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Abstract
Algorithms for computing fractional solutions to the quickest transshipment problem have been
significantly improved since Hoppe and Tardos first solved the problem in strongly polynomial
time. For integral solutions, however, no structural improvements on their algorithm itself have
yet been proposed. Runtime improvements are limited to general progress on submodular function
minimization (SFM), which is an integral part of Hoppe and Tardos’ algorithm. In fact, SFM
constitutes the main computational load of the algorithm, as the runtime is blown up by using it
within Megiddo’s parametric search algorithm. We replace this part of Hoppe and Tardos’ algorithm
with a more efficient routine that solves only a linear number of SFM and, in contrast to previous
techniques, exclusively uses minimum cost flow algorithms within Megiddo’s parametric search. Our
approach improves the state-of-the-art runtime from Õ(m4k15) down to Õ(m2k5 + m4k2)2, where k

is the number of terminals and m is the number of arcs.
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1 Introduction

Network flows over time, also referred to as dynamic flows, extend classical static network
flows by a time component. They provide a powerful tool for modeling real-world problems
in traffic engineering, building evacuation, and logistics. Over the last decades, a wide range
of optimization problems dealing with flows over time have been studied. The maximum flow
over time problem was studied in the seminal work of Ford and Fulkerson [3], who showed
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that the problem can be solved in polynomial time by a reduction to the static minimum
cost flow problem. The quickest flow problem asks for the minimum time-horizon T ∗ such
that a provided demand of D ∈ N units of flow can be sent from a single source s to a single
sink t. While a straightforward approach is to combine an algorithm for maximum flows
over time with a parametric search algorithm [2], recent results have shown that cost scaling
algorithms for minimum cost flows can be modified in order to efficiently compute quickest
flows [7, 10].

The quickest transshipment problem generalizes the quickest flow problem by allowing
for supply and demand at multiple sources and sinks. It is one of the most fundamental
problems in the field of network flows over time and, as recently stated by Skutella [14],
“arguably the most difficult flow over time problem that can still be solved in polynomial
time.” As in the quickest flow problem, our goal is to send the required flow from sources to
sinks while simultaneously minimizing the time horizon.

Similar to the quickest flow problem, the quickest transshipment problem can be solved
by determining the minimum time horizon via parametric search. Using this idea, Hoppe
and Tardos [4] showed that the quickest transshipment problem can be solved in strongly
polynomial time, that is, their algorithm’s runtime is polynomially bounded in the number
of nodes n, number of arcs m, and the combined number of sources and sinks k.

Recently, faster algorithms have been developed. Notably, Schlöter, Skutella, and Tran [12]
proposed an algorithm with a time complexity of Õ(m2k5 + m3k3 + m3n). Unfortunately,
these performance improvements come at the expense of fractional solutions, which may be
undesirable for applications that do not allow flow particles to be disassembled. While some
of the results speed up the search for the optimal time horizon, no improvements have yet
been proposed for finding integral flows over time. Hence, the state-of-the-art complexity for
the integral quickest transshipment problem remains unchanged at Õ(m4k15) [12].

Our Contribution
We propose improvements to Hoppe and Tardos’ algorithm by replacing two computationally
expensive subroutines in which submodular function minimization is combined with Megiddo’s
parametric search. By doing so, we reduce the state-of-the-art runtime for the integral quickest
transshipment problem from Õ(m4k15) to Õ(m2k5 + m4k2). This narrows the gap to the
fractional quickest transshipment problem, which can be solved in Õ(m2k5 + m3k3 + m3n)
time using the algorithm by Schlöter, Skutella, and Tran [12].

2 Preliminaries

Given a directed graph G = (V, A) with vertices V and arcs A, we define a dynamic network
as a triple N = (G, u, τ) with capacity ua ∈ N and transit time τa ∈ N0 for each arc a ∈ A(N ).
For a given dynamic network N , the set V (N ) denotes the network’s nodes, while A(N )
refers to the network’s arcs. Throughout this paper, we denote the number of nodes |V (N )|
by n and the number of arcs |A(N )| by m.

A flow over time is a family of functions fa : [0, T )→ R≥0, representing the in-flow rates
for each arc a ∈ A(N ) for every point in time until the end of the time horizon T ∈ N.
The fa(θ)-many flow units entering arc a at time θ ∈ [0, T ) arrive at time θ + τa at the end
node of a. While we only require fa to satisfy weak flow conservation, Hoppe and Tardos’
algorithm computes an optimal solution satisfying even the strict flow conservation, meaning
that all flow units entering a non-sink node are immediately forwarded via an outgoing arc.
We refer the reader to [13] for more details on flows over time.
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Note that, in contrast to Hoppe and Tardos [4] who defined a flow over time as a static
flow in a time-expanded network, we use a continuous-time model. However, all prerequisites
for their algorithm directly translate from the discrete- to continuous-time model as shown
in [14], meaning that it can also be implemented for the continuous-time model.

For the dynamic transshipment problem, we have a triple (N , b, T ) comprising a dynamic
network N , a balance function b : V (N )→ Z with

∑
v∈V (N ) b(v) = 0, and a time horizon T .

The balances describe how supply and demand are distributed across the network. A node
with positive balance b(v) > 0 is a source, while a node with negative balance is a sink.
Let S+ denote the set of sources, S− the set of sinks, and S = S+ ∪ S− the set of terminals.
A dynamic transshipment instance is feasible if there exists a flow over time sending the
supply from the sources to the sinks such that all demands are satisfied.

▶ Definition 1. Given a subset of terminals X ⊆ S, the maximum out-flow o(X) out of X

is the value of the maximum flow over time from the sources S+ ∩X to the sinks S− \X.

