
A Deterministic Partition Tree and Applications
Haitao Wang #

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Abstract
In this paper, we present a deterministic variant of Chan’s randomized partition tree [Discret.
Comput. Geom., 2012]. This result leads to numerous applications. In particular, for d-dimensional
simplex range counting (for any constant d ≥ 2), we construct a data structure using O(n) space and
O(n1+ϵ) preprocessing time, such that each query can be answered in o(n1−1/d) time (specifically,
O(n1−1/d/ logΩ(1) n) time), thereby breaking an Ω(n1−1/d) lower bound known for the semigroup
setting. Notably, our approach does not rely on any bit-packing techniques. We also obtain
deterministic improvements for several other classical problems, including simplex range stabbing
counting and reporting, segment intersection detection, counting and reporting, ray-shooting among
segments, and more. Similar to Chan’s original randomized partition tree, we expect that additional
applications will emerge in the future, especially in situations where deterministic results are
preferred.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases partition trees, simplex range searching, segment intersection queries, ray-
shootings, multi-level data structures

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.114

Related Version Full Version: https://arxiv.org/abs/2507.01775

Acknowledgements We would like to thank Timothy Chan for the discussions on derandomizing his
partition tree.

1 Introduction

Simplex range searching is a fundamental problem in computational geometry. Given a
set P of n points in the d-dimensional space Rd for a constant d ≥ 2, the goal is to build
a data structure so that points of P inside a query simplex can be found efficiently. The
problem has been extensively studied (see [1, 2, 19] for some excellent surveys). For solving
the problem with small space (e.g., near linear), one powerful technique is partition trees,
e.g., [7, 14, 16–18, 23–25]. In particular, using a partition tree Matoušek [17] built a data
structure of O(n) space in O(n log n) time and each simplex range query can be answered
in O(n1−1/d logO(1) n) time. Subsequently Matoušek [18] gave another more complicated
data structure of O(n) space with O(n1+ϵ) preprocessing time and O(n1−1/d) query time;
throughout the paper let ϵ be an arbitrarily small positive constant. Chazelle [10] proved
that Ω(n1−1/d/ log n) (and Ω(

√
n) for d = 2) is a lower bound on the query time for an

O(n)-space data structure; it is widely believed that the log n factor is an artifact of the proof.
Although the result of [18] seems to achieve optimal query time with linear space, it is not
quite satisfactory. One reason is that partition trees are often used as backbone for designing
multi-level data structures and certain properties of the result of [18] makes this challenging,
e.g., it has a special root of O(n1/d log n) degree whose children may have overlapping cells
and it does not guarantee the optimal crossing number except at the bottom most level of the
tree. To address these issues, Chan [7] proposed a randomized partition tree of O(n) space
that can be built in O(n log n) expected time and the query time is bounded by O(n1−1/d)
w.h.p. Comparing to Matoušek’s work [18], Chan’s result has many nice properties, e.g.,

© Haitao Wang;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 114; pp. 114:1–114:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haitao.wang@utah.edu
https://orcid.org/0000-0001-8134-7409
https://doi.org/10.4230/LIPIcs.ESA.2025.114
https://arxiv.org/abs/2507.01775
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

114:2 A Deterministic Partition Tree and Applications

each node has O(1) children, crossing number is optimal (with w.h.p) at almost all layers
(except the top few layers), and children’s cells at each node are pairwise disjoint. These
properties make Chan’s partition tree quite amenable to multi-level data structures [7–9].

Simplex range searching has several versions: (1) Counting: compute the number of
points of P inside the query simplex ∆; (2) reporting: report all points of P inside ∆; (3)
semigroup query (which generalizes the counting query): compute the sum of the weights
of the points of P inside ∆, assuming that each point of P is assigned a weight from a
semigroup. The above results [7, 17, 18] are applicable to semigroup queries and can also be
modified to solve range reporting with an additive term k in the query time, where k is the
output size. In particular, Chazelle’s lower bound [10] is for the semigroup setting.

Since Chan’s partition tree is randomized, for those who need deterministic algorithms,
Matoušek’s partition trees [17, 18] are still the main resort. In this paper, we “partially”
derandomize Chan’s partition tree and obtain a deterministic tool, especially for designing
multi-level data structures. More specifically, our partition tree is similar to Chan’s (e.g.,
O(n) space, optimal crossing number at all levels except the top few levels, disjointness of
children’s cells of each node); however, the degree of each node is logarithmic instead of
constant (that is why we used “partially” above). Albeit this drawback, our tree is still
powerful enough to have many applications, as discussed below.

Simplex range counting. For simplex range counting, we construct a data structure of
O(n) space that can answer each query in O(n1−1/d/ logΩ(1) n) time. Note that this does
not violate Chazelle’s lower bound [10] as it is for the more general semigroup queries. The
preprocessing time is O(n1+ϵ). To achieve the result, we construct our partition tree so
that each leaf has O(logτ n) points of P for an arbitrarily small constant τ > 0. Because
this number is small, we can afford to preprocess all leaves in O(n) time by considering all
possible configurations for queries; in this way, each query on a single leaf v can be answered
in O(log log n) time. While this kind of technique may not be quite surprising, it has never
been used in simplex range searching, perhaps because previous work has been focusing on
the semigroup queries while this technique does not work in that setting. Note that our
above result is also applicable to simplex range emptiness queries.

It should be noted that very recently Chan and Zheng [9] obtained similar randomized
results (i.e., O(n) words of space and o(n1−1/d) query time w.h.p.) for other data structures
and also mentioned a possibility of achieving such result for simplex range counting. One
difference is that their technique uses bit-packing by assuming each word has Ω(log n) bits
(note that the log n-bit word RAM is also a conventional computational model), while ours
does not use bit-packing. In addition, their result is randomized while ours is deterministic.

Simplex range stabbing. Given a set of n simplices in Rd, the simplex range stabbing
counting problem is to build a data structure to compute the number of simplices containing
a query point. Using Chan’s partition tree, Chan and Zheng [9] built a randomized data
structure of O(n log log n) space (or O(n) words of space using the bit-packing tricks) in
O(n log n) expected preprocessing time and the query time is O(n1−1/d) w.h.p. Using our
new deterministic partition tree, we build a deterministic data structure of O(n log log n)
space in O(n1+ϵ) preprocessing time and the query time is O(n1−1/d/ logΩ(1) n). Previously,
the best deterministic results [17, 18] have O(n1+ϵ) preprocessing time, O(n logO(1) n) space,
and O(n1−1/d logO(1) n) query time; or O(n2

√
log n) preprocessing time and space, and

n1−1/d · 2O(
√

log n) query time. For the reporting problem (i.e., report all simplices containing
a query point), the randomized data structure of [9] has the same performance as above
except that the query time becomes O(k + n1−1/d) w.h.p., where k is the output size. We
also obtain the same deterministic result as above with O(k + n1−1/d/ logΩ(1) n) query time.

H. Wang 114:3

Segment intersection searching. Given a set of n (possibly intersecting) line segments in
the plane, the segment intersection counting problem is to build a data structure to compute
the number of segments intersecting a query segment. Chan and Zhen [9] built a randomized
data structure of O(n log log n) space (which again can be reduced to O(n) words of space
if bit-packing tricks are allowed) in O(n log n) expected preprocessing time and the query
time is O(

√
n) w.h.p. Using our new deterministic partition tree, we build a deterministic

data structure of O(n log log n) space in O(n1+ϵ) preprocessing time and the query time
is O(

√
n/ logΩ(1) n). The previously best deterministic result [6] built a data structure of

O(n log2 n) space in O(n3/2) time that can answer each query in O(
√

n log n) time.
For the reporting problem (i.e., report all segments intersecting a query segment), the

randomized data structure of [9] has the same performance as above except that the query
time becomes O(k +

√
n) w.h.p., where k is the output size. We also obtain the same

deterministic result as above with O(k +
√

n/ logΩ(1) n) query time.

