in genomic applications. Briefings in bioinformatics, 20(1):178–
189, 2019. doi:10.1093/BIB/BBX101.

https://doi.org/10.1007/3-540-48224-5_40
https://doi.org/10.1137/17M1128733
https://doi.org/10.1016/S0304-3975(97)00240-5
https://doi.org/10.1145/371920.372165
https://doi.org/10.1145/872757.872795
https://doi.org/10.48550/arXiv.2504.16437
https://doi.org/10.1007/S002240000044
https://doi.org/10.1038/NATURE11875
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/S00493-019-4113-1
https://doi.org/10.1145/1250790.1250806
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1016/S0890-5401(03)00057-9
https://doi.org/10.1093/BIB/BBX101


N. Fischer, E. Goldenberg, M. Habib, and Karthik C. S. 111:17

38 Yuting Liu, Tie-Yan Liu, Tao Qin, Zhiming Ma, and Hang Li. Supervised rank aggregation.
In Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy,
editors, Proceedings of the 16th International Conference on World Wide Web, WWW 2007,
Banff, Alberta, Canada, May 8-12, 2007, pages 481–490. ACM, 2007. doi:10.1145/1242572.
1242638.

39 Carlos D. Martínez-Hinarejos, Alfons Juan, and Francisco Casacuberta. Use of median
string for classification. In 15th International Conference on Pattern Recognition, ICPR’00,
Barcelona, Spain, September 3-8, 2000, pages 2903–2906. IEEE Computer Society, 2000.
doi:10.1109/ICPR.2000.906220.

40 François Nicolas and Eric Rivals. Complexities of the centre and median string problems. In
Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors, Combinatorial
Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocán, Mexico, June
25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer Science, pages 315–327.
Springer, 2003. doi:10.1007/3-540-44888-8_23.

41 Samuel E. L. Oliveira, Victor Diniz, Anísio Lacerda, Luiz H. C. Merschmann, and Gisele L.
Pappa. Is rank aggregation effective in recommender systems? an experimental analysis. ACM
Trans. Intell. Syst. Technol., 11(2):16:1–16:26, 2020. doi:10.1145/3365375.

42 Pavel A. Pevzner. Computational molecular biology - an algorithmic approach. MIT Press,
2000.

43 V. Y. Popov. Multiple genome rearrangement by swaps and by element duplications. Theor.
Comput. Sci., 385(1-3):115–126, 2007. doi:10.1016/J.TCS.2007.05.029.

44 Cyrus Rashtchian, Konstantin Makarychev, Miklós Z. Rácz, Siena Ang, Djordje Jevdjic, Sergey
Yekhanin, Luis Ceze, and Karin Strauss. Clustering billions of reads for DNA data storage. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 3360–3371, 2017. URL: https://proceedings.neurips.
cc/paper/2017/hash/ab7314887865c4265e896c6e209d1cd6-Abstract.html.

45 Craige Schensted. Longest increasing and decreasing subsequences. Canadian Journal of
mathematics, 13:179–191, 1961.

46 Anke van Zuylen and David P. Williamson. Deterministic algorithms for rank aggregation
and other ranking and clustering problems. In Christos Kaklamanis and Martin Skutella,
editors, Approximation and Online Algorithms, 5th International Workshop, WAOA 2007,
Eilat, Israel, October 11-12, 2007. Revised Papers, volume 4927 of Lecture Notes in Computer
Science, pages 260–273. Springer, 2007. doi:10.1007/978-3-540-77918-6_21.

47 Tiance Wang, John Sturm, Paul W. Cuff, and Sanjeev R. Kulkarni. Condorcet voting methods
avoid the paradoxes of voting theory. In 50th Annual Allerton Conference on Communication,
Control, and Computing, Allerton 2012, Allerton Park & Retreat Center, Monticello, IL, USA,
October 1-5, 2012, pages 201–203. IEEE, 2012. doi:10.1109/ALLERTON.2012.6483218.

48 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/J.TCS.2005.09.023.

49 H. Peyton Young. Condorcet’s theory of voting. American Political science review, 82(4):1231–
1244, 1988.

50 H. Peyton Young and Arthur Levenglick. A consistent extension of condorcet’s election
principle. SIAM Journal on applied Mathematics, 35(2):285–300, 1978.

ESA 2025

https://doi.org/10.1145/1242572.1242638
https://doi.org/10.1145/1242572.1242638
https://doi.org/10.1109/ICPR.2000.906220
https://doi.org/10.1007/3-540-44888-8_23
https://doi.org/10.1145/3365375
https://doi.org/10.1016/J.TCS.2007.05.029
https://proceedings.neurips.cc/paper/2017/hash/ab7314887865c4265e896c6e209d1cd6-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ab7314887865c4265e896c6e209d1cd6-Abstract.html
https://doi.org/10.1007/978-3-540-77918-6_21
https://doi.org/10.1109/ALLERTON.2012.6483218
https://doi.org/10.1016/J.TCS.2005.09.023

	1 Introduction
	1.1 Question 1: Polynomial-Time Algorithms for Ulam Median?
	1.2 Question 2: Fine-Grained Complexity of Discrete Ulam Center and Median?

	2 Proof Overview
	2.1 NP-Hardness for Continuous Median in the Ulam Metric
	2.2 Fine-Grained Lower Bound for Discrete Center in the Ulam Metric
	2.3 Fine-Grained Lower Bound for Discrete Median in the Ulam Metric

	3 Preliminaries
	3.1 Hardness Assumptions

	4 NP-Hardness of Continuous Median in the Ulam Metric
	5 Fine-Grained Complexity of Discrete Center in the Ulam Metric
	5.1 The Need for Quantifiers

	6 Fine-Grained Complexity of Discrete Median in the Ulam Metric
	6.1 Hardness for Bichromatic Instances
	6.2 Hardness for Monochromatic Instances