The central feasibility criterion states that the net balance b(X) :=
∑

v∈X b(v) must not
exceed the maximum out-flow o(X) for every X ⊆ S.

▶ Theorem 2 (Feasibility Criterion [4]). The dynamic transshipment instance (N , b, T ) is
feasible if and only if v(X) := o(X)− b(X) ≥ 0 for all X ⊆ S.

We call a set X ⊆ S with v(X) < 0 a violated set. In order to determine the feasibility
of a given dynamic transshipment instance, it suffices to show that no violated set exists.
However, while the value of o(X), and thus of v(X), can be computed with the Ford-Fulkerson
algorithm for maximum flows over time, avoiding the enumeration of all subsets X ⊆ S is
not obvious. Fortunately, we can use the submodularity of o : 2S → N0 and v : 2S → Z.

▶ Definition 3 (Submodular Function). A function f : 2S → R over a finite ground set S is
a submodular function if for all X, Y ⊆ S it holds that

f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ), (1)

or, equivalently, if for all s ∈ S and X ⊆ Y ⊆ S \ {s} it holds that

f(Y ∪ {s})− f(Y ) ≤ f(X ∪ {s})− f(X). (2)

Given a submodular function f over S, we call a set X∗ ∈ argminX⊆S f(X) a minimizer
of f . It is well-known that the set of minimizers of a submodular function is closed under
union and intersection. Therefore, there always exists a minimal minimizer and a maximal
minimizer, which are the intersection and union of all minimizers, respectively.

In the context of submodular function minimization (SFM), a submodular function f is
typically provided in form of an evaluation oracle with complexity O(EO). The performance
of algorithms is measured in the number of oracle calls required for finding a minimizer. The
fastest strongly polynomial algorithm for submodular function minimization is due to Lee,
Sidford and Wong [6] with a runtime of O(k3log2k · O(EO) + k4logO(1)k) for k = |S|.

For our purpose, the evaluation oracle computes a maximum out-flow o(X) out of
terminals X ⊆ S using the Ford-Fulkerson algorithm for maximum flows over time. To
this end, we introduce a super-source s+ and a super-sink s− and connect them to sources
s ∈ S+ ∩X and sinks t ∈ S− \X, respectively, via infinite-capacity, zero-transit arcs. Then
the maximum out-flow o(X) is the value of the maximum flow over time from s+ to s−. This
value can be computed using a static min-cost flow in O(m log n(m + n log n)) or Õ(m2)
time via Orlin’s algorithm [9]. We abbreviate this runtime as O(MCF(n, m)).

ESA 2025



112:4 A Faster Parametric Search for the Integral Quickest Transshipment Problem

Consequently, determining whether a dynamic transshipment instance (N , b, T ) is feasible
takes O(k3log2k ·MCF(n, m) + k4logO(1)k) or Õ(m2k3) time, where k = |S| is the number
of terminals. To improve readability, we denote the time it takes to check if an instance with
k terminals, n nodes and m arcs is feasible by O(SFM(k, n, m)).

The Algorithm by Hoppe and Tardos

The algorithm by Hoppe and Tardos [4] was the first strongly polynomial algorithm computing
quickest transshipments and remains the most efficient one for integral solutions. In the
following, we assume that the minimum time horizon T ∗ is provided and focus on the
algorithm’s segment that computes an integral dynamic transshipment. The algorithm relies
on the concept of tight orders.

▶ Definition 4 (Tight Set and Order). A set of terminals X ⊆ S is called tight if o(X) = b(X)
holds. Let ⪯ be a total order on S. We call ⪯ tight if {t′ ∈ S | t′ ⪯ t} is tight for all t ∈ S.

The general idea by Hoppe and Tardos is to construct an equivalent dynamic transshipment
instance for which a tight order exists.

▶ Theorem 5 (Reduction to Lex-Max Flows [4]). Given a dynamic transshipment in-
stance (N , b, T ) with a tight order ⪯ over the terminals S, an integral dynamic transshipment
satisfying b can be computed as a lex-max flow over time in O(k MCF(n, m)) time.

We refer to [14] for more details on lex-max flows over time. Although computing the inte-
gral flow is quite efficient, transforming (N , b, T ) into an equivalent instance (N ′, b′, T ) with a
tight order is computationally demanding. We propose improvements to this transformation
in Section 5. Before that, we briefly discuss the approach by Hoppe and Tardos.

First, one adds a new terminal š with b(š) = b(s) for every terminal s ∈ S and then
sets b(s) = 0. Note that the set of terminals S now only contains the nodes š. By adding
infinite-capacity, zero-transit arcs (š, s) for š ∈ S+ and (s, š) for š ∈ S−, one ensures that the
resulting dynamic transshipment instance is equivalent to the original instance (cf. Figure 1).

To construct an instance admitting a tight order, we iteratively shift supply / demand
from terminals š to new terminals ŝ. In this paper, we call the š drained terminals and the
ŝ filled terminals. We refer the reader to Hoppe and Tardos [4] and the description in the
extended paper [1] for a general overview of the algorithm. We focus on the two subroutines,
MaximizeAlpha and MinimizeDelta, which compute the amount of supply / demand
that is shifted from š to ŝ.