Segment intersection detection. Given n (possibly intersecting) line segments in the plane,
we wish to build a data structure to decide whether a query line intersects any segment [12,22].
The previous deterministic result [22] builds an O(n)-space data structure in O(n3/2) time,
with O(

√
n log n) query time. Using our new partition tree, we build an O(n)-space data

structure with O(
√

n/ logΩ(1) n) query time and O(n1+ϵ) preprocessing time.

Ray-shooting among non-intersecting segments. Given n non-intersecting line segments
in the plane, we wish to build a data structure to find the first segment hit by a query
ray [3,6,20]. The previous best deterministic result [22] builds an O(n)-space data structure in
O(n3/2) time, with O(

√
n log n) query time. With our partition tree, we build an O(n)-space

data structure with O(
√

n/ logΩ(1) n) query time and O(n1+ϵ) preprocessing time.
If the segments are allowed to intersect, then the problem has also been studied [3, 4, 6, 7,

9, 12, 15, 20, 22]. The previously best deterministic result [22] builds an O(n log n)-space data
structure in O(n3/2) time and each query can be answered in O(

√
n log n) time.

Outline. After introducing notation in Section 2, we present our partition tree in Section 3.
The simplex range counting problem is treated in Section 4. The simplex range stabbing and
the segment intersection searching problems are discussed in Section 5. We solve the segment
intersection detection and the ray-shooting problems in Sections 6 and 7, respectively. Due
to the space limit, many proofs and details are omitted but can be found in the full paper.

2 Preliminaries

Let H be a set of n hyperplanes in Rd. We use A(H) to denote the arrangement of H, which
can be computed in O(nd) time [13]. For a compact region R ∈ Rd, we use HR to denote the
subset of hyperplanes of H that intersect the relative interior of R but does not contain R

(we also say that these hyperplanes cross R). A cutting for H is a collection Ξ of closed cells
(each of which is a simplex, possibly unbounded) with disjoint interiors, which together cover
the entire space Rd [11,18]. The size of Ξ is the number of cells of Ξ. For a parameter r with
1 ≤ r ≤ n, a (1/r)-cutting for H is a cutting Ξ satisfying |Hσ| ≤ n/r for every cell σ ∈ Ξ.

For any 1 ≤ r ≤ n, a (1/r)-cutting of size O(rd) for H can be computed in O(nrd−1)
time [11]. We further have Lemma 1 (similar results were mentioned before [5, 7, 21]).
Throughout the paper, β always refers to the one in the lemma.

ESA 2025

114:4 A Deterministic Partition Tree and Applications

▶ Lemma 1. (Cutting Lemma) Let H be a set of n hyperplanes and ∆ a simplex in Rd. For
any 1 ≤ r ≤ n, we can compute a (1/r)-cutting of O(K · (r/n)d + rd−1+β) cells for H whose
union is ∆ in O(K · (r/n)d−1 + nrd−2+β) time, where K is the number of vertices of A(H)
inside ∆ and β is an arbitrarily small positive constant.

Proof. We apply Chazelle’s algorithm [11] but only on the region inside ∆ (i.e., starting
with C0 = ∆ following the notation of [11]). A detailed analysis for the 2D case is given
in [21, Appendix A]. Below we sketch how to modify the analysis in [11] accordingly by
following the notation there.

The analysis follows the same approach except that we use K to replace
(

n
d

)
in the formula∑

s∈Ck−1
v(H|s; s) ≤

(
n
d

)
in [11, Page 153]. As such, the subsequent formula becomes

|Ck| ≤ c

(
rk

0 log r0

n

)d

· K + crd−1
0 (log r0)d|Ck−1|.

Then, one can prove by induction that |Ck| ≤ r
d(k+1)
0 ·K/nd+r

(k+1)·(d−1+β)
0 , for an arbitrarily

small constant β > 0. Therefore, the total number of cells of the cutting inside ∆ is as stated
in the lemma.

For the time analysis, following the same formula
∑

0≤k≤⌈logr0 r⌉
n
rk

0
|Ck| in [11, Page 153]

and using the above inequality for |Ck|, we can derive the time complexity as stated in the
lemma. ◀

3 Deterministic partition tree

In this section, we present our deterministic partition tree. The following lemma “partially”
derandomizes Chan’s partition refinement theorem (i.e., Theorem 3.1 [7]).

▶ Lemma 2. Let P be a set of n points and H a set of m hyperplanes in Rd. Suppose there
are t interior-disjoint cells whose union covers P , such that each cell contains at most 2n/t

points of P and each hyperplane crosses at most κ cells. Then, for any b ≥ 4, we can divide
every cell into O(b) disjoint subcells each containing at most 2n/(bt) points of P , for a total
of at most bt subcells, so that the total number of subcells crossed by any hyperplane in H is
bounded by

O((b · t)1−1/d + b1−1/(d−1+β) · κ · log t + b · log m). (1)

Remark. Comparing to Chan’s partition refinement theorem, there is an extra log t in the
second term of (1). As will be seen next, due to this extra factor, we have to make each
node of our partition tree have logarithmically many children instead of constant. That is
why we said before that we “partially” derandomized Chan’s result.

3.1 Proving Lemma 2
This subsection is devoted to the proof of Lemma 2.

Let S denote the set of all t given cells in Lemma 2. Let H ′ be a multiset containing
C copies of each hyperplane in H, for a parameter C that is a sufficiently large power of b

(so that all future multiplicities are integers; the actual value of C is not important). For
any multiset H ′′ of H, the size of H ′′, denoted by |H ′′|, is the sum of the multiplicities
of the hyperplanes in H ′′. For a cell ∆, let N∆(H ′′) denote the number of vertices of the

H. Wang 114:5

arrangement A(H ′′) of H ′′ inside ∆, counting multiplicities (note that the multiplicity of a
vertex is the product of the multiplicities of its defining hyperplanes); let H ′′(∆) denote the
(multi)-subset of hyperplanes of H ′′ crossing ∆.

We process the t cells of S iteratively one by one. The order they will be processed is
carefully chosen (in contrast, a random order is used in the proof of [7], which is a major
difference between our proof and that in [7]). We will assign indices to the cells following the
reverse order they are processed. Suppose we have processed t − i cells, which have been
assigned indices and denoted by ∆t, ∆t−1, . . . , ∆i+1. In the next iteration, we will find a cell
among the unprocessed cells of S and process it (and the cell will be assigned index i as ∆i).
Suppose we now have a multiset Hi after cell ∆i+1 is processed (initially let Ht+1 = H ′).
Let Si denote the subset of unprocessed cells of S. Hence, |Si| = i.

For each cell ∆ ∈ Si, define

A∆ =
(

N∆(Hi)
b

)1/d

, B∆ = |Hi(∆)|
b1/(d−1+β) .

Define Si1 as the subset of cells ∆ ∈ Si with A∆ ≥ B∆. Let Si2 = S \ Si1. If |Si1| ≥ i/2,
then we define ∆i as the cell ∆ of Si1 that minimizes the value A∆; otherwise define ∆i

as the cell ∆ of Si2 that minimizes B∆. Note that the above way of defining ∆i is a key
difference from Chan’s approach [7], where ∆i is chosen from Si randomly. We now process
∆i in the following three steps (which is similar to Chan’s approach).
1. Construct a (1/ri)-cutting for Hi inside ∆i with

ri = c · min
{

|Hi(∆i)| ·
(

b

N∆i
(Hi)

)1/d

, b1/(d−1+β)

}
,

for some constant c. By the cutting lemma, the number of subcells inside ∆i is O(N∆i
(Hi)·

(ri/|Hi(∆i)|)d + rd−1+β
i), which can be made at most b/4 for a sufficiently small c.

