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—— Abstract

We give a simple algorithm for the dynamic approximate All-Pairs Shortest Paths (APSP) problem.
Given a graph G = (V, E, l) with polynomially bounded edge lengths, our data structure processes |E|
edge insertions and deletions in total time \E\Ho(l) and provides query access to |E |°(1)—approximate
distances in time O(1) per query.

We produce a data structure that mimics Thorup-Zwick distance oracles [17], but is dynamic and
deterministic. Our algorithm selects a small number of pivot vertices. Then, for every other vertex,
it reduces distance computation to maintaining distances to a small neighborhood around that
vertex and to the nearest pivot. We maintain distances between pivots efficiently by representing
them in a smaller graph and recursing. We maintain these smaller graphs by (a) reducing vertex
count using the dynamic distance-preserving core graphs of Kyng-Meierhans-Probst Gutenberg [16]
in a black-box manner and (b) reducing edge-count using a dynamic spanner akin to Chen-Kyng-
Liu-Meierhans-Probst Gutenberg [6]. Our dynamic spanner internally uses an APSP data structure.
Choosing a large enough size reduction factor in the first step allows us to simultaneously bootstrap
a spanner and a dynamic APSP data structure. Notably, our approach does not need expander
graphs, an otherwise ubiquitous tool in derandomization.
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1 Introduction

The dynamic All-Pairs Shortest Paths (APSP) problem asks to maintain query access to
pairwise distances for a dynamic graph G = (V, E). Recently, the setting of maintaining
crude distance estimates at low computational cost has received significant attention [15, 5,
11, 9, 8, 2, 12, 13] culminating in deterministic algorithms with sub-polynomial update and
query time for graphs receiving both edge insertions and deletions [10, 16, 14]. In contrast to
other deterministic approaches, [16] allows efficient implicit access to approximate shortest
paths via a small collection of dynamic trees. This is crucial for applications to decremental
single source shortest paths and incremental minimum cost flows [6].
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All existing dynamic approximate APSP data structures that work against adaptive
adversaries are highly complex [10, 16, 14].

The algorithm [16] establishes the following Thorup-Zwick-distance oracle-inspired frame-
work: To maintain approximate APSP in the graph, we select a small (dynamic) set of
pivot vertices. For every other vertex, we can reduce distance computation to (a) computing
distances in a small neighborhood around the vertex and (b) computing the distance to the
nearest pivot vertex. Then, [16] maintains a smaller graph where distances between the
pivot vertices can be computed, and recursively maintains these with the same approach.
To maintain this smaller graph, [16] designs a dynamic vertex sparsification procedure and
performs edge sparsification using the dynamic spanner of [7, 4]. This spanner internally
relies on complex data structures for decremental APSP on expanders [9] and uses expander
embedding techniques in a non-trivial way. We will use the overall dynamic Thorup-Zwick
approach of [16], and we will maintain a small graph for computing distances between pivots
in a simpler way.

A key ingredient for us is a new, more powerful fully-dynamic spanner from [6]. This
spanner requires both dynamic APSP and expander embedding techniques to maintain. In
this work, we observe that this spanner can be simplified so that it only requires dynamic
APSP to maintain. Thus, given a dynamic APSP data structure, we can maintain a fully-
dynamic spanner. But, [16] also showed that given a fully-dynamic spanner, we can obtain
dynamic APSP. This presents a striking opportunity: we can simultaneously bootstrap
a dynamic APSP data structure and spanner. This gives our main result, a dynamic
approximate APSP data structure.

» Theorem 1. For a graph G = (V, E, 1) with polynomially bounded integral edge lengths
le ]REO undergoing up to m edge updates (insertions and deletions), there is an algorithm

with total update time m'+°(M) that maintains query access to approzimate distances (/ﬂéjc(u, v)
such that

dist(u, v) < dist(u,v) < m°® - dist(u, v).

The query time is O(1).

While we present our theorem in the setting of processing m updates in time m!+°() to
simplify the presentation, we believe that this algorithm can be extended directly to the
worst-case update time setting of [16]. Furthermore, the witness paths can be implicitly
represented as forest paths as in [16], which enables the cheap flow maintenance via dynamic
tree data structures necessary for applications.

1.1 Roadmap

We first define the necessary preliminaries in Section 2. Then, we present a simplified version
of our algorithm as a warm-up in Section 3. Afterwards, we present our bootstrapped
algorithm based on the KMG-vertex sparsifier [16] and a dynamic spanner in Section 4.

2 Preliminaries

2.1 Graph Notation

We use G = (V, E, 1) to refer to a graph G with vertex set V', edge set F and length vector
le Rgl. We will restrict our attention to polynomially bounded integral lengths, and will
denote their upper bound by L.
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2.2 Paths, Distances and Balls

For two vertices u, v, we let ﬂi , denote the shortest path from u to v in G (lowest sum of
edge lengths). Furthermore, we let distg(u,v) be the length of said path.

