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Abstract
Let A = (aij) be an m × n matrix whose elements lie in an arbitrary field F, and let G be the
bipartite graph with vertex set {v1, . . . , vm} ∪ {w1, . . . , wn} such that vertices vi and wj are adjacent
if and only if aij ≠ 0. We introduce an algorithm that finds an m × n matrix U in row echelon form
and a permutation matrix Q of order n, such that AQ is row equivalent to U . If a tree decomposition
T of G of width k and size O(k(m + n)) is part of the input, then Q and the columns of U that
contain a pivot can be computed in time O(k2(m + n)). Among other things, this allows us to
compute the rank and the determinant of A in time O(k2(m + n)). It also allows us to decide in
time O(k2(m + n)) whether the linear system Ax = b has a solution and to compute a solution of
the linear system in case it exists.
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1 Introduction

Reducing a matrix to a desired form or decomposing a matrix into a product of matrices
with a given structure are basic operations in linear algebra. Problems involving triangular
matrices and matrices in row echelon form are often easy to solve, and a large number of
tasks may be accomplished by first reducing a general matrix into a matrix of this form. To
be precise, a matrix A = (aij) is in row echelon form if all rows consisting entirely of zeros
are at the bottom, and the following holds for the remaining rows. If i is a nonzero row, its
pivot is the element aij ̸= 0 with least j. If rows i1 < i2 have pivots in columns j1 and j2,
respectively, then j1 < j2.

A basic result in linear algebra states that every matrix can be transformed into a matrix
in row echelon form by a sequence of three types of row operations, known as elementary
row operations. In this paper, we shall refer to two of these types: a type I elementary row
operation on a matrix involves interchanging two rows. A type II elementary row operation
involves adding a multiple of a row to another row. We say that A and B are row equivalent
if A can be transformed into B by a sequence of elementary row operations. The process of
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reducing a matrix to row echelon form by elementary row operations is known as Gaussian
elimination. The standard school algorithm reduces an arbitrary m × n input matrix A with
entries in a field F to row echelon form in O(mn min{m, n}) field operations. However, it can
be faster if more is known about the structure of A. For instance, if A is sparse, its structure
can be exploited if we find a pivoting scheme (also known as elimination ordering) that
minimizes the fill-in, defined as the set of matrix positions that were initially 0, but became
nonzero at some point during the computation. It is worth noting that sparse matrices often
occur for some structural reason, such as small treewidth. Gaussian elimination cannot be
used efficiently on random sparse matrices with any elimination order, as we would expect
such matrices to quickly get dense as the algorithm progresses. We should mention that
other strategies can be used to exploit the sparsity of the input matrix, see for instance the
work of Peng and Vempala [12].

Much of the early focus has been on the question of characterizing the graphs corresponding
to matrices with a perfect elimination order, meaning that there is a pivot strategy for
Gaussian elimination without any fill-in. Parter [11] has assigned a graph to a matrix A

with an edge {i, j} if aij or aji are non-zero. He has then shown that there is a perfect
elimination order if the graph is a tree. As became customary afterwards, he chooses all
pivots in the diagonal and makes the strong assumption that all diagonal elements of the
matrix are non-zero and remain so during the computation, usually referred to as not having
any accidental cancellation.

Obviously, this assumption simplifies Gaussian elimination enormously. It is justified
because it is true for symmetric positive definite matrices, which are the most important
special class of matrices for systems of linear equations. However, one would like to see more
widely applicable methods.

Rose [16] shows that Parter’s result can be extended to all triangulated graphs (also known
as chordal graphs). Rose, Tarjan, and Lueker [18] show that a graph has a perfect elimination
order if and only if the graph is triangulated. In this case, they find a perfect elimination
order in O(|V | + |E|) time. Rose and Tarjan [17] efficiently find a perfect elimination order
in a directed graph if one exists, and show that finding a minimal elimination ordering
(minimizing the fill-in) is NP-hard. A directed graph describes the non-zero off-diagonal
entries in an n × n matrix, where Gaussian elimination is done by choosing pivots in the
diagonal under the assumption that there will never be a 0 in the diagonal.

The perfect elimination question is more complicated for the case of asymmetric m × n

matrices A, where any nonzero pivot is allowed. Any m×n matrix A = (aij) may be naturally
associated with a bipartite graph G with vertex set {v1, . . . , vm} ∪ {w1, . . . , wn} such that
vertices vi and wj are adjacent if and only if aij ̸= 0. We say that G is the underlying
bipartite graph of A. This allows us to employ structural decompositions of graph theory to
deal with the nonzero entries of A in an efficient way. Different from the symmetric case with
pivots restricted to the diagonal, there is no nice characterization known for the bipartite
graphs with perfect elimination order when arbitrary pivots are allowed. Nevertheless, a
very large class is given by the chordal bipartite graphs defined by Golumbic and Goss [7].
These graphs are not chordal, as obviously only forests are bipartite and chordal. Still,
chordal bipartite graphs are characterized similarly to chordal graphs. For chordal graphs,
the defining property is that every cycle of length at least 4 has a chord, while chordal
bipartite graphs are defined by the requirement that every cycle of length at least 6 has
a chord. Golumbic and Goss [7] have shown that chordal bipartite graphs have a perfect
elimination order.
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They are not the only bipartite graphs with a perfect elimination order, but the only
ones where one can always pick any simplicial edge (definition follows) as a pivot [7]. An
edge {u, v} is simplicial if the union of the neighborhoods of u and v induces a complete
bipartite graph. It is easy to see that a bipartite graph G has a perfect elimination order if
there exists an ordering of a matching {(u1, v1), (u2, v2), . . . , (up, vp)} in G such that (ui, vi)
is simplicial in the subgraph G[V \ {u1, v1, u2, v2, ui−1, vi−1}] for i ∈ {1, . . . , p}.