2. We further subdivide each subcell of ∆i (e.g., using vertical cuts) so that each subcell
contains at most 2n/(tb) points of P . The number of extra cuts is O(b) as ∆i contains at
most 2n/t points of P . The total number of extra cuts for processing all t cells of S is at
most n

2n/(tb) + t = bt/2 + t, and thus the total number of subcells after processing all t

cells is at most bt/4 + bt/2 + t = 3bt/4 + t, which is at most bt for b ≥ 4.
3. For each distinct hyperplane h ∈ Hi, multiply the multiplicity of h in Hi by (1 + 1/b)λi(h),

where λi(h) is the number of subcells of ∆i crossed by h. Let Hi−1 be the resulting
multiset after this.

To prove Lemma 2, it remains to prove Bound (1).
In the third step, since each of the O(b) subcells of ∆i is crossed by at most |Hi(∆i)|/ri

hyperplanes of Hi, we have
∑

h∈Hi
λi(h) = O(b · |Hi(∆i)|/ri). Since λi(h) = O(b), we have

|Hi−1| =
∑

h∈Hi

(1 + 1/b)λi(h) =
∑

h∈Hi

(1 + O(λi(h)
b

)) = |Hi| +
∑

h∈Hi

O(λi(h))
b

).

We thus obtain

|Hi−1| − |Hi| = O(1
b

·
∑

h∈Hi

λi(h)) = O(|Hi(∆i)|/ri) = O(αi) · |Hi|, where

αi = |Hi(∆i)|
ri · |Hi|

= O

(
1

|Hi|
· max

{(
N∆i

(Hi)
b

)1/d

,
|Hi(∆i)|

b1/(d−1+β)

})

= O

(
1

|Hi|
· max {A∆i

, B∆i
}
)

.

ESA 2025

114:6 A Deterministic Partition Tree and Applications

After all t cells of S are processed, we have a multiset H0. Recall that Ht+1 = H ′ and
|H ′| = C · m. According to the above analysis, we have

|H0| = |Ht+1| · Πt
i=1(1 + O(αi)) ≤ C · m · exp

(
O(

t∑
i=1

αi)
)

. (2)

The following lemma gives an upper bound for
∑t

i=1 αi.

▶ Lemma 3.
∑t

i=1 αi = O
(

t1−1/d

b1/d + κ·log t
b1/(d−1+β)

)
.

By Lemma 3 and (2), we have

|H0| ≤ C · m · exp
(

O

(
t1−1/d

b1/d
+ κ · log t

b1/(d−1+β)

))
. (3)

For any hyperplane h ∈ H, let λ(h) be the total number of subcells crossed by h. Our goal is to
prove that λ(h) is bounded by (1). By the way H0 is produced, we have C ·(1+1/b)λ(h) ≤ |H0|.
Hence,

λ(h) ≤ log1+1/b

|H0|
C

= O(b · log |H0|
C

) = O(b log m + (bt)1−1/d + b1−1/(d−1+β) · κ · log t).

This proves Lemma 2.

3.2 Constructing the partition tree
Using Lemma 2, we can construct a partition tree in the following theorem.

▶ Theorem 4. (Hierarchical Partition Theorem) Given a set P of n points in Rd and
a parameter r with r0 ≤ r ≤ n for a sufficiently large constant r0, for b = logρ r for a
sufficiently large constant ρ > 0, there exists a sequence Π0, Π1, . . . , Πk+1 with k = ⌊logb r⌋
and b′ = ⌈r/bk⌉, where each Πi is a collection of disjoint simplicial cells (i.e., each cell is a
simplex) whose union covers P with the following properties:
1. Π0 has only one cell that is Rd and the number of cells of Πi is O(b′ · bi−1) for i ≥ 1 (in

particular, Πk+1 has O(r) cells; the total number of cells in all collections is also O(r)).
2. Each cell of Πi contains at least one point and at most 2n/(b′ · bi−1) points of P for all

i ≥ 0 (in particular, each cell of Πk+1 contains at most 2n/r points).
3. Each cell in Πi+1 is contained in a single cell of Πi.
4. Each cell of Πi contains O(b) cells of Πi+1 for i ≥ 1 and the cell of Π0 contains O(b′)

cells of Π1.
5. Any hyperplane crosses at most O((b′ · bi−1)1−1/d + logO(1) n) cells of Πi for all i ≥ 1.
All collections of cells can be constructed in O(nd2 · (r2−2/d + logO(1) n)) time.

Proof. We only sketch the proof here. The details can be found in the full paper.
Let H be a set of m = nO(1) hyperplanes in Rd. We can prove the following critical

lemma: With respect to H, one can construct a sequence Π0, Π1, . . . , Πk+1 as stated in the
theorem with the same properties except that Property (5) only works for any hyperplane in
H; also, the construction time is bounded by O(md · (r2−2/d + logO(1) n) + n log n + r3−1/d +
r2 · logO(1) n + m · r3−2/d).

To prove the above lemma, we first assume that r is a power of b. Then, r = bk and b′ = 1.
We apply Lemma 2 with H to construct the collections Π′

t iteratively for t = 1, b, b2, . . .

until bk = r. More specifically, Π′
1 consists of a single cell that is Rd, and Π′

bt is obtained
by applying Lemma 2 on all cells of Π′

t. We then let Π0 = Π1 = Π′
1 and Πi = Π′

bi−1 . By

H. Wang 114:7

Lemma 2, the properties (1)-(4) hold. The proof for Property (5) as well as the case where r

is not a power of b are given in the full paper. The algorithm implementation for constructing
all collections of cells is also presented in the full paper.

The above critical lemma only guarantees the crossing numbers for the hyperplanes in
H. To make it work for any hyperplane in Rd, we resort to the following lemma, which was
known before, e.g., [7].

▶ Lemma 5. (Test Set Lemma [7]) For a set P of n points in Rd, we can compute in O(nd)
time a set H (called test set) of O(nd) hyperplanes with the following property: for any set of
cells each containing at least one point of P , if κ is the maximum number of cells crossed by
any hyperplane of H, then the maximum number of cells crossed by any hyperplane is O(κ).

Now to prove Theorem 4, we just apply the above critical lemma with H as the test set
given in Lemma 5, which can be computed in O(nd) time. Since m = O(nd) and r ≤ n, we
obtain the theorem from the above critical lemma. ◀

The collections of cells of Theorem 4 naturally form a tree structure, called a hierarchical
partition tree, in which each node corresponds to a cell. Specifically, the only cell in Π0 is the
root. Cells of Πk+1 are the leaves. If a cell ∆ ∈ Πi contains another cell ∆′ ∈ Πi+1, then ∆ is
the parent of ∆′ and ∆′ is a child of ∆. As such, each node of the tree has O(b) children (the
root has O(b′) children). Although the construction time of Theorem 4 is large, it can usually
be reduced (e.g., to O(n1+ϵ) time) in applications by constructing an “upper” partition tree
using other techniques (e.g., [17]) and then processing the leaves (each containing a small
number of points) using Theorem 4, as will be demonstrated in the subsequent sections.

4 Simplex range counting

Given a set P of n points in Rd, we wish to construct a data structure so that the number of
points of P inside a query simplex can be quickly computed. If we set r = n in Theorem 4, we
can have a data structure of O(n) space and O(b · n1−1/d) query time, which is not O(n1−1/d)
as b = Θ(log n). In the following, we reduce the query time to O(n1−1/d/ logΩ(1) n).

For a region R in the plane, let P (R) denote the subset of points of P in R.
Setting r = n/b2d/(d−1) with b = logρ n, we apply Theorem 4 to obtain a partition tree T

with collections Πi, 0 ≤ i ≤ k +1. The total number of cells is O(r). For each cell ∆, we store
|P (∆)|. By Theorem 4, each cell in Πk+1 contains O(n/r) = O(b2d/(d−1)) = O(log2dρ/(d−1) n)
points of P . The runtime to construct T is O(nd2+2).