We let Bg(u,v) et {w : dist(u,w) < dist(u,v)} and Bg(u,v) et {w : dist(u,w) <
dist(u,v)}. Then, for a set A C V we let Bg(u, A) f Uaea Ba(u,a) and Bg(u, A) f
U Ba(u, a) respectively.

Finally, we define the neighborhood of a vertex u as N (u) f {v: (u,v) € E}U{u} and of
aset ACV as N(A) o Uaea N (a). For a vertex v, we let Eg(v) &f {(v,u) :ue N()} C
E(G).

When it is clear from the context, we sometimes omit the subscript/superscript G.

» Definition 2 (Spanner). Given a graph G = (V, E,l), we say that a subgraph H C G is an
a-spanner of G if for any u,v € V we have distg(u,v) < distg(u,v) < a - distg(u,v).

2.3 Dynamic Graphs

Vertex splits are a crucial operation in our algorithms. They arise since we contract graph
components and represent them as vertices. When such a component needs to be divided,
this naturally corresponds to a vertex split defined as follows.

» Definition 3 (Vertex Split). For a graph G = (V, E, 1), a vertex split takes a vertex v € V
and a set U C N (v), and replaces the vertex v with two vertices v',v" such that N'(v') =U
and N(v") = N(v)\ U.

» Definition 4 (Master Nodes). Initially, each v € V(G)) is associated with a unique master
node master(v) = {v}. Then, at any time t, if some v € V(GW) is split into v' and v", we
set master(v’) = master(v”) = {v} U master(v).

We can also define our notion of fully-dynamic graphs, which includes vertex splits as an
operation.

» Definition 5 (Fully-Dynamic Graph). A fully-dynamic graph is a graph undergoing edge
insertions/deletions, vertex splits and isolated vertex insertions.

Whenever we disallow vertex splits, we refer to edge-dynamic graphs instead.

» Definition 6 (Edge-Dynamic Graph). An edge-dynamic graph is a graph undergoing edge
insertions/deletions and isolated vertexr insertions.

2.4 Dynamic Objects and Recourse

For a dynamic object (F'(t))¢cr) defined on an index set [T] = {1,...,T}, we refer to

’

() 4 (F(t))ie[r as the full sequence up to time T’. We can then apply functions
g(-) that operate on sequences to F(T/), e.g. g(F(T/)). This is for example very useful
to keep track of how an object changes over time. By providing a difference function
A(F(t), F(t — 1)) for a dynamic object F, one may define the recourse as the sum of
differences || F(")||, e ST A(F(i+ 1), F(i)).

For functions f that operate on a static object G instead of on a sequence, we overload
the notation by saying f (G(t)) is simply f applied to the last object in the sequence, that is,
f(GW) = f(G(t)). For example, deg,,,.(G*) is defined to be the maximum degree of the
graph G at time t.

113:3
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Whenever we make a statements about a dynamic object F without making reference
to a specific time ¢, we implicitly mean that the statement holds at all times. For example,
|HI, < |G|, formally means for all ¢ : |H®||, < [|G®]|,. Meanwhile, |[E(H)| < |E(G)|
formally means for all ¢ : |[E(H®)| < |E(G®)]|, and by our convention for applying functions
of static objects to a dynamic object, we have that |E(H®)| < |E(G®)| means |E(H(t))| <
EGWO)]

The time scales we use are fine-grained as we will consider multiple dynamic objects that
change more frequently than the input graph G does. We will choose an index set for the
dynamic sequence which is fine-grained enough to capture changes to all the objects relevant
to a given proof.

A dynamic object H might not change in a time span in which another object F' changes
multiple times. In this case, to have sequences that are indexed by the same set, we simply
pad the sequence of H with the same object, so that both dynamic objects would share the
same index set 7.

For fully-dynamic graphs G, we let A(G(t), G(t—1)) denote the number of edge insertions,
edge deletions, vertex splits and isolated vertex insertions that happened between G(t) and
G(t — 1). Note that generally, vertex splits cannot be implemented in constant time, and
thus recourse bounds are not directly relevant to bounding running time. Nevertheless, this
convention for measuring recourse is useful, as it is tailored precisely to the type of recourse
bounds we prove.

We can store anything that occurs at various times throughout our algorithm in a dynamic
object and define what recourse means for it. For example, we will repeatedly call a procedure
REDUCEDECGREE(X). If at time ¢ we call the function with input X (¢), we might want
to track the quantity >, ., | X (¢')[, so we simply let Rx be the dynamic object such that
Rx(t) =3, ,|X(t")|. By defining the difference A(Rx(t), Rx(t—1)) = Rx(t)— Rx(t—1),
we can find out how much the value changed during two points in time. A statement such
as [|H|s <G5 + |[Rx||s then means that at any time ¢ (suitably fine-grained), the total
amount of changes that H underwent are not more than the amount of G, plus some extra
number of updates determined by the calls to REDUCEDEGREE(-) made up to that time.