When discussing both subroutines, we assume that a feasible dynamic transshipment
instance (N , b, T ) is given, with a set of terminals S consisting of the drained terminals š,
added in the first step, and all filled terminals ŝ that were introduced in previous iterations.
Furthermore, we are given two tight sets Q ⊂ R ⊆ S and a drained terminal š ∈ R \ Q

satisfying o(Q ∪ {š}) > b(Q ∪ {š}).
Note that the instance (N , b, T ), its set of terminals S as well as Q, R, and š are the input

of our subroutines and vary between iterations. In contrast, every subroutine adds a new filled
terminal. However, since both subroutines are discussed in isolation, we simplify the notation
by referring to both filled terminals as ŝ. Throughout this paper, we define Q̂ := Q ∪ {ŝ}
and R̂ := R ∪ {ŝ}. Similar to Hoppe and Tardos, we only discuss the case in which š is a
source, since the treatment of sinks is symmetrical and is sketched in the extended paper [1].
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Figure 1 A dynamic transshipment instance (N , b, T ) after initialization with terminal š (left)
and the corresponding α-parametric instance (N α, bα, T ) for MaximizeAlpha (right).

Capacity-Parametric Instances

The first subroutine starts with tight sets Q and R and a drained source š ∈ R \ Q for
which Q ∪ {š} is not tight. Its aim is to reassign as much supply as possible to a new filled
source ŝ. In doing so, we capacitate the out-flow of ŝ such that Q̂ is tight and the transformed
instance remains feasible.

▶ Definition 6 (α-Parametric Dynamic Network). Given a dynamic network N , a drained
source š ∈ S+ and a parameter α ∈ N0, the α-parametric network Nα is constructed by
adding a new filled source ŝ and connecting it to s via an α-capacity, zero-transit arc (ŝ, s).

Let oα : 2S∪{ŝ} → N0 be the parametric counterpart of the maximum out-flow as in
Definition 1 in the parametric network Nα. Using this notation, we define α-parametric
dynamic transshipment instances analogously to Hoppe and Tardos [4]. The construction of
an α-parametric instance is illustrated in Figure 1.

▶ Definition 7 (α-Parametric Dynamic Transshipment Instance). Given a feasible dynamic
transshipment instance (N , b, T ), two tight sets of terminals Q ⊂ R ⊆ S, a drained source
š ∈ R \Q and a parameter α ∈ N0, the corresponding α-parametric dynamic transshipment
instance (Nα, bα, T ) consists of the following components.

An α-parametric dynamic network Nα as in Definition 6.
An α-parametric balance function bα with bα(t) = b(t) for all terminals t ∈ S \ {š},
bα(ŝ) = ∆α, and bα(š) = b(š)−∆α, where ∆α := oα(Q̂)− oα(Q).

We call a parameter value α ∈ N0 feasible if the corresponding α-parametric dynamic
transshipment instance (Nα, bα, T ) is feasible. Determining whether a value α is feasible is
equivalent to checking if a violated set X ⊆ S ∪ {ŝ} exists. Recall that this can be done by
minimizing the parametric submodular function vα(X) = oα(X)− bα(X). A subroutine of
the algorithm by Hoppe and Tardos finds a maximum feasible parameter value α ∈ N0.

▶ Definition 8 (MaximizeAlpha). Given an α-parametric dynamic transshipment instance,
find the maximum feasible α ∈ N0.

We denote the maximum feasible parameter value by α∗. Hoppe and Tardos concluded
that, given a feasibility oracle for (Nα, bα, T ) taking O(SFM(k, n, m)) time, the value α∗ can
be found in O(log(nUmax) · SFM(k, n, m)) time, where Umax := maxa∈A(N ) ua. In addition,
one can combine Megiddo’s parametric search [8] with the combinatorial SFM algorithm
by Orlin and Iwata [5] to achieve a strongly polynomial runtime of Õ(m4k14). We mainly
improve upon the strongly polynomial approach.

ESA 2025
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š
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Figure 2 A dynamic transshipment instance (N , b, T ) after initialization with terminal š (left)
and the corresponding δ-parametric instance (N δ, bδ, T ) for MinimizeDelta (right).

Transit-Parametric Instances
The second subroutine is closely related to MaximizeAlpha. Again, we start with tight
sets Q and R and a drained source š ∈ R \Q for which Q ∪ {š} is not tight. The aim is to
reassign as much supply as possible to a new filled source ŝ. In doing so, we set the transit
time for the flow out of ŝ such that Q̂ is tight and the transformed instance remains feasible.

▶ Definition 9 (δ-Parametric Dynamic Network). Given a dynamic network N , a drained
source š ∈ S+ and a parameter δ ∈ N0, the δ-parametric network N δ is constructed by
adding a terminal ŝ and connecting it to s via a unit-capacity, δ-transit arc (ŝ, s).

Analogously to oα, we denote the maximum out-flow of a subset of terminals X ⊂ S ∪{ŝ}
by oδ(X). Next, we combine this parametric variant of our dynamic network with a parametric
balance function to form a δ-parametric dynamic transshipment instance (cf. Figure 2).

▶ Definition 10 (δ-Parametric Dynamic Transshipment Instance). Given a feasible dynamic
transshipment instance (N , b, T ), two tight sets of terminals Q ⊂ R ⊆ S, a drained source
š ∈ R\Q and a parameter δ ∈ N0, a δ-parametric dynamic transshipment instance (N δ, bδ, T )
consists of the following components.

A δ-parametric dynamic network N δ as given in Definition 9.
A δ-parametric balance function bδ with bδ(t) = b(t) for all terminals t ∈ S \ {š},
bδ(ŝ) = ∆δ, and bδ(š) = b(š)−∆δ, where ∆δ := oδ(Q̂)− oδ(Q).

Again, a parameter value δ ∈ N0 is feasible if the corresponding parametric dynamic
transshipment instance (N δ, bδ, T ) is feasible. This can be checked by minimizing the
parametric submodular function vδ(X) = oδ(X) − bδ(X). Again, we call a set X ⊆ S

with vδ(X) < 0 violated. This yields the following parametric search problem.