Given a query simplex σ, starting from the root of T , for each cell ∆ of T , if ∆ is
contained in σ, then we add |P (∆)| to a total count. If ∆ is completely outside σ, then we
ignore it. Otherwise, a bounding halfplane of σ must cross ∆ and we proceed on all children
of ∆ unless ∆ is a leaf. In this way, we obtain a set V of O(r1−1/d) leaf cells that are crossed
by the bounding halfplanes of σ. The runtime is O((r/b)1−1/d · b), which is O(r1−1/d · b1/d).

We now build the data structure recursively on the points in P (∆) for each leaf cell ∆ of
T . If Q(n) is the query time, we have the following recurrence relation:

Q(n) = O(r1−1/d · b1/d) + O(r1−1/d) · Q1(n/r), (4)

where Q1(·) is the query time for each leaf cell ∆, which contains O(n/r) points of P .
To solve Q1(n/r), we preprocess P (∆) for each leaf cell ∆ ∈ T recursively as above by

using different parameters. Specifically, let n1 = |P (∆)|, which is O(n/r). Let τ > 0 be
an arbitrarily small constant to be set later. Setting r1 = n1/ logτ n with b1 = logρ n1, we

ESA 2025

114:8 A Deterministic Partition Tree and Applications

apply Theorem 4 to construct a partition tree T (∆) in O(nd2+2
1) time. The total time for

constructing T (∆) for all leaf cells ∆ of T is bounded by O(nd2+2). Using T (∆) to handle
queries on P (∆) and following the same analysis as above, we obtain

Q1(n1) = O(r1−1/d
1 · b

1/d
1) + O(r1−1/d

1) · Q2(n1/r1), (5)

where Q2(·) is the query time for each leaf of T (∆), which contains O(n1/r1) points of P .
Combining (4) and (5) leads to (see the full paper for the detailed proof):

Q(n) = O(r1−1/d · b1/d) + O(r1−1/d) · Q1(n/r)

= O(r1−1/d · b1/d) + O(r1−1/d · r
1−1/d
1 · b

1/d
1) + O(r1−1/d · r

1−1/d
1) · Q2(n1/r1)

= O

(
n1−1/d

logΩ(1) n

)
+ O

((n

t

)1−1/d
)

· Q2(t), where t = logτ n.
(6)

In summary, the above first builds a partition tree T and then builds a partition tree
T (∆) for each leaf ∆ of T (so there are two recursive steps but with different parameters).
For notational convenience, we still use T to refer to the entire tree (by attaching T (∆) for all
leaves ∆), which has O(n/t) leaves, each containing O(t) points. The total space is bounded
by O(n) since there are only two recursive steps. In Section 4.1, by using the property
that t is very small, we show that after O(n) space and O(n log n) time preprocessing, each
simplex range counting query on any leaf cell of T can be answered in O(log t) time (i.e.,
Q2(t) = O(log t), which is O(log log n); we consider the query on each leaf cell a subproblem).
As such, we obtain that Q(n) = O(n1−1/d/ logΩ(1) n). The total preprocessing time is
O(nd2+2), dominated by the time for constructing T . We thus have the following result.

▶ Lemma 6. Given a set P of n points in Rd, there is a data structure of O(n) space that
can compute the number of points of P in any query simplex in O(n1−1/d/ logΩ(1) n) time.
The data structure can be built in O(nd2+2) time.

We will reduce the preprocessing time to O(n1+ϵ) in Section 4.2.

4.1 Solving the subproblems
We first consider halfspace queries and then extend the techniques to the simplex case.

A basic data structure. Let A be a set of t points in Rd. We first build a straightforward
data structure (called a basic data structure) of O(td) space in O(td+1) time that can answer
each halfspace range counting query on A in O(log t) time.

Let H be the set of dual hyperplanes of A. We compute the arrangement A of H in O(td)
time and space [13]. We then build a point location data structure on A, which can be done
in O(td) time and supports O(log t)-time point location queries [11]. In addition, for each
face f of A, we compute the number of hyperplanes above f (resp., below f) and store these
two numbers at f , e.g., by checking every hyperplane of A. This finishes our preprocessing,
which can be easily done in O(td+1) time and O(td) space. The preprocessing time can be
reduced to O(td), e.g., by taking an Eulerian tour of the dual graph of the arrangement.

Given a query halfspace σ, the goal is to compute the number of points of A inside σ.
Without loss of generality, we assume that σ is an upper halfspace. Then, it is equivalent
to computing the number of hyperplanes of H below p, where p is the dual point of the
bounding hyperplane of σ. Using the point location data structure, we find the face f of
A that contains p; f stores the number of hyperplanes of H below it and we return that
number as our answer to the query. The query time is thus O(log t).

H. Wang 114:9

Handling halfspace queries. Next, we show that after O(n log n) time and O(n) space
preprorcessing we can answer each halfspace range counting query in O(log t) time on P (∆)
for each leaf cell ∆ of our partition tree T .

We build an algebraic decision tree TD for the arrangement construction algorithm [13]
on a set of t hyperplanes in Rd so that each node of TD corresponds to a comparison in the
algorithm. The height of TD is O(td) and TD has 2O(td) leaves. Each leaf v of TD corresponds
to a “configuration” of t hyperplanes in the following sense. Let A be a set of t hyperplanes
with indices 1, 2, . . . , t. Following TD in a top-down manner, we can reach a leaf v such that
all comparisons of the nodes in the path of TD from the root to v are consistent with A; we
say that A has the same configuration as v. Let A and B are two sets of t hyperplanes each.
Let AA and AB be the arrangements of A and B, respectively. If the configurations of A and
B are both the same as a leaf v of TD, then there is a one-to-one correspondence between
faces of AA and faces of AB such that if a face f of AA corresponds to a face f ′ of AB , then
the i-th hyperplane of A is above f if and only if the i-th hyperplane of B is above f ′.

By the above observation, we do the following preprocessing. For each leaf v of TD, let Av

be a set of t hyperplanes whose configuration corresponds to v (note that the sets Av’s for all
leaves v can be constructed in td · 2O(td) time by following TD, which basically enumuerates
all possible configurations for the arrangements of a set of t hyperplanes). We construct
the above basic data structure on Av, denoted by Dv. Doing this for all leaves of TD takes
td · 2O(td) time and space, which is O(n) since t = logτ n if we choose a small enough τ .

For each leaf cell ∆ of T , recall |P (∆)| ≤ t (if |P (∆)| < t, we add t − |P (∆)| dummy
points to P (∆) so that P (∆) has exactly t points). Let H(∆) be the set of dual hyperplanes
of the points of P (∆). We arbitrarily assign indices to the hyperplanes of H(∆). Following
TD, we find the leaf v of TD that has the same configuration as H(∆), which can be done in
time linear in the height of TD, i.e., O(td); we associate v with ∆. Since T has O(n/t) leaves,
doing this for all leaves of T takes O(n/t · td) time, which is O(n log n) if τ is small enough.

Given a query halfspace σ, suppose we want to compute the number of points of P (∆)
inside σ for a leaf cell ∆ of T . This can be done in O(log t) time as follows. Let v be the leaf
of TD associated with ∆. Let p be the dual point of the bounding hyperplane of σ. Without
loss of generality, we assume that σ is an upper halfspace. Hence it is equivalent to finding
the number of hyperplanes of H(∆) below p. We apply the point location query algorithm
using the data structure Dv with p, but whenever the algorithm attempts to use the i-th
hyperplane of Av to make a comparison, we use the i-th hyperplane of H(∆) instead. The
point location algorithm will eventually return a face, which stores the number of hyperplanes
below it; we return that number as our answer to the query of σ.

Handling simplex queries. We can easily extend the above idea to simplex queries, by
using a multilevel data structure. The details are given in the full paper. In summary, with
O(n) space and O(n log n) time preprocessing, a simplex range counting query on P (∆) for
any leaf cell ∆ of T can be answered in O(log t) time.