By viewing the run-time of dynamic algorithm as evolving over a sequence of updates
and thinking of it as a dynamic object, we also give meaning to the statement, say, that an
algorithm runs in time n + v ||G||,.

2.5 Dynamic APSP

We introduce APSP data structures for edge-dynamic graphs.

» Definition 7 (Dynamic APSP). For an edge-dynamic graph G = (V, E, 1), a y-approximate
B-query APSP data structure supports the following operations.
ADDEDGE(u,v) / REMOVEEDGE(u,v): Add/Remove edge (u,v) from/to G.
Dist(u,v): Returns in time B a distance estimate ai\s/t(u,v) such that at all times

distg(u,v) < dist(u, v) < v - diste(u, v).

PATH(u,v): Returns a wv-path P in G of length |P| < DisT(u,v) in time 8 - |P|.
Given an APSP data structure, we let APSP(|E|,A,u) denote the total run time of ini-
tialization and u calls to ADDEDGE and REMOVEEDGE on an edge-dynamic graph with
deg, .. (G) < A and |E| initial edges.

We sometimes also call v the (worst-case) stretch of the data structure.
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2.6 Degree Reduction Through Binary Search Trees

Given an edge-dynamic graph G, we can maintain in time O(1) - |G||, another edge-dynamic
graph G’ in which we replace vertices by Binary Search Trees with one leaf node per edge of
the vertex in the original graph. It is immediate that if we can find shortest paths in G’, we
can translate them into shortest paths in G. The advantage of this technique is that while
[E(G")] = O(|E(G)]), V(G| = O(IE(G)]) and [|G"]|, = O([|G]],), we have degy,, (G") < 3.

3 Warm up: Low-Recourse Thorup-Zwick’05

Before we describe our algorithm, we turn our attention to a much more modest goal that
still showcases the main ideas used in our full construction: maintaining a relaxed version
of Thorup-Zwick pivots [17] in a fully-dynamic graph with low recourse. This allows us to
do away with the careful controlling of maximum degrees in intermediate graphs, which is
the root cause of most of the technicalities when making the construction computationally
efficient. Furthermore, we do not need to bootstrap our data structure in this setting.

3.1 Pivot Hierarchies

We first introduce pivot hierarchies.

» Definition 8 (Pivot Hierarchy). For a graph G = (V, E, 1), we let a pivot hierarchy of depth
A and cluster size v be
a collection of vertex sets C = Ag, ..., Apx with A; CV for alli, Ag =V and |Apr] =1,
pivot maps p; : Ay — Aiqq for all 0 <i < A and
cluster maps C; : A; — 24 for all 0 < i < A such that for all u € A; |C;(u)| < v and
u € Ci(u).

Pivot maps should be thought of as mapping vertices to smaller and smaller sets of
representatives, and the cluster maps should be thought of as small neighborhoods of pivots
for which (approximate) distances are stored. In classical Thorup-Zwick, the cluster C;(v)
consists of all vertices in A; that are closer to v than p;(v). In our algorithms, these balls
become somewhat distorted due to sparsification. We then define the approximate distances
maintained by the hierarchy.

— (A e
» Definition 9 (Distances). For a pivot hierarchy of depth A, we define dist( )(u,v) def for

u,v € Ap and

(1) det | dista(u, v) if ue Ci(v)
dist’ “(u,v) = ——(i+1) )
distg (u, p;(u)) + dist (pi(w), p;i(v)) + distg(p;(v),v) otherwise

— —(©
We let dist(u,v) def dist( )(u, v) for u,v € V and call a pivot hierarchy « distance preserving

if dist(u,v) < a - distg(u, v) for all u,v € V.

We note that efficient distance queries can be implemented as long as the distances within
clusters and the distances to pivots are efficiently maintained. In this warm up, we only
focus on maintaining the collection C with low recourse. However, our full algorithm will
maintain this additional information.

Formally, the goal of this warm-up section is to prove the following theorem.
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» Theorem 10. For an edge-dynamic graph G = (V, E) with n = |V| vertices, a v/log n-depth
n°W -cluster size pivot hierarchy can be maintained in polynomial time per update with total
recourse ||C||s < n°M -||G||5 on the pivot sets.

We emphasize that this theorem is not particularly useful, as it comes without meaningful
guarantees on the update time, and one could just use Dijkstras algorithm to obtain exact
distances in this regime. Even the recourse guarantee is also of limited use, as we do not
control the recourse of the pivot maps or the cluster maps of the pivot hierarchy. Nevertheless,
our algorithm for proving this theorem is instructive and closely mirrors our final dynamic
APSP algorithm.

The illustrative algorithm for maintaining pivot hierarchies repeatedly decreases the
vertex count via low-recourse core graphs, and the edge count via a low-recourse spanner.
We present these two pieces separately.