▶ Definition 11 (MinimizeDelta). Given a δ-parametric dynamic transshipment instance,
find the minimum feasible δ ∈ N0.

Again, δ∗ denotes the minimum feasible parameter value. Hoppe and Tardos showed
that the optimal value δ∗ can be found in O(log(T ) · SFM(k, n, m)) time, or in strongly
polynomial time of Õ(m4k14) using the parametric search of Megiddo [8].

The algorithm by Hoppe and Tardos performs a total of k iterations, each of which
calls both subroutines MaximizeAlpha and MinimizeDelta once. Therefore, the current
version of the algorithm by Hoppe and Tardos takes O (k · log(nTUmax) · SFM(k, n, m)) time
if both subroutines are implemented with a binary search, while Megiddo’s parametric search
results in a runtime of Õ(m4k15). In the following sections, we improve the runtime of each
iteration by introducing better parametric search algorithms for both subroutines.
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3 Restricting the Domains of Violated Sets

Both problems MaximizeAlpha and MinimizeDelta introduced in the previous section
rely on minimizing submodular functions to determine whether a parameter value is feasible.
Even with state-of-the-art algorithms for SFM, this remains a computationally expensive
subroutine that scales poorly with the number of terminals in the ground set.

We show that, if our parametric instance is infeasible, there always exists a violated
set X ⊆ S ∪ {ŝ} satisfying Q̂ ⊂ X ⊂ R̂, which allows us to restrict the ground sets of our
parametric submodular functions vα and vδ. This provides a practical improvement and
establishes the foundation for the following sections.

▶ Lemma 12. Let X ⊆ S ∪ {ŝ} be a violated set for an α-parametric dynamic transshipment
instance with respect to a drained source š. Then ŝ ∈ X and š ̸∈ X. The same applies to
δ-parametric dynamic transshipment instances.

Proof. We only prove the statement for α-parametric instances, as the reasoning is analogous
for δ-parametric instances. Let X ⊆ S ∪ {ŝ, š} be an arbitrary subset of terminals. Given
that we assume the transshipment instance to be feasible, we have v(X) ≥ 0. Remember that
the maximum out-flow oα(X) is the value of a maximum flow over time from a super-source
s+ to a super-sink s−, where infinite-capacity, zero-transit arcs are used to connect s+ to
every source in S+ ∩X and to connect every sink in S− \X to s−. Using this definition, we
derive the following observations regarding o(X):
O1 If X contains neither ŝ nor š, then maximum out-flow oα(X) coincides with the out-flow

o(X) in the original instance.
O2 If X contains š, then all flow traveling from s+ to s can bypass the α-capacity arc (ŝ, s)

and move along the infinite-capacity arcs (s+, š) and (š, s) instead. As a consequence,
we have oα(X) = o(X).

We refer the reader back to Figure 1 for a visual intuition. Combining these observations
with the parametric balances bα(ŝ) = ∆α and bα(š) = b(š) −∆α, we prove Lemma 12 by
considering the following three complementary cases.

(I) If ŝ ∈ X and š ∈ X, then it follows that

bα(X) = bα(X\{ŝ, š})+bα(ŝ)+bα(š) Def. of bα

= bα(X\{ŝ, š})+b(š) = b(X\{ŝ}) = b(X).

Together with Observation 2 we obtain vα(X) = v(X) ≥ 0, meaning that X cannot
be a violated set.

(II) If ŝ ̸∈ X and š ∈ X, then it follows that bα(X) = b(X)−∆α < b(X), which, together
with Observation 2, implies that X cannot be a violated set since vα(X) ≥ v(X) ≥ 0.

(III) If ŝ ̸∈ X and š ̸∈ X, then bα(X) = b(X) and therefore X cannot be a violated set as it
follows from Observation 1 that vα(X) = oα(X)− bα(X) = o(X)− b(X) = v(X) ≥ 0.

Hence, X can only be a violated set of (Nα, bα, T ) if ŝ ∈ X and š ̸∈ X. ◀

Hoppe and Tardos [4] proved the property from Lemma 12 for the special case of the
infeasible parameter value δ∗ − 1 and used it to show that there exists a set X satisfying
Q̂ ⊂ X ⊂ R̂ which is violated for δ∗ − 1 and tight for δ∗. We employ similar arguments to
show that this also holds for all infeasible α, δ ∈ N0.

▶ Lemma 13. Let α ∈ N0 be an infeasible parameter value for MaximizeAlpha. Then
there is a minimizer X of vα with Q̂ ⊂ X ⊂ R̂. Analogously, let δ ∈ N0 be an infeasible
parameter value for MinimizeDelta. Then there is a minimizer X of vδ with Q̂ ⊂ X ⊂ R̂.

ESA 2025
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Proof. We only prove the statement for MaximizeAlpha, as the proof for MinimizeDelta
is analogous. Let X∗ be an arbitrary minimizer of vα with vα(X) < 0. It follows from
Lemma 12 that ŝ ∈ X∗ and š ̸∈ X∗. Next, we show that the set X := Q ∪ (X∗ ∩ R̂) is also a
minimizer of vα. For this, we analyze the tightness of the sets Q, Q̂, and R̂:

Q was chosen to be a tight set for (N , b, T ). This also does not change in the parametric
instance as ŝ, š ̸∈ Q and hence vα(Q) = v(Q) = 0.
Q̂ is tight, since bα(Q̂) = bα(Q) + ∆α Q tight= oα(Q) + oα(Q̂)− oα(Q) = oα(Q̂).
R̂ is tight because R is tight and ŝ, š ∈ R̂ directly imply oα(R̂) = o(R) = b(R) = bα(R̂).