4.2 Reducing the preprocessing time

We now reduce the preprocessing time of Lemma 6 to O(n1+ϵ). The idea is to build an
“upper partition tree” of O(1) depth using Matoušek’s method [17] so that each leaf has O(nδ)
points of P for a small constant δ > 0 and then construct our data structure in Lemma 6 on
each leaf (which form the “lower” part of the partition tree). The details are given below.

ESA 2025

114:10 A Deterministic Partition Tree and Applications

A simplicial partition for P is a collection Π = {(P1, σ1), (P2, σ2), . . . , (Pm, σm)}, where
the Pi’s are pairwise disjoint subsets forming a partition of P , and each σi is a simplex
containing all points of Pi. The subsets Pi’s are called the classes and the simplices σi’s are
called cells, which may overlap. The crossing number of Π is the maximum number of cells
crossed by any hyperplane. The following result is from [17].

▶ Lemma 7. ([17]) For a set P of n points in Rd and a parameter r ≤ nϵ′ for any constant
ϵ′ < 1, a simplicial partition Π = {(P1, σ1), (P2, σ2), . . . , (PO(r), σO(r))} whose classes satisfy
|Pi| ≤ n/r and whose crossing number is O(r1−1/d) can be constructed in O(n log r) time.

We build a partition tree T by Lemma 7 recursively, until we obtain a partition of P into
subsets of sizes O(nδ) for a small enough constant δ > 0 to be fixed later, which form the
leaves of T . Each inner node v of T corresponds to a subset Pv of P as well as a simplicial
partition Πv of Pv, which form the children of v. At each child u of v, we store the cell
σu of Πv containing Pu and also store the cardinality |Pu|. The simplicial partition Πv is
constructed using Lemma 7 with r = n(1−δ)/k for a constant integer k to be fixed later, i.e.,
every internal node of T has O(r) children. If we recurse k times, i.e., the depth of T is k,
then the subset size of each leaf of T is O(nδ). Hence, the number of leaves of T is O(rk).
Next, for each leaf v of T , we construct the data structure of Lemma 6 on Pv, denoted by
Dv, in O(|Pv|d2+2) time. Since |Pv| = O(nδ), we can make δ small enough so that the total
time of Lemma 6 on all leaves of T is O(n1+ϵ). This finishes the preprocessing, which takes
O(n1+ϵ) time. The space of the data structure is O(n) since the depth of T is O(1).

Given a query simplex σ, starting from the root of T , for each node v, we check whether
σ contains the cell σv. If yes, we add |Pv| to the total count. Otherwise, if the boundary of
σ crosses σv, we proceed to the children of v. In this way, we reach a set V of leaves v of T

whose cells σv are crossed by the bounding hyperplanes of σ. Since the number of leaves of
T is O(rk) and the depth of T is k, which is a constant, the size of V is O(rk·(1−1/d)). If
Q(m) is the query time for a subset of size m, then we have the following recurrence

Q(m) = O(r) + O(r1−1/d) · Q(m/r), where r = n(1−δ)/k with n as the global input size.

Starting with m = n and recursing k times (using the same r) gives us

Q(n) = O(r(k−1)·(1−1/d)+1) + O(rk·(1−1/d)) · Q(n/rk).

Using r = n(1−δ)/k, by setting k to a constant integer larger than (1/δ − 1)/(d − 1), we have

Q(n) = O(n1−1/d−δ′
) + O(rk·(1−1/d)) · Q(n/rk), (7)

for another small constant δ′ > 0.
Finally, for each leaf node v ∈ V (i.e., those subproblems Q(n/rk) in (7)), we use the

data structure Dv to compute the number of points of Pv in σ, in O(|Pv|1−1/d/ logΩ(1) |Pv|)
time by Lemma 6, which is O((n/rk)1−1/d/ logΩ(1) n) as |Pv| = O(n/rk). Plugging this into
(7) gives us Q(n) = O(n1−1/d/ logΩ(1) n). We thus conclude as follows.

▶ Theorem 8. Given a set of n points in Rd, there is a data structure of O(n) space that
can compute the number of points in any query simplex in O(n1−1/d/ logΩ(1) n) time. The
data structure can be built in O(n1+ϵ) time for any ϵ > 0.

5 Simplex range stabbing and segment intersection searching

Given a set S of n simplices in Rd, the problem is to construct a data structure to compute
the number of simplices that contain a query point (we also say that those simplices are
stabbed by the query point). In their data structure, Chan and Zheng [9] utilized a randomized
hierarchical partition. We follow their approach and instead use our deterministic hierarchical

H. Wang 114:11

partition in Theorem 4. Extra effort needs to be taken because the degree of the partition
tree in [7] is O(1) while ours is logarithmic. In the following, we first briefly review Chan
and Zheng’s approach [9] and then discuss how to make changes.

A review of Chan and Zheng’s randomized approach [9]. Each simplex is bounded by
d + 1 hyperplanes. A point p stabs a simplex s if p is in the “correct” side of every bounding
hyperplane of s (to simplify the discussion, we assume these are lower halfplanes). In the
dual space, this is equivalent to having the dual hyperplane of p above the dual point of
each bounding hyperplane of s. Therefore, we have the following problem in the dual space.
Given a set S∗ of n (d + 1)-tuples of points in Rd, we wish to construct a data structure to
compute the number of tuples whose points are all below a query hyperplane p∗. We can
solve the problem using a multi-level data structure as follows.

Let P be the set of the (d + 1)-th points of all tuples of S∗. Apply the simplicial partition
of Lemma 7 to P to obtain a partition Π = {(Pi, σi)}, with a parameter r to be fixed later.
Given a query hyperplane p∗, for every cell σi of Π that is crossed by p∗, we recurse on the
subset of tuples whose (d + 1)-th points are in Pi (i.e., apply Lemma 7 on Pi recursively).
For each cell σi completely below p∗, we recurse on the subset of tuples whose (d + 1)-th
points are in Pi but as a level-d problem (the original problem is a level-(d + 1) problem;
the recurrence stops at a level-0 problem in which we only need to return the size of the
subset). As analyzed in [7], choosing r = nϵ with n as the global input size (i.e., value r is
fixed for all levels of the recursion and this makes the recursion depth O(1)) can obtain an
O(n) space data structure with O(n1−1/d+ϵ) query time, for any ϵ > 0. The preprocessing
time is O(n log n). We summarize this (deterministic) result in the lemma below.
▶ Lemma 9. ([9]) Given a set of n simplices in Rd, one can build a data structure of O(n)
space in O(n log n) time so that the number of simplices containing a query point can be
computed in O(n1−1/d+ϵ) time, for any ϵ > 0.

To improve the query time, Chan and Zheng [9] reduced the problem to a special case
where the first d points in each tuple of S∗ all lie in Rd−1 (equivalently, in the primal setting
all but one bounding halfplanes of each input simplex are parallel to the d-th axis). As such,
we can reduce some subproblems in the recurrence to the (d − 1)-dimensional problem and
then solve these subproblems by Lemma 9 (where d becomes d − 1). If Q(n) (resp., Q′(n)) is
the query time for the problem in Rd (resp., Rd−1), then we have the following recurrence:

Q(n) = O(r1−1/d) · Q(n/r) + O(r) · Q′(n/r). (8)

By Lemma 9, Q′(n) = O(n1−1/(d−1)+ϵ). If we choose r = nδ for a small constant δ > 0,
the recursion depth is O(log log n) and thus the space is O(n log log n). The query time is
O(n1−1/d logO(1) n) due to a constant-factor blowup. To improve the query time to O(n1−1/d),
a randomized hierarchical partition was used in [9] to replace all recursive simplicial partitions
in the preprocessing algorithm for Lemma 9. Here to achieve a deterministic result, we
instead use our deterministic hierarchical partition in Theorem 4, as follows.