3.2 Low-Recourse KMG-vertex sparsifier

In this section, we state a theorem about maintaining a KMG-vertex sparsifier with low
recourse [16]. Although their algorithm only works for edge-dynamic graphs, it can be
extended to fully-dynamic graphs rather straightforwardly in the recourse setting. Recall that
we count a vertex split as a single operation when defining the recourse of a fully-dynamic
graph.

» Definition 11 (Vertex Sparsifier). Given G = (V,E,1) and A C V, we call a graph G with
vertex set V(é) D A a B-approximate vertex sparsifier of G with respect to the set A if for
every two vertices u,v € V(G) we have distg(u,v) < distz(u,v) and if u,v € A we further
have dist(u,v) < B - distg(u, v).

» Remark 12. We always associate a map from V(G) to V with a vertex sparsifier, where
multiple vertices in V(é) might map to the same vertex in V. This clarifies what we mean
with diste(u,v) < distz(u,v) and distz(u,v) < 8- diste(u, v) in Definition 11. When we
apply multiple vertex sparsifiers to a graph G, we refer to recursively applying this map as

mapping vertices back to G.

» Theorem 13 (See Theorem 3.1 in [16]). Consider a size reduction parameter k > 1 and a
fully-dynamic graph G with lengths in [1,L]. Then, there is a deterministic algorithm that
explicitly maintains,

1. a monotonically growing pivot set A C V(G) and pivot function p : V — A, such that
|A| < n/k+2||G|, and |C(u)| < O(k) for allu € V where C(u) = {v € V : dista(u, v) <
dista (u, p(w))}.

2. a fully-dynamic graph CN}’, such that G is a yvs-approximate vertex sparsifier of G with
respect to A. We have that the initial graph GO has at most m - Yvs edges and yys-m/k
vertices, where yyg = 6(1) The following properties hold:

a. G has lengths 15 in [1,nL], and
b. given any edge e = (u,v) € G, there exists a wv-path P in G with lg(P) < l5(e).

e. @], <vvs- UGl +m) and || Dy

< yvs-||Gll, where Dg is the dynamic object
5

containing the decremental operations (deletions and vertex splits) on G.

The algorithm runs in polynomial time.



R. Kyng, S. Meierhans, and G. Zocklein

3.3 Low-Recourse Dynamic Spanner

In this section, we describe a simple algorithm for maintaining a spanner H of a fully-dynamic
graph G with remarkably low recourse. The construction is based on the greedy spanner
of [1]. The low-recourse property of a variant of this algorithm has been observed in [3].

» Theorem 14 (Dynamic Spanner). There ezists a data structure that given a fully-dynamic
graph G = (V, E, 1) with polynomially bounded edge lengths, maintains a fully-dynamic
O(log |V|)-spanner H of G such that |E(H)| < yps- |V (H)| and ]\, < ps- (| Dall, +|V])
for yps € O(1), where D¢ is a dynamic object that contains all decremental updates to G
(deletions and vertex splits).

H can be maintained in polynomial time per update.

Proof. We assume unit lengths via maintaining separate spanners for length ranges [2¢,211)
and returning the direct product of the appropriately scaled spanners. Furthermore, we let
|V(O)| = n and re-start after n decremental updates.

Then, there can be at most n vertex splits and therefore G contains at most 2n vertices
before re-starting. We initialize H(®) to the greedy spanner of G(*), i.e. we consider the
edges (u,v) € BE(G() in arbitrary order and add them to E(H ) if dist ;0 (u,v) > 2log 2n.
This ensure that the graph H(® is a O(log [V|)-spanner of G(9), and |E(®| < O(n) directly
follows from the fact that a girth 2log|V| + 1 graph contains at most O(|V]) edges.*

Whenever G is updated, we perform the corresponding operation on H in case of edge
deletions and vertex splits such that H C G. Then, we iteratively check for every edge
(u,v) € E(G)\ E(H) if distg(u,v) > 2log2n and insert the edges for which the condition is
true. In particular, for the insertion of an edge (u,v), this corresponds to inserting the edge
whenever distg (u,v) > 2log 2n.

Clearly H is an O(logn) spanner of G throughout because every edge is stretched by at
most 2log2n. Furthermore, vertex splits and edge deletions only increase the girth of H,
and therefore H contains at most O(n) edges throughout. Finally, the total recourse bound
|H||l, < O(n) follows until the data structure is re-started because an edge only leaves the
graph H when it is deleted.

To conclude, it suffices to observe that the total number of restarts is bounded by
IDc|ls /n and there are O(logn) data structures in total, so ypg = O(logn). <

3.4 Low-Recourse Pivot Hierarchies via Iterated Sparsification

Given the low-recourse vertex and edge sparsification routines described above, we are ready

to give the algorithm for Theorem 10.