Having shown that Q and R̂ are tight sets, we study how tight sets and minimizers of vα

behave under union and intersection. For this purpose, let Y ∈ {Q, R̂}. It follows from
submodularity of vα that

vα(X∗ ∪ Y ) + vα(X∗ ∩ Y ) ≤ vα(X∗) + vα(Y ) = vα(X∗) < 0. (3)

Note that both summands on the left hand side are non-positive, since otherwise one of
them would be smaller than the minimum value vα(X∗). Hence, either both summands are
negative, or one is equal to zero while the other equals the minimum value of vα. In other
words, exactly one of the following properties must hold:
(1) Both X∗ ∪ Y and X∗ ∩ Y are violated sets of vα.
(2) Either X∗ ∪ Y or X∗ ∩ Y is a minimizer, while the other set is tight.
We apply this case distinction to the cases where Y = Q and Y = R̂:

Let Y = R̂, then Lemma 12 states that a violated set cannot contain š, implying that
vα(X∗ ∪ R̂) ≥ 0 since š ∈ R̂. This means that X∗ ∩ R̂ is a minimizer of vα.
Consider Y = Q and the minimizer X∗ ∩ R̂. We rule out Q ∩ (X∗ ∩ R̂) = Q ∩X∗ as a
violated set since ŝ ̸∈ Q ∩X∗. Therefore, Q ∪ (X∗ ∩ R̂) is a minimizer.

Finally, observe that the minimizer X = Q ∪ (X∗ ∩ R̂) not only satisfies Q̂ ⊆ X ⊆ R̂

because ŝ ∈ X∗ ∩ R̂ but also Q̂ ⊂ X ⊂ R̂ since Q̂ and R̂ are tight. ◀

Lemma 13 allows us to determine feasibility of a parameter value by minimizing the
restricted functions ṽα : 2R̂\Q̂ → Z and ṽδ : 2R̂\Q̂ → Z with ṽα(X) := vα(Q̂ ∪ X) and
ṽδ(X) := vδ(Q̂ ∪X). For future use, we define the functions õα, õδ, b̃α, and b̃δ analogously.

This brings us to the main result in this section.

▶ Corollary 14. A parameter value α ∈ N0 is feasible for MaximizeAlpha if and only if
ṽα(X) ≥ 0 for every X ⊆ R̂ \ Q̂. Analogously, a parameter value δ ∈ N0 is feasible for
MinimizeDelta if and only if ṽδ(X) ≥ 0 for every X ⊆ R̂ \ Q̂.

The obvious advantage of this result is the reduction of the domain of the submodular
functions of interest to R̂ \ Q̂. Although we have R = S and Q = ∅ at the beginning, the
difference becomes smaller over the course of Hoppe and Tardos’ algorithm, until both sets
are eventually equal. This yields a significant practical speed-up in later iterations of the
algorithm. Moreover, the reduction brings further practical and theoretical advantages, which
we discuss in the following section.

4 Strong Map Sequences

We concluded the previous section with a useful restriction of our submodular functions vα

and vδ to sets X with Q̂ ⊂ X ⊂ R̂, while maintaining the guarantee that our parametric
instance is feasible if and only if the minimizer of our restricted function is not violated.
Building on this, we show that both restricted functions satisfy the strong map property (also
known as decreasing differences property).
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▶ Definition 15 (Strong Map Property [11]). Let f1, f2 : 2E → R be two submodular functions
defined over the same finite ground set E. We write f1 ⊐ f2, or f2 ⊏ f1, if X ⊆ Y ⊆ E

implies

f1(Y )− f1(X) ≤ f2(Y )− f2(X).

The relation is called a strong map. Submodular functions f1, f2, . . . , fk form a strong map
sequence if f1 ⊐ f2 ⊐ · · · ⊐ fk.

Recall that the minimizers of submodular functions are closed under union and intersection,
meaning that there exists a unique minimal and maximal minimizer for every submodular
function. A result by Topkis [15] relates the minimal and maximal minimizers of functions
that form strong map sequences.

▶ Lemma 16 (Minimizers for Strong Map Sequences [11]). Let f1, f2 : 2E → R be two
submodular functions over the same ground set E with f1 ⊏ f2. Denote by Xmin

1 and
Xmax

1 the minimal and maximal minimizer of f1, respectively, while Xmin
2 and Xmax

2 are the
minimal and maximal minimizer of f2, respectively. Then Xmin

1 ⊆ Xmin
2 and Xmax

1 ⊆ Xmax
2 .

Lemma 16 already gives an intuition for how the strong map property can be used for
the parametric search problems MaximizeAlpha and MinimizeDelta: each choice of α

or δ gives us a new submodular function, and, if these functions form strong map sequences,
the strong map property implies that we can only encounter at most |S| distinct minimal
minimizers for a monotonic sequence of parameter values.

Unfortunately, neither vα nor vδ satisfy the strong map property as is2. However, this
changes when considering the restricted functions ṽα and ṽδ defined in Section 3. Recall
that these functions are defined over the ground set R̂ \ Q̂, and that their definition ensures
that ŝ is implicitly added, while š is excluded.

▶ Lemma 17. Let 0 ≤ α ≤ α′. Then ṽα ⊏ ṽα′ .

Proof. Our argument is structured as follows: We first prove that õα ⊏ õα+1 holds for
all α ∈ N0 and then use this result to prove that ṽα also forms a strong map sequence
with ṽα ⊏ ṽα+1. The general claim ṽα ⊏ ṽα′ then immediately follows by transitivity of ≤.

sŝ

s

š

. . .

. . .

. . .

1/0

α/0
∞/0

ua/τa

Figure 3 The auxiliary network N for MaximizeAlpha.