Our deterministic result. With r = n/bc for a sufficiently large constant c and b = logρ n,
we apply Theorem 4 to P to obtain a partition tree T consisting of Πj , 0 ≤ j ≤ k + 1. By
Theorem 4, Πj has O(b′ · bj−1) cells and each cell has at most 2n/(b′ · bj−1) points of P . We
define a sequence of numbers t0 < t1 < · · · < tl as follows. For each i, 0 ≤ i ≤ l, define
ti = b′ · bji−1 (and thus |Πji | = O(ti)), with j0 = 1 and

ji =
⌈

logb

r1−(1−ϵ)i

b′

⌉
+ 1, 1 ≤ i ≤ l,

ESA 2025

114:12 A Deterministic Partition Tree and Applications

where l is the smallest integer so that r/b < b′ · bjl−1. Hence, l = O(log log r), which is
O(log log n). Note that b′ · bjl−1 ≤ r always holds. By definition, t0 = b′ and ti is equal to
r1−(1−ϵ)i within a factor of b for i ≥ 1.

We replace the recursive partitions in the preprocessing algorithm of Lemma 9 with this
sequence of partitions of T : Π0, Πj0 , Πj1 , . . . , Πjl

. As l = O(log log n), the space of the data
structure is still O(n log log n). The cells of the last partition Πjl

will be further preprocessed
later. The following lemma analyzes the query time.

▶ Lemma 10. The query time excluding the time spent on the cells of Πjl
is bounded by

O(b · r1−1/d · (n/r)1−1/(d−1)+ϵ).

Lemma 10 leads to the following.

▶ Corollary 11. For a sufficiently large constant c, the query time excluding the time spent
on the cells of Πjl

is bounded by O(n1−1/d/b).

Proof. By Lemma 10, it suffices to show that b · r1−1/d · (n/r)1−1/(d−1)+ϵ = O(n1−1/d/b),
which is equivalent to b2 · (n/r)1−1/(d−1)+ϵ = O((n/r)1−1/d). This in turn is equivalent to
b2 = O((n/r)1/(d−1)−1/d−ϵ), which holds for a sufficiently large c since n/r = bc. ◀

Preprocessing cells of Πjl . Recall that Πjl
has O(b′·btl−1) cells each containing 2n/(b′·btl−1)

points of P , and r/b < b′ · btl−1 ≤ r. Let r′ = b′ · btl−1. By Corollary 11, we obtain the
following recurrence on the query time Q(n): Q(n) = O(n1−1/d/b) + O(r′1−1/d) · Q1(n/r′),
where Q1(n/r′) is the query time for each subproblem of size O(n/r′) since each cell of Πjl

contains O(n/r′) points of P . As b = logρ n and r/b < r′ ≤ r, we can write

Q(n) = O(n1−1/d/ logΩ(1) n) + O((n/n1)1−1/d) · Q1(n1), (9)

with n1 = logΘ(1) n.
For notational convenience, let T refer to the sequence of partitions Π0, Πj0 , Πj1 , . . . , Πjl

,
and cells of Πjl

form the leaves of T .
To solve Q1(n1) in (9), we preprocess P (∆) for each leaf cell ∆ ∈ T recursively as above

by using different parameters. Specifically, let τ > 0 be an arbitrarily small constant to be
set later. Setting r1 = n1/ logτ n, we apply Theorem 4 to construct a partition tree T (∆)
with b1 = logρ n1 in O(nd2+2

1) time. As above (using the new parameters r1 and b1), we only
use a subset of partitions of T (∆) in our query data structure. For notational convenience,
we use T (∆) to refer to those partitions. The total time for constructing T (∆) for all leaves
∆ ∈ T is bounded by O(nd2+2) and the total space is still O(n log log n).

With the same analysis as Lemma 10, we can obtain that the query time on T (∆)
excluding the time spent on the leaf cells of T (∆) is O(b1 ·r1−1/d

1 ·(n1/r1)1−1/(d−1)+ϵ). Define
r′

1 with respect to r1 in the same way as above for r′ with respect to r, i.e., T (∆) has O(r′
1)

leaf cells and each cell contains O(n1/r′
1) points of P . As above, r1/b1 < r′

1 ≤ r1 holds.
Consequently, we obtain Q1(n) = O(b1 · r

1−1/d
1 · (n1/r1)1−1/(d−1)+ϵ) + O(r′1−1/d

1) · Q2(n1/r′
1),

where Q2(n1/r′
1) is the query time for each leaf cell of T (∆). Let t = n1/r′

1. We have

Q1(n) = O(b1 · r
1−1/d
1 · (n1/r1)1−1/(d−1)+ϵ) + O((n1/t)1−1/d) · Q2(t). (10)

Combining (9) and (10) leads to:

Q(n) = O

(
n1−1/d

logΩ(1) n

)
+ O

((n

t

)1−1/d
)

· Q2(t). (11)

H. Wang 114:13

Since t = n1/r′
1 and r1/b1 < r′

1 ≤ r1, we have n/t = n/n1 · r′
1 ≤ n/n1 · r1 = n/ logτ n.

Therefore, we further obtain from the above

Q(n) = O

(
n1−1/d

logΩ(1) n

)
+ O

((
n

logτ n

)1−1/d
)

· Q2(t)

= O

(
n1−1/d

logΩ(1) n

)
+ O

(
n1−1/d

logΩ(1) n

)
· Q2(t). (12)

Since t = n1/r′
1 and r1/b1 < r′

1 ≤ r1, we have t ≤ n1/r1 ·b1 = O(logτ n·logρ log n). Therefore,
we can write t = O(logτ ′

n) for another arbitrarily small constant τ ′.
In summary, the above first builds a partition tree T and then builds partition trees

T (∆) for all leaf cells ∆ of T (using different parameters). For notational convenience, we
still use T to refer to the entire tree (i.e., attaching all leaf trees T (∆) to T), which has
O(n/t) leaves, each containing O(t) points. The space is bounded by O(n log log n) and the
total preprocessing time is O(nd2+2). Since t is tiny, we show in the full paper that after
additional O(n log n) time and O(n) space preprocessing, each query on any leaf cell of T

can be answered in O(log t) time (i.e., Q2(t) = O(log log n)). Consequently, the query time
is bounded by O(n1−1/d/ logΩ(1) n). We can reduce the preprocessing time to O(n1+ϵ) using
idea similar to Section 4.2 (i.e., build an “upper partition tree” of O(1) depth on top using
simplicial partitions [17]). We conclude with the following theorem.

▶ Theorem 12. Given a set of n simplices in Rd, one can build a data structure of
O(n log log n) space so that the number of simplices containing a query point can be computed
in O(n1−1/d/ logΩ(1) n) time. The preprocessing time is O(n1+ϵ) for any ϵ > 0.

5.1 Other related problems
As studied in [9], some related problems (as stated in the following two theorems) can be
solved by similar techniques. For each problem, we basically follow the same high-level
algorithmic framework as [9] but use our deterministic partition tree instead of the randomized
one in [7]; this is very similar to the above simplex stabbing counting problem, so we omit
these details. For each problem, however, we still need to come up with a method to answer
queries in O(log t) time for subproblems of small sizes t = logτ n (for an arbitrarily small
constant τ > 0) and these are discussed in the full paper.

▶ Theorem 13. Given a set of simplices in Rd, one can build a data structure of O(n log log n)
space so that the simplices containing a query point can be reported in O(n1−1/d/ logΩ(1) n+k)
time, where k is the output size. The preprocessing time is O(n1+ϵ) for any ϵ > 0.

▶ Theorem 14. Given a set of n segments in the plane, one can build a data structure
of O(n log log n) space so that the number of segments intersecting a query segment can be
computed in O(

√
n/ logΩ(1) n) time (these segments can be reported in additional O(k) time,

where k is the output size). The preprocessing time is O(n1+ϵ) for any ϵ > 0.

6 Segment intersection detection

Let S be a set of n line segments in R2. We wish to build a data structure to decide whether
a query line intersects any segment of S. The problem can be solved by Theorem 14. This
section presents a new method that only needs O(n) space while the query time is the same.