Our algorithm consists of layers 0,...,A — 1 where A = y/logn.? Each layer consists of
two graphs G; and H;, where H; C GG;. We let Go = G. Then we obtain H; from G; and G;
from H;_q as follows:

1. G; is the output of the vertex sparsifier from Theorem 13 on the graph H; ; for size
reduction parameter k def 9Viegn por simplicity, we assume that k is an integer without
loss of generality.

2. H, is the dynamic spanner from Theorem 14 on the graph G;.

! In [1] this folklore bound was already used to obtain a spanner.

2 We remark that our full algorithm uses a much more drastic size reduction to enable bootstrapping,
which results in only O(log®logn) layers for some small constant € < 1. This is necessary because the
stretch is powered every time we recurse.

113:7
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Whenever an update to G occurs, we pass the updates up the hierarchy until we reach the
first layer j that has recieved more than 7})S7{,S2A_j since it was initialized. Then, we
re-initialize all the layers j,..., A via the steps described above. Notice in particular that
the recourse of each layer is much smaller than the size reduction, leading to manageable
recourse over all.

We let the sets A; be the vertex sets of the graphs G; mapped back to G, and we let Ay
contain an arbitrary vertex r in Ap_; (also mapped back to G). Furthermore, we let the
pivot map p;(-) be the pivot function maintained by the data structure from Theorem 13
at layer ¢ + 1 for : = 0,...,A — 1, and the cluster map C; is the cluster map from vertex
sparsifier data structure at layer ¢ + 1. Finally, we define the cluster map Cj (v) def Ap and
pivot map pa (v) for every vertex v € Ay.

Proof of Theorem 10. We first bound the sizes and recourse of the sets Ag,..., Ax by
induction. The recourse of the set Ag and the recourse of Gy is |G|, by definition, and the
recourse of Hy is at most yps (|G|, + [V]).

We then observe that recourse caused by non-decremental updates on G; can be ignored
because they do not show up in the recourse of the subsequent spanner H; by Theorem 14.
The recourse of the decremental updates to G; is yys - [|[H;—1||s. The recourse of H; is
IH;lls < vps(|Da; s + |V (Gi)|). Therefore, t updates to G cause at most O(t - 74,475 )
vertices to be added to GG;. Since we re-start every layer i after 'yiDS’yi,S2A’i updates have
arrived and the total amount of updates that reach layer 7 is 7%/5’77‘3 <M, the total recourse of the
layer is O(2% -yl v5") and the total recourse of all the sets is at most O(k-’y%ﬁ%ffél ‘n-A)
by Theorem 13 and Theorem 14.

Then, we show that the final set Ay_; is of small enough size for bounding the size of the
clusters Cy 1 (). By the recourse bound above, there are at most n°Yn/kA~"*+1 updates to
a level before it gets rebuilt. Therefore, the size of level A — 1 is at most n°(") at all times.
The bound on the other cluster sizes directly follows from Theorem 13 and the description of
our algorithm.

It remains to show that the distance estimates dist are good. To do so, we first notice
that for every u,v € A; we have distg(u,v) < distg, (u, v) < n°M) diste(u, v) since each layer
only loses 6(1) in distance approximation by Theorem 13 and Theorem 14 and there are
A = /logn levels. Then, the distance approximation follows by induction since the length
of the detour to the pivots can lose at most a poly-logarithmic factor per level because the
pivot is closer in the graph G; and distg (u, v) < distg, (u,v) < n°W - distg (u, v).? <

4 The Algorithm

We solve the APSP problem on a large graph G using a pivot hierarchy obtained by iterated
vertex and edge sparsification, just like in the warm up in Section 3. Again, we will select a
set of pivots for the first level of a pivot hierarchy, and perform edge and vertex sparsification
to represent the distances between the pivots using a smaller dynamic graph, and then recurse
on this graph. The main difference to the previous section is that (a) we want to bootstrap
dynamic APSP along the way and (b) we want to develop and use a computationally efficient
spanner. This spanner creates a few technical complications. In particular, to make the
spanner efficient, we need all our graphs to have somewhat bounded maximum degree.

3 The bounds on the detour are analogous to [17] after taking into account the extra distortion of the
distances in GG; as compared to the original graph G. This extra distortion causes the sub-polynomial
overhead.
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4.1 Vertex sparsification

First, our algorithm reduces the APSP problem to a graph G with significantly fewer
vertices using the KMG-vertex sparsifier (See Section 4.3). When compared to the low-
recourse version presented in Section 3, our vertex sparsifier has an additional routine called
REDUCEDEGREE(-) which forces some of the vertices in the vertex sparsifier to be split and
therefore have smaller degree. We further elaborate this point in the section below.

The vertex sparsification algorithm is presented in Section 4.3.

4.2 Edge sparsification

Although G is supported on a much smaller vertex set, it may still contain most of the edges
from G. To achieve a proper size reduction, we additionally employ edge sparsification on
top of the vertex sparsifier G.

There are two key differences between the warm up and the efficient spanner algorithm.