Let α ∈ N0 be arbitrary but fixed. We construct an auxiliary network N with nodes
V (N) := V (Nα)∪{s} and arcs A(N) := A(Nα)∪{a := (s, s)}, where s is the source that was
replaced by š in the first phase of the algorithm. For the new arc, we set ua = 1 and τa = 0.
An example network for a given source ŝ is depicted in Figure 3.

2 In nontrivial cases, the nested sets ∅, {ŝ}, and {ŝ, š} satisfy oα+1({ŝ}) − oα+1(∅) > oα({ŝ}) − oα(∅)
and oα+1({ŝ, š}) − oα+1({ŝ}) < oα({ŝ, š}) − oα({ŝ}). The same holds for oδ. Consequently, our proofs
for Lemma 17 and Lemma 18 fail for the general functions vα and vδ.
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Let o(X) be the max out-flow function for network N restricted to the domain R̂\ Q̂∪{s}.
Notice how adding s to a set of terminals X ⊆ R̂\Q̂∪{s} with ŝ ∈ X and š ̸∈ X is equivalent
to increasing α by one, as flow cannot bypass the arcs (s, s) and (ŝ, s) through (š, s). Formally,
it holds for every set X with X ⊆ R̂ \ Q̂ that
1. o(X) = õα(X), and
2. o(X ∪ {s}) = õα+1(X).
Clearly, the function o is also submodular. Hence, given two sets X ⊆ Y ⊂ R̂ \ Q̂, the
definition of submodularity in Equation (2) can be restated as

o(Y ∪ {s})− o(X ∪ {s}) ≤ o(Y )− o(X). (4)

Combining Equation (4) with all our previous observations, it follows that the sets X and Y

satisfy

õα+1(Y )− õα+1(X) Obs. 2= o(Y ∪ {s})− o(X ∪ {s})
Eq. (4)
≤ o(Y )− o(X)

Obs. 1= õα(Y )− õα(X).

Hence, we have shown that õα ⊏ õα+1 holds for every parameter value α. Finally, recall
our definition of ṽα as ṽα(X) = õα(X)− b̃α(X) for any X ⊆ R̂ \ Q̂. Due to the strong map
property of õα, we get for all X ⊆ Y ⊆ R̂ \ Q̂ that

ṽα+1(Y )− ṽα(Y ) = õα+1(Y )− õα(Y ) + b̃α(Y )− b̃α+1(Y )
= õα+1(Y )− õα(Y ) + ∆α −∆α+1

≤ õα+1(X)− õα(X) + ∆α −∆α+1

= õα+1(X)− õα(X) + b̃α(X)− b̃α+1(X)
= ṽα+1(X)− ṽα(X),

therefore proving that ṽα ⊏ ṽα+1. Thus, by transitivity of ≤, our claim ṽα ⊏ ṽα′ holds. ◀

Next, we utilize a similar argument to prove that ṽδ forms a strong map sequence. Here,
we rely on our specific definition of the δ-parametric network N δ.

▶ Lemma 18. Let 0 ≤ δ′ ≤ δ. Then ṽδ ⊏ ṽδ′ .

Proof. The general approach is identical to the proof of Theorem 17. That is, we show that
õδ forms a strong map sequence with õδ−1 ⊐ õδ for δ ≥ 1. Afterwards, we transfer this result
to ṽδ−1 and ṽδ. The general claim then directly follows from the transitivity of ≤.

s

sŝ

š

. . .

. . .

. . .

1/1
1/δ − 1

∞/0

ua/τa

Figure 4 The auxiliary network N for MinimizeDelta.
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Again, let δ ∈ N be arbitrary but fixed. We construct an auxiliary network N with
nodes V (N) := V (N δ) ∪ {s} and arcs A(N) := (A(N δ) \ {(ŝ, s)}) ∪ {a := (s, s), â := (ŝ, s)},
s is the source that was replaced by š in the first step of the algorithm. Additionally, let
uâ = ua = 1, τa = δ − 1 and τâ = 1. An example for a source ŝ is given in Figure 4.

Again, o(X) denotes the maximum out-flow function for this network restricted to the
domain R̂ \ Q̂∪{s}. In this construction, we have replaced the arc (ŝ, s) by a path consisting
of arcs (ŝ, s) and (s, s) with a combined transit time of δ. As a consequence, the maximum
out-flow o(X) remains unchanged for sets X ⊆ R̂ \ Q̂. If s ∈ X and ŝ ∈ X, on the other
hand, both sources compete for access to the arc (s, s). Then, the flow out of X is maximized
by sending all flow from s. Formally, it holds for every set X ⊆ R̂ \ Q̂ that
1. o(X) = õδ(X), and
2. o(X ∪ {s}) = õδ−1(X)
These observations plus the second definition of submodularity from Equation (2) imply for
all sets X ⊆ Y ⊆ R̂ \ Q̂ that

õδ−1(Y )− õδ−1(X) Obs. 2= o(Y ∪ {s})− o(X ∪ {s})
Eq. (2)
≤ o(Y )− o(X)

Obs. 1= õδ(Y )− õδ(X).

Therefore, the function õδ forms a strong map sequence with õδ−1 ⊐ õδ. Finally, by the same
arguments as in the proof of Lemma 17, the parametric function ṽδ forms a strong map
sequence with ṽδ ⊐ ṽδ′ as claimed. ◀

In the following section, we use the strong map property and the resulting nested sequences
of minimizers to construct new parametric search algorithms for vα and vδ .

5 An Improved Parametric Search

In this section, we adapt Schlöter’s [11] parametric search algorithm for the single-source or
single-sink quickest transshipment problem to MaximizeAlpha and MinimizeDelta. We
start by showing that ṽα and ṽδ are monotonic in their respective parameters.