ESA 2025

114:14 A Deterministic Partition Tree and Applications

Let P be the set of 2n endpoints of the segments of S. With r = 4n/b3 and b = logρ n, we
apply Theorem 4 to P to obtain a partition tree T consisting of collections Πi, 0 ≤ i ≤ k + 1.
By Theorem 4, the total number of cells is O(r), each cell in Πk+1 contains at most
4n/r = log3ρ n points of P , and the runtime to construct T is O(n6). For each node v ∈ T ,
let ∆(v) denote the corresponding cell of v, which is a triangle in R2.

The following is a result from the previous work [22] for a special case of the problem.
We will use the result as a subroutine in our approach.

▶ Lemma 15. ([22]) If all segments of S intersect a given line segment, then one can build
a data structure of O(n) space in O(n log n) time so that whether a query line intersects any
segment of S can be determined in O(log n) time.

We store the segments of S in the partition tree T as follows (the idea is similar to [22]).
For each segment s ∈ S, starting from the root, for each node v whose cell ∆(v) contains s

(which is true initially when v is the root), if v is a leaf, then we store s at v (let Sv denote
the set of all such segments stored at v). Otherwise, we check every child of v. If v has a
child u whose cell ∆(u) contains s, then we proceed on u. Otherwise, for each child u, if
∆(u) contains an endpoint of s, then since ∆(u) does not contain s, s must intersect an edge
e of ∆(u); we store s at e (let Se denote the set of segments stored at e); note that since s

has two endpoints, there are two such edges e but it suffices to store s in one such edge. This
finishes the algorithm for storing s, which takes O(b log n) time. Because s is stored at either
a leaf or a cell edge, the total space for storing all segments is O(n). The time is O(nb log n).

Next, for each edge e of each cell of T , since all segments of Se intersect e, we preprocess
Se using Lemma 15. Doing this for all cell edges e of T takes O(n log n) time and O(n) space.
For those segments stored in Sv for all leaves v, we will preprocess them into a data structure
Dv. Before discussing Dv, we describe the query algorithm and analyze the time complexity.

Given a query line ℓ, starting from the root of T , for each node v, assume that ℓ intersects
the boundary of ∆(v), which is true initially when v is the root. If v is a leaf, then we call
the data structure Dv to check whether ℓ intersects a segment of Sv. Otherwise, for each
child u of v, for each edge e of ∆(u), we apply the query algorithm of Lemma 15 to check
whether ℓ intersects a segment of Se; further, if ℓ crosses ∆(u), then we proceed on u. The
following lemma justifies the correctness of the query algorithm.

▶ Lemma 16. The query algorithm works correctly.

Proof. If the query algorithm detects an intersection, then it is obviously true that ℓ intersects
a segment of S. On the other hand, suppose ℓ intersects a segment s, say, at a point p. We
argue that the query algorithm must detect an intersection. Indeed, according to our query
algorithm, all nodes u of T whose cells ∆(u) are crossed by ℓ will be processed. If s is stored
at a leaf v, then s is contained in ∆(v). Since ℓ intersects s, ℓ must cross ∆(v), and thus v

must be processed and the data structure Dv will detect an intersection between ℓ and Sv.
If s is not stored at a leaf, then there must exist an internal node v such that s ∈ ∆(v)

and s is not in ∆(u) for any child u of v. According to our preprocessing algorithm, s must
be stored in Se′ for an edge e′ of some cell ∆(u) of a child u of v. Since p ∈ s ⊆ ∆(v) and
p ∈ ℓ, ℓ must cross ∆(v). Therefore, our query algorithm will process v by applying the
query algorithm of Lemma 15 on Se for every edge e of every child cell of v. When it is
applied to Se′ , the intersection will be detected. ◀

We now analyze the query time. Recall that T has O(r) leaves. By Theorem 4, the
total number internal nodes of T whose cell boundaries are crossed by ℓ is O(

√
r/b), and for

each such node, we need to call the query algorithm of Lemma 15 O(b) times and each call

H. Wang 114:15

takes O(log n) time. As such, the query time other than the time spent on calling Dv for
those leaves v whose cell boundaries are crossed by ℓ (let V be the set of all such cells) is
O(
√

r/b · b · log n) = O(
√

n/b · log n) = O(
√

n/ logρ−1 n) since r = 4n/b3 and b = logρ n. By
Theorem 4, |V | = O(

√
r) = O(

√
n/ log3ρ n) and |Sv| ≤ 4n/r = log3ρ n for each leaf v of T .

Let Q(n) be the query time. Following the above analysis, we obtain the following

Q(n) = O(
√

rb · log n) + O(
√

r) · Q1(n/r), (13)

where Q1(·) is the query time for each leaf v ∈ V , whose cell contains O(n/r) points of P .
To solve Q1(n/r), we recursively process Sv for each leaf cell v of T as above by using

different parameters. Specifically, let n1 be the number of endpoints of Sv; hence n1 =
O(n/r) = O(log3ρ n). Let τ > 0 be an arbitrarily small constant to be set later. Setting
r1 = n1/ logτ n, we apply Theorem 4 to construct a partition tree T (v) with b1 = logρ n1 in
O(n6

1) time. The total time for constructing T (∆) for all leaf cells ∆ of T is thus bounded
by O(n6). Using T (v) to handle queries on Sv and following the above analysis, we obtain

Q(n1) = O(
√

r1b1 · log n1) + O(
√

r1) · Q2(n1/r1), (14)

where Q2(·) is the query time for each leaf cell of T (v), which contains O(n1/r1) points of P .
Combining (13) and (14) leads to:

Q(n) = O

(√
n

logΩ(1) n

)
+ O

(√
n

t

)
· Q2(t), where t = logτ n. (15)

In summary, the above first builds a partition tree T and then builds partition trees
T (v) for all leaves v of T (using different parameters). For notational convenience, we use
T to refer to the entire tree (by attaching all trees T (v) to T), which has O(n/t) leaves,
each containing O(t) points. The space is bounded by O(n). As t is small, with O(n log n)
additional time and O(n) space preprocessing, each subproblem Q(t) in (15) can be solved
in O(log t) time. This makes the total query time Q(n) bounded by O(

√
n/ logΩ(1) n). We

can also reduce the preprocesing time to O(n1+ϵ). See the full paper for the details.

▶ Theorem 17. Given a set of n segments in the plane, there is a data structure of O(n)
space that can determine whether a query line intersects any segment in O(

√
n/ logΩ(1) n)

time. The data structure can be built in O(n1+ϵ) time for any ϵ > 0.

7 Ray-shooting among non-intersecting segments

Let S be a set of n line segments in the plane such that no two segments intersect. The
problem is to build a data structure to compute the first segment hit by a query ray.

The following is a result from the previous work [22] for a special case of the problem.
We will use it as a subroutine in our approach.

▶ Lemma 18. ([22]) If all segments of S intersect a given line segment, then one can build a
data structure of O(n) space in O(n log n) time so that a ray-shooting query can be answered
in O(log n) time.

We build the partition tree T and store S in T in a way similar to the segment intersection
detection problem in Section 6 except that we use Lemma 18 to preprocess Se for each cell
edge e of T . In addition, for each leaf v of T , we will build a data structure Dv on Sv.

ESA 2025

114:16 A Deterministic Partition Tree and Applications

Given a query ray ρ, starting from the root of T , for each node v, assume that ρ intersects
the boundary of ∆(v), which is true initially when v is the root. If v is a leaf, then we use
the data structure Dv to find the first segment of Sv hit by ρ as our candidate solution
segment. Otherwise, for each child u of v, for each edge e of ∆(u), apply the query algorithm
of Lemma 18 to find the first ray of Se hit by ρ as a candidate; further, if ρ crosses ∆(u),
then we proceed on u. Finally, among all candidate segments, we return the one whose
intersection with ρ is closest to the origin of ρ. The correctness follows a similar argument as
Lemma 16.