To quickly check for detours in the spanner, the efficient algorithm recursively uses APSP
datastructures on small instances (See Section 4.4).

To efficiently maintain the dynamic spanners, it is crucial that the degree of the graph
remains bounded. Although we can assume that the degree of the initial graph G is
bounded by a constant, repeatedly sparsifying the graph could seriously increase its
maximum degree. Fortunately, our dynamic spanner guarantees that the average degree
after edge sparsification is low. However, the same cannot be achieved for the maximum
degree, which becomes apparent when trying to sparsify a star graph.

To remedy this issue, we use that the underlying graph has bounded degree and call
the REDUCEDEGREE(+) routine of the KMG-vertex sparsifier to reduce the degree of
high-degree vertices in the spanner. This operation can lead to changes in G and its
spanner, but we show that repeatedly splitting vertices with high degree in the spanner
quickly converges because the progress of splits is larger than the recourse they cause to
the spanner.

The edge sparsification algorithm is presented in Section 4.4.

4.3 Pivots and Vertex Sparsification

We use the KMG-vertex sparsifier algorithm [16], which is based on dynamic core graphs,
which in turn are based on static low-stretch spanning trees.

We first introduce certified pivots. These are mapping vertices that get sparsified away
to vertices in G , and certify the distance for vertices that are closer to each other than to
their respective pivots.

» Definition 15 (Certified Pivot). Consider a graph G = (V, E) with edge lengths | and a set
A CV. We say that a function p: V — A is a pivot function for A, if for allv € V, we
have that p(v) is the nearest vertex in A (ties broken arbitrarily but consistently).

Additionally, we say that p is a certified pivot function if for all vertices v € V', for all
u € Bg(v,p(v)) U{p(v)} we have computed the exact (u,v) shortest paths and distances.

To motivate Definition 15, we show that pivots can be used to approximate the distance
between sparsified vertices whenever their exact distance isn’t stored already.

> Claim 16. Counsider a graph G = (V, E, ) with pivot set A and corresponding pivot function
p. Then for any u,v € V, if v € Bg(u, p(u)), we have distg(p(u), p(v)) < 4 - distg(u, v).
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Proof. By v & Bg(u,p(u)) we directly obtain distg(u,p(u)) < diste(u,v) and since p(v)
is (one of) the neareast vertices to v in A, we have distg(v,p(v)) < distg(v,p(u)) <
diste (v, u) + distg (u, p(u)) < 2distg(u, v) as well. By using the triangle inequality we get
distg(p(u), p(v)) < distg(p(u),u) + distg(u, v) + distg (v, p(v)) < 4distg(u, v). <

Next, we state a version of the KMG-vertex sparsifier [16], which is based on dynamic core
graphs. We refer the reader to the full version of our article for a more detailed discussion of
their vertex sparsifier.

The following theorem should be thought of as an efficient analog to Theorem 13 with the
extra operation REDUCEDEGREE(-). As mentioned at the start of this section, this routine
comes into play when the spanner produces a high-degree vertex down the line.

» Theorem 17 (KMG-vertex sparsifier, See Theorem 3.1 in [16] ). Consider a size reduction
parameter k > 1 and an edge-dynamic graph G, with deg,,,.(G) < A and lengths in [1, L].
Then, there is a deterministic algorithm that explicitly maintains,

1. a monotonically growing pivot set A C V(G) and certified pivot function p: A — V, such
that |A| <n/k+2||G|,.

2. a fully-dynamic graph é, such that G is a yys-approximate vertex sparsifier of G with
respect to A. We have that GO has at most m - Yvs edges and yys - m/k vertices, where
vys = O(1). The following properties hold:

a. deg,..(G) < A-~yg-k, and G has lengths l5 in [1,nL], and

b. given any edge e = (u,v) € (~¥, the algorithm can return a wv-path P in G with
la(P) < lx(e) in time O(|P).

c. a procedure REDUCEDEGREE(E', z), where E' C {e € E(G) : v € €} for some v €
V(é), and z is a positive integer. It updates the graph G, performing at most yygs-|E'|/z
vertex splits, such that afterwards any vertez v € V(G) with v € master(v') is adjacent
to at most z - A edges in E'. This procedure runs in time at most yys -k - |E'|.

d. If Ry is the dynamic object containing the total number of vertex splits performed by
REDUCEDEGREE, then H@H% <Avvs- ||G|s + |Rv]s-

The algorithm runs in time m - yysAk* + |G|, - yvsk*A.

4.4 Edge Sparsification

We state our main dynamic spanner theorem whose proof is deferred to the full version of
our article. The theorem assumes access to a Yopzapgp-approximate, O(1)-query APSP data
structure (See Definition 7.)