▶ Lemma 19. Given a set of terminals X ⊆ R̂ \ Q̂, both maps α 7→ ṽα(X) and δ 7→ ṽδ(X)
are monotonic in the parameters α and δ, respectively. That is, we have ṽα(X) ≥ ṽα+1(X)
and ṽδ(X) ≤ ṽδ+1(X) for all α, δ ∈ N0.

Proof. Let α, δ ∈ N0 be arbitrary but fixed parameter values. We set Z := X ∪ Q̂ and
decompose ṽα(X) (and, analogously, ṽδ(X)) as

ṽα(X) = õα(X)− b̃α(X) (5)
= õα(X)−

(
b(Z \ {ŝ}) + ∆α

)
Def. 7= õα(X)−

(
b(Z \ {ŝ}) + oα(Q̂)− oα(Q)

)
= õα(X)−

(
b(Z \ {ŝ}) + õα(∅)− oα(Q)

)
= õα(X)− õα(∅) +

(
oα(Q)− b(Z \ {ŝ})

)
.

Observe that we can treat the term oα(Q) − b(Z \ {ŝ}) as constant: since ŝ, š ̸∈ Q, the
out-flow oα(Q) is identical for all α ∈ N0 (or δ ∈ N0). Similarly, the value of b(Z \ {ŝ}) does
not depend on α or δ.
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We now prove monotonicity using this simplification. For MaximizeAlpha, the mono-
tonicity ṽα(X) ≥ ṽα+1(X) holds if and only if õα(X)− õα(∅) ≥ õα+1(X)− õα+1(∅) is true,
which follows directly from the strong map property õα ⊏ õα+1 shown in the proof of
Lemma 17. Similarly, replacing α with δ in Equation (5), it follows from õδ ⊐ õδ+1 that
õδ(X)− õδ(∅) ≥ õδ+1(X)− õδ+1(∅) and thus ṽδ(X) ≤ ṽδ+1(X) holds. ◀

The monotonicity and strong map property of ṽα and ṽδ allow us to introduce new para-
metric search algorithms for MaximizeAlpha (cf. Algorithm 1) and MinimizeDelta (cf. Al-
gorithm 2). In their core, they follow a rather simple approach similar to algorithms by
Schlöter, Skutella, and Tran [12, 11]: we start with an infeasible parameter value α1 or δ1 and
a corresponding minimizer X1 of ṽα1 or ṽδ1 . Possible initial values are α1 := αmax = nUmax
and δ1 := 0 [4]. Next, we alternate between two steps jump and check until the current
minimizer Xi is no longer violated. In the jump step, we compute the largest parameter
value αi+1 or the smallest parameter value δi+1 such that the previous minimizer Xi is no
longer violated. Note that this step is, in essence, an integral parametric min-cost flow
problem with one parametrized arc. Afterwards, the check step finds a minimizer Xi+1 for
the new value αi+1 and δi+1.

In the check step, we use the results of the previous sections in order to restrict the search
for minimizers to Xi+1 ⊂ Xi. We will show in the following that this restriction is actually
feasible. Note that the restriction not only reduces the search space in each iteration to |Xi|
terminals, but also limits MaximizeAlpha and MinimizeDelta to at most |S| iterations,
since the length of the chain X1 ⊃ X2 ⊃ . . . is limited by |R̂ \ Q̂| ≤ |S|.

▶ Theorem 20. Algorithm 1 computes the maximum feasible α∗ ∈ N0 for MaximizeAlpha;
Algorithm 2 computes the minimum feasible δ∗ ∈ N0 for MinimizeDelta. Both algorithms
terminate after at most |S| iterations of the while loop.

Proof. We first show by induction that if αi is infeasible, then there exists a minimizer Xi

of ṽαi with Xi ⊂ Xi−1, where X0 = R̂ \ Q̂.
By definition, X1 is a minimizer of ṽα1 . Let αi and αi+1 be infeasible, and assume that Xi

is a minimizer of ṽαi . We have αi+1 < αi, since otherwise ṽαi+1(Xi)
Lem. 19
≤ ṽαi(Xi) < 0

contradicts the choice of αi+1 as feasible for Xi. Together with Lemma 17, this implies
the relation ṽαi ⊐ ṽαi+1 . Therefore, we have Xmin

i+1 ⊆ Xmin
i ⊆ Xi due to Lemma 16, with

Xmin
j being the minimal minimizer of ṽαj for j ∈ {i, i + 1}. Since αi+1 is infeasible with

ṽαi+1(Xmin
i+1 ) < 0, and, by definition, ṽαi+1(Xi) ≥ 0, we even have Xmin

i+1 ⊂ Xi. Hence, Xmin
i+1

is a feasible choice for Xi+1 in Algorithm 1.

Algorithm 1 Parametric Search for MaximizeAlpha.

Data: Tight sets Q̂ ⊂ R̂ ⊆ S ∪ {ŝ}, submodular function ṽα : 2R̂\Q̂ → Z, infeasible
upper bound αmax

Result: Maximum feasible α ∈ N0
1 α1 ← αmax, X1 ← Minimizer of ṽα1

2 i← 1
3 while ṽαi(Xi) < 0 do
4 αi+1 ← Maximum α ≥ 0 with ṽα(Xi) ≥ 0 ▷ Jump step
5 Xi+1 ← Minimizer X ⊂ Xi of ṽαi+1 ▷ Check step
6 i← i + 1
7 end
8 return αi
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Algorithm 2 Parametric Search for MinimizeDelta.