As in Section 6, for each leaf v of T , we construct the data structure Dv by preprocessing
Sv recursively once. The query time analysis follows exactly the same method as in Section 6
since the query time of Lemma 18 is the same as that of Lemma 15, and thus we can also
obtain the recurrence (15) with the same value of t. As t is small, with additional O(n log n)
time and O(n) space preprocessing, each subproblem Q(t) in (15) can be solved in O(log t)
time. This makes the total query time Q(n) bounded by O(

√
n/ logΩ(1) n). We thus have

the following result.

▶ Lemma 19. Given a set of n segments in the plane, there is a data structure of O(n)
space that can compute the first segment hit by a query ray in O(

√
n/ logΩ(1) n) time. The

data structure can be built in O(n6) time.

As before, we can reduce the preprocesing time to O(n1+ϵ). See the full paper for the
details.

▶ Theorem 20. Given a set of n segments in the plane, there is a data structure of O(n)
space that can compute the first segment hit by a query ray in O(

√
n/ logΩ(1) n) time. The

data structure can be built in O(n1+ϵ) time for any ϵ > 0.

References
1 Pankaj K. Agarwal. Range searching, in Handbook of Discrete and Computational Geometry,

C.D. Tóth, J. O’Rourke, and J.E. Goodman (eds.), pages 1057–1092. CRC Press, 3rd edition,
2017.

2 Pankaj K. Agarwal. Simplex range searching and its variants: a review. In A Journey Through
Discrete Mathematics, pages 1–30. Springer, 2017. doi:10.1007/978-3-319-44479-6_1.

3 Pankaj K. Agarwal and Jĭrí Matoušek. Ray shooting and parametric search. SIAM Journal
on Computing, 22(4):794–806, 1993. doi:10.1137/0222051.

4 Pankaj K. Agarwal and Micha Sharir. Applications of a new space-partitioning technique.
Discrete and Computational Geometry, 9:11–38, 1993. doi:10.1007/BF02189304.

5 Pankaj K. Agarwal and Micha Sharir. Pseudoline arrangements: Duality, algorithms, and appli-
cations. SIAM Journal on Computing, 34:526–552, 2005. doi:10.1137/S0097539703433900.

6 Reuven Bar-Yehuda and Sergio Fogel. Variations on ray shootings. Algorithmica, 11:133–145,
1994. doi:10.1007/BF01182772.

7 Timothy M. Chan. Optimal partition trees. Discrete and Computational Geometry, 47:661–690,
2012. doi:10.1145/1810959.1810961.

8 Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log-star shaving, 2D fractional
cascading, and decision trees. ACM Transactions on Algorithms, 2023. doi:10.1145/3591357.

9 Timothy M. Chan and Da Wei Zheng. Simplex range searching revisited: How to shave logs
in multi-level data structures. In Proceedings of the 34th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1493–1511, 2023. doi:10.1137/1.9781611977554.ch54.

10 Bernard Chazelle. Lower bounds on the complexity of polytope range searching. Journal of
the American Mathematical Society, 2(4):637–666, 1989. doi:10.2307/1990891.

https://doi.org/10.1007/978-3-319-44479-6_1
https://doi.org/10.1137/0222051
https://doi.org/10.1007/BF02189304
https://doi.org/10.1137/S0097539703433900
https://doi.org/10.1007/BF01182772
https://doi.org/10.1145/1810959.1810961
https://doi.org/10.1145/3591357
https://doi.org/10.1137/1.9781611977554.ch54
https://doi.org/10.2307/1990891

H. Wang 114:17

11 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete and Computational
Geometry, 9(2):145–158, 1993. doi:10.1007/BF02189314.

12 Siu Wing Cheng and Ravi Janardan. Algorithms for ray-shooting and intersection searching.
Journal of Algorithms, 13:670–692, 1992. doi:10.1016/0196-6774(92)90062-H.

13 Herbert Edelsbrunner, J. O’Rourke, and Raimund Seidel. Constructing arrangements of
lines and hyperplanes with applications. SIAM Journal on Computing, 15:341–363, 1986.
doi:10.1137/0215024.

14 Herbert Edelsbrunner and Emo Welzl. Halfplanar range search in linear space and O(n0.695)
query time. Information Processing Letters, 23:289–293, 1986. doi:10.1016/0020-0190(86)
90088-8.

15 Leonidas J. Guibas, Mark H. Overmars, and Micha Sharir. Intersecting line segments, ray
shooting, and other applications of geometric partitioning techniques. In Proceedings of
the 1st Scandinavian Workshop on Algorithm Theory (SWAT), pages 64–73, 1988. doi:
10.1007/3-540-19487-8_7.

16 David Haussler and Emo Welzl. ϵ-nets and simplex range queries. Discrete and Computational
Geometry, 2:127–151, 1987. doi:10.1007/BF02187876.

17 Jĭrí Matoušek. Efficient partition trees. Discrete and Computational Geometry, 8(3):315–334,
1992. doi:10.1007/BF02293051.

18 Jĭrí Matoušek. Range searching with efficient hierarchical cuttings. Discrete and Computational
Geometry, 10(1):157–182, 1993. doi:10.1007/BF02573972.

19 Jiří Matoušek. Geometric range searching. ACM Computing Survey, 26:421–461, 1994.
doi:10.1145/197405.197408.

20 Mark H. Overmars, Haijo Schipper, and Micha Sharir. Storing line segments in partition trees.
BIT Numerical Mathematics, 30:385–403, 1990. doi:10.1007/BF01931656.

21 Haitao Wang. Unit-disk range searching and applications. Journal of Computational Geometry,
14:343–394, 2023. doi:10.20382/jocg.v14i1a13.

22 Haitao Wang. Algorithms for subpath convex hull queries and ray-shooting among segments.
SIAM Journal on Computing, 53:1132–1161, 2024. doi:10.1137/21M145118X.

23 Dan E. Willard. Polygon retrieval. SIAM Journal on Computing, 11:149–165, 1982. doi:
10.1137/0211012.

24 F. Frances Yao. A 3-space partition and its applications. In Proceedings of the 15th Annual
ACM Symposium on Theory of Computing (STOC), pages 258–263, 1983. doi:10.1145/
800061.808755.

25 F. Frances Yao, David P. Dobkin, Herbert Edelsbrunner, and Mike Paterson. Partitioning space
for range queries. SIAM Journal on Computing, 18:371–384, 1989. doi:10.1137/0218025.

ESA 2025

https://doi.org/10.1007/BF02189314
https://doi.org/10.1016/0196-6774(92)90062-H
https://doi.org/10.1137/0215024
https://doi.org/10.1016/0020-0190(86)90088-8
https://doi.org/10.1016/0020-0190(86)90088-8
https://doi.org/10.1007/3-540-19487-8_7
https://doi.org/10.1007/3-540-19487-8_7
https://doi.org/10.1007/BF02187876
https://doi.org/10.1007/BF02293051
https://doi.org/10.1007/BF02573972
https://doi.org/10.1145/197405.197408
https://doi.org/10.1007/BF01931656
https://doi.org/10.20382/jocg.v14i1a13
https://doi.org/10.1137/21M145118X
https://doi.org/10.1137/0211012
https://doi.org/10.1137/0211012
https://doi.org/10.1145/800061.808755
https://doi.org/10.1145/800061.808755
https://doi.org/10.1137/0218025

	1 Introduction
	2 Preliminaries
	3 Deterministic partition tree
	3.1 Proving Lemma 2
	3.2 Constructing the partition tree

	4 Simplex range counting
	4.1 Solving the subproblems
	4.2 Reducing the preprocessing time

	5 Simplex range stabbing and segment intersection searching
	5.1 Other related problems

	6 Segment intersection detection
	7 Ray-shooting among non-intersecting segments