» Theorem 18 (Dynamic Spanner). There exists a data structure that given a fully-dynamic
graph G with unit lengths and |V(GO)| = n, |G|, < n and a parameter 1 < K <
O(logl/3 n), maintains a Jully-dynamic fle(K)—spanner S of G such that |E(S)| < yrs-n
and ||S||l, < ves - |G|, where v = O(Yapeapsp) and ygs = O(nYX). It runs in time
ndegmaX(G(O))’yEs’le(Kz) + APSP(vgsn,3,vEsn).

» Remark 19. We can directly extend Theorem 18 to graphs with edge lengths in [1, L] by
bucketing edges in the intervals [2¢,2+1) for i = 1,...,0(log L).

Note also that as at all times H is a subgraph of G, it does not undergo more vertex
splits and isolated vertex insertions than G, i.e., all extra updates to maintain H are edge
insertions/deletions.
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4.5 Bootstrapping via Edge and Vertex Sparsification

We are given an edge-dynamic graph G on initially n vertices and m edges, that at all times
has maximum degree at most A. Applying Theorem 17 to G reduces the problem to finding
short paths in G, a graph of 5(m/ k) vertices. Although the number of vertices significantly
decreases, the graph still contains up to 6(m) edges, preventing efficient recursion. To
address this, we apply Theorem 18 on G to produce a graph H on v -m/k vertices and edges,
where  crucially depends only on the parameter K of Theorem 18.

Note that the APSP data structure that Theorem 18 requires also only needs to run on a
graph of at most v - m/k vertices and edges, so by choosing a large enough size reduction
factor k, the problem size reduces by a factor of «y/k, while the approximation factor increases
from Yopzaprsp<m to 5(7aprpsp<7,L)O(K).4 Balancing both parameters k& and K allows us
to bootstrap an APSP data structure with the guarantees from Theorem 1.

While H is sparse, it might still have high maximum degree, preventing efficient recursion.
The sparsity still implies, however, that there cannot be too many high degree vertices.
Hence, we carefully perform a few vertex splits in G by leveraging the REDUCEDEGREE(+)
functionality from Theorem 17 to enforce that H also has small maximum degree.

Algorithm 1 INITDYNAMICAPSP().

1 Maintain G from Theorem 17.
2 Let H be the graph maintained by applying Theorem 18 to graph G with parameter
K.
/* Here %YgegConstr 1S a constant fixed later. x/
3 while v € V(H) with degy (v) > 8Ygegconstr - A do
4 ‘ REDUCEDEGREE(E (V), YdegConstr)-
5 Initialize and maintain a recursive dynamic APSP data structure on H.

The recursive APSP instance that is running on H expects an edge-dynamic graph, while
the spanner from Theorem 18 is fully-dynamic. To circumvent this issue, we simulate the
vertex splits by suitable edge insertions/removals and vertex insertions. As the maximum
degree of H gets controlled during the while loops, this simulation can lead to at most an
extra factor of O(Ygegconstr - A) in the number of updates.

Algorithm 2 MAINTAINDYNAMICAPSP(G, t).

1 Update G and H accordingly.

2 while Jv € V(H) with deg (v) > 8Vdegconstr - A do

3 REDUCEDEGREE(E (V), YdegConstr)-

4 Update H accordingly.

5 Forward all updates made to H to the recursive dynamic APSP datastructure that
runs on H by simulating the vertex splits accordingly

When queried for the distance between two vertices v and v, our algorithm checks if the
certified pivot function stores the distance, and if this is not the case it recursively asks the
smaller instance DYNAMICAPSP y for the distance between p(u) and p(v) in H.

4 We only have a valid size reduction if also v - m/k < n. We will see that this is indeed the case as we
can assume that initially m = O(n).
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Algorithm 3 DistT(u,v).
1ifve Bg(u,A) then
2 ‘ return dist(u, v)
3 else
4 ‘ return dist(u, p(u)) + DYNAMICAPSP . D1ST(p(u), p(v)) + dist(p(v),v)

4.6 Analysis

We first show that the while loops in Algorithm 1 and Algorithm 2 terminate sufficiently
fast. This is the most crucial claim for the analysis.

> Claim 20. If Ry is the dynamic object counting the total number of vertex splits performed
by REDUCEDEGREE() in Algorithm 1 and Algorithm 2, then ||Ry ||, < 2yvs(m/k + ||G],).
In particular, the while loops always terminate and immediately thereafter H has maximum
degree at most 8Viegconstr - A. The total runtime of all calls to REDUCEDECGREE() is

6vY5ves(m + k(IG],).

Proof. For tracking progress achieved by vertex splits, we introduce the following potential
function

def
O(H) = Z max{degy(v) — A - YaegConstr; 0}
veV (H)

Let t be the time before we enter the while loop in Algorithm 1. Then by Theorem 17
we have that |[V(G®)| < yygm/k and thus by Theorem 18, we have that |E(H®)| <
yvsvEsm/k.

By the Handshake-Lemma, ®(H®) < 2|E(H®)| < 2-vgg-yvs-m/k. Note that whenever
an update is made to H, the potential can increase by at most 2. This is as edge deletions
and vertex splits can only decrease it, and an edge insertion can increase it by at most 2.