Data: Tight sets Q̂ ⊂ R̂ ⊆ S ∪ {ŝ}, submodular function ṽδ : 2R̂\Q̂ → Z
Result: Minimum feasible δ ∈ N

1 δ1 ← 0, X1 ← Minimizer of ṽδ1

2 i← 1
3 while ṽδi(Xi) < 0 do
4 δi+1 ← Minimum δ ≥ 0 with ṽδ(Xi) ≥ 0 ▷ Jump step
5 Xi+1 ← Minimizer X ⊂ Xi of ṽδi+1 ▷ Check step
6 i← i + 1
7 end
8 return δi

Recall that Algorithm 1 terminates after at most |S| iterations. Let αi∗ be the value
returned by the algorithm, and let Xi∗ be the minimizer generated in the final iteration i∗.
If αi∗ were not feasible, then Xi∗ would be a minimizer with vαi∗ (Xi∗) < 0. However, since
the algorithm terminates, it follows that αi∗ is feasible.

To see that αi∗ is maximum, recall that α1 = αmax is infeasible, and thus the jump step
is executed at least once. By construction in the jump, the value αi∗ is maximum such
that the previous minimizer Xi∗−1 is no longer violated. Hence, for any α > αi∗ , we have
vα(Xi∗−1) < 0, so α is infeasible. Therefore, αi∗ is the optimal solution to MaximizeAlpha.

The proof for Algorithm 2 is analogous. ◀

The remainder of the section is devoted to the runtime analysis. Our main improvement
is due to the upper bound k = |S| on the number of iterations the algorithms execute.

▶ Theorem 21. Algorithm 1 can be implemented to solve MaximizeAlpha in strongly
polynomial time of O(k[SFM(k, n, m) + MCF(n, m)2]) and in weakly polynomial time of
O(k[SFM(k, n, m) + log(nUmax) ·MCF(n, m)]).

Proof. The runtime is determined by the two main steps performed in each iteration:
Jump can be implemented using Megiddo’s parametric search [8] or binary search over
the range [0, nUmax] in conjunction with a minimum cost flow algorithm. The former
results in a runtime of O(MCF(n, m)2), the latter in O(log(nUmax) ·MCF(n, m)).
Check minimizes the submodular function vα on the restricted domain. In the worst case,
this takes O(SFM(k, n, m)) time.

Together with the upper bound of k on the iterations of the while loop, the final runtime is
O(k[SFM(k, n, m) + MCF(n, m)2]) or O(k[SFM(k, n, m) + log(nUmax) ·MCF(n, m)]). ◀

We obtain an analogous runtime for Algorithm 2.

▶ Theorem 22. Algorithm 2 can be implemented to solve MinimizeDelta in strongly
polynomial time of O(k[SFM(k, n, m) + MCF(n, m)2]) and in weakly polynomial time of
O(k[SFM(k, n, m) + log(T ) ·MCF(n, m)]).

Proof. The proof is analogous to that of Theorem 21. The binary search for the minimum
feasible value of δ is done on the range [0, T ], which yields the different logarithmic term. ◀

We conclude this section with an improved runtime for computing integral dynamic
transshipments compared to the state-of-the-art runtime of Õ(m4k15).
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▶ Theorem 23. Given a dynamic transshipment instance (N , b, T ), an integral quickest
transshipment can be computed in Õ(m2k5 + m4k2) time.

Proof. Hoppe and Tardos [4] already proved that their algorithm for dynamic transshipment
terminates after O(k) iterations, each of which consists of one call of Algorithms 1 and 2.
Given the strongly polynomial runtime of O

(
k(SFM(k, n, m) + MCF(n, m)2)

)
for both

subroutines, we obtain a worst-case complexity of O(k2(SFM(k, n, m) + MCF(n, m)2)).
Suppressing the polylogarithmic terms, we have a time complexity of Õ(m2k3) for

O(SFM(k, n, m)) and of Õ(m2) for O(MCF(n, m)). Overall, we obtain an improved runtime
of Õ(m2k5 + m4k3) time for the integral dynamic transshipment problem.

In order to compute a quickest transshipment, we have to determine the minimum time
horizon first. This can be done by the method by Schlöter, Skutella, and Tran [12] in
Õ(m2k5 + m3k3 + m3n) time. This runtime is dominated by that of our algorithm for
computing the corresponding transshipment: since we assume that the network is connected,
we have m ≥ n ≥ k, and thus Õ(m3n) ⊂ Õ(m4) and Õ(m3k3) ⊂ Õ(m4k2). Overall, the
time required to compute a quickest integral transshipment is

Õ
(
(m2k5 + m3k3 + m3n) + (m2k5 + m4k2)

)
= Õ(m2k5 + m4k2 + m4) = Õ(m2k5 + m4k2),

which shows Theorem 23. ◀

6 Conclusion and Outlook

In this paper, we propose an improved version of the algorithm by Hoppe and Tardos for the
integral quickest transshipment problem. Our approach is based on more efficient parametric
search algorithms using the strong map property and yields a substantial reduction of the
runtime from Õ(m4k15) to Õ(m2k5 + m4k2).

Our findings open room for ensuing research. In particular, the restrictions of submodular
functions to suitable domains introduced in this paper may provide even better bounds on the
runtime for our algorithms. Furthermore, we see potential improvements to the jump steps in
Algorithms 1 and 2 that are currently based on Megiddo’s parametric search and contribute
a factor of Õ(m4) to the runtime. This factor constitutes the remaining gap in runtime
between the integral and the fractional quickest transshipment problem. In order to close
this gap, future studies may focus on adapting parametric minimum cost flow algorithms
akin to the algorithms by Lin and Jaillet [7] and Saho and Shigeno [10].
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