Let Rg be the dynamic object counting the number of edges that were passed to
REDUCEDEGREE, and note that if REDUCEDEGREE(E’, Ygegconstr) is called, we have |E’| >
8YdegConstr - A by the while loop condition.

By the properties of REDUCEDEGREE() in Theorem 17, we have that ||Ry|, <
Yvs/VdegConstr - || RElls, and that none of the vertices v’ that result from the splits to
v will be adjacent to more than Ygegoonstr - A of the edges in E’. So if we just forwarded
these splits to H, we would have degy (v') < Ygegconstr - A, and the potential decreases by
at least 7/8 - |E'|.

However, forwarding these vertex splits to H, Theorem 18 will cause further updates
to H to maintain the spanner. Fortunately by Item 2d of Theorem 17 we know that

VL, < vms-||G||, <vesvvs-IGI. +7s- IRy | Let ¥ = s yvs. Putting everything
together we show that the potential decreases as follows.

7 7
O(H) < 2ym/k — 2 |Rell, + 2[|H|l, < 2ym/k = S IREls +27[IGll, + 2ves | Byl

7 2YEsYvs
<2ym/k — 3 IRl +2v(Gls + ————— [ Rell; -

degConstr

Thus, choosing Yaegconstr = [4vvsvrs], we get ®(H) < 2ym/k — % IRe|ls + 27 |G|, As
0 < ®(H), this directly implies that ||Rg|, < 6vgsyvs(m/k + ||G|,). Remembering that
IRy, < % RE||, then yields the bound on ||Ry||,.

gConstr

Since the total runtime is given by vyygs - k - || Rg||,, this bound follows directly. <
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We then show a bound on the total runtime of our dynamic APSP algorithm in terms of
costs for smaller instances, setting us up for our final recursion.

To do so, assume the recursive APSP instance that is running on H and used in Theorem 18
is & YapzAPSP<m-approximate, 6(1)—query APSP. Let v, = 6(’7aprPSP<m) be the stretch
parameter from Theorem 18.

» Theorem 21. The total combined runtz’me of Algorithm 1 and Algorithm 2 over a sequence

of up to m/k; updates is m - YRrc - ’y 2)Ak4 + APSP(yrem/k,Yro A, YyrRe Am/k) for some
YRC = O( 3/K)

Proof. We first show that for at most m/k updates, initializing and maintaining H is efficient.
Note that by the previous claim, we can bound the total costs incurred in the while loops by
672 svEs(m + k||G|l,) < 1292,4vpsm. The total costs of initializing and maintaining G are
2m - yysAk* by Theorem 17. Finally, by the previous lemma |G| < vvs||Glls + | By |5 <
3vs IG5 + 2yvsm/k < 4yysm/k, so that we can further bound the runtime of Theorem 18

by V%SWESnAk:'yIO(KQ) + APSP(ygs-n,3,vgs-n). Note that here we also crucially used that
by Theorem 17, Apmax(G) < kyysA.

It remains to consider the APSP data structure that we have to run on H. First note that
by the gurantees of Theorem 17 and Theorem 18, initially |E(H)| < yysygsm/k. Secondly,
note that as ||G|| < 4yysm/k, we in particular have ||H||, < 4yggyvsm/k. However, as H is
vertex dynamic, we also have to simulate all the vertex splits occuring in H, which can lead
to up to 8vgegconstrA extra updates per split. Hence the total amount of updates that the
APSP data structure receives are up to O(v%,¢7%sm/k). By the while loop conditions, we do
know that the maximum degree of the graph is always bounded by 8vgeqconstrA. Therefore,
the total runtime bound follows. <

We show that the stretch does not increase too much as the size of the graph increases.

> Claim 22. Algorithm 1 provides a worst case stretch of 6(’YapmAPSP<m)O(K).
Proof. If v € Bg(u, A) there is nothing to show as then by Theorem 17 we have already
pre-computed the exact distance between u and v.

But if v € Bg(u, A), then by Claim 16, we have that distg(p(u),p(v)) <4 - dlStG(U v).
As p(u),p(v) € A, we have disty (p(u),p(v)) < 7" - distz(p(u),p(v) < 7”7 qvs -

diste (p(u),p(v)) = O(1) - (O(1) - Yaprapsp) ") - dista (p(u )’p(v)) O(Yapwapsp)?U) -
dista (p(u), p(v))- <

» Remark 23. We can directly extend this to receive a procedure PATH(u, v) that provides a
u-v path P with |P| < O(Yapeapspem)C - dista(u, v) and runs in time O(|P|). This is
because Theorem 17 also explicitly stores exact shortest paths between vertices v and their
pivots p(u).

In order to prove Theorem 1, we need to carefully assemble the previous insights, which

p
p

we defer to the full version of our article.
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