Radhakrishnan, Hunt, and Stearns [13] do Gaussian elimination for symmetric matrices
with a given tree decomposition of width k in time O(k2n). As has been common, they
implicitly assume that the diagonal is non-zero and there is no accidental cancellation.
Naturally, given today’s familiarity with algorithms based on tree decompositions, it would
now be an easy exercise to design such an algorithm when pivots can always be selected in
the diagonal.

Only in recent years has there finally been some progress towards the difficult problem
of efficient Gaussian elimination for matrices of small treewidth without the simplifying
assumption that pivots can always be chosen in the diagonal. Fomin et al. [5] have shown a
Gaussian elimination algorithm running in time O(p2n) where p is the lesser known tree-
partition width parameter or the pathwidth. The tree-partition width of a graph can be
arbitrarily large already for graphs of constant treewidth, unless the maximum degree is
bounded [19]. However, Fomin et al. [5] still obtained an O(k3n) algorithm for treewidth
k. We should also refer to the work of Dong, Lee, and Ye [4], whose main result implies an
O(k2n) algorithm for the solution of a linear system Ax = b such that the matrix A ∈ Rm×n

is full-rank (actually, their result is about the solution of a linear program).
Naturally, the longstanding main goal is an O(k2n) Gaussian elimination algorithm for

treewidth k without restrictive assumptions. This would provide a smooth transition to the
school algorithm when k approaches n. It would also achieve the same running time bound
for the general case as for the easy case of non-zero diagonal and no accidental cancellation.
It actually seems that the O(k2n) goal has not been explicitly formulated until recently [5],
maybe because it had not seemed achievable. However, when this goal has been obtained by
simple algorithms under very strong assumptions, the question whether these assumptions
(that convenient entries are nonzero and thus can be used as pivots) are necessary must have
been obvious.

We make substantial progress in this direction by devising the algorithm Fast Gaussian
Elimination. Given an m × n matrix A over a field F with underlying bipartite graph
G, and given a tree decomposition T of G of width k and size O(k(m + n)), it produces
a matrix U in row echelon form that is row equivalent to A. The entries of the columns
of U that contain a pivot (and therefore generate a space of dimension rank(A)) are fully
computed in time O(k2n). The entries of the remaining columns of U are described implicitly
as linear combinations of at most k other columns, and may be computed explicitly in time
O(km(n − rank(A)))). In particular, this algorithm allows us to compute the rank and the
determinant of A in time O(k2(m + n)). It also allows us to decide in time O(k2(m + n))
whether the linear system Ax = b has a solution, and to compute a solution of the linear
system in case it exists. Our main result is stated more formally below.

▶ Theorem 1. Let A be an m×n matrix over a field F, let G be its underlying bipartite graph,
and let T be a tree decomposition of G of width k and size O(k(m + n)). Algorithm Fast
Gaussian Elimination produces an m×n matrix U in row echelon form, and a permutation
matrix Q of order n with the property that AQ is row equivalent to U . The permutation
matrix Q, and the columns of U that contain a pivot may be computed with O(k2(m + n))
field operations. The full matrix U may be computed with O(km(n − rank(A))) additional
field operations.

ESA 2025
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We actually also compute a permutation matrix P of order m such that U is the row
echelon form that would be obtained from PAQ by the most standard algorithm (adding
multiples of earlier rows to later rows).

Our algorithm is not based on the O(k3n) algorithm of Fomin et al. [5], as it uses standard
tree decompositions in a natural way, and does not rely on the somewhat obscure notion of
tree-partition width. Even though our algorithm removes the decades old severe restriction
to pivoting in the main diagonal, the main idea of our Gaussian elimination algorithm is
quite simple. The tree decomposition provides an elimination order for rows (equations) and
columns (variables). This order sequentially hands out permissions to rows and columns to be
eliminated. However, when a row i receives a green light to be processed, it is only processed
immediately if it contains a variable that has already received a green light. Otherwise, this
row is put into a buffer to be delayed until one of its variables xj also has a green light. Then
aij is chosen as a pivot. Likewise, when a variable receives a green light then, if needed, its
column is put into a buffer until some row containing this variable has a green light.

As was the case in Fomin et al. [5] we use a nice tree decomposition of the underlying
bipartite graph G as defined by Kloks [9]. However, to deal with 0’s at intended pivot locations,
we create temporary buffers for rows and columns that allow us to delay the selection of
pivots as discussed above. As is typical for algorithms based on tree decompositions, row
operations are actually performed on small submatrices of the input matrices. For simplicity,
the algorithm does not manipulate the large given matrix. Instead, these small submatrices,
called boxes, are maintained separately. The small submatrices in this paper include additional
information to keep track of the rows and columns that lie in the temporary buffer, which
allows us to make headway towards the output matrix in row echelon form even when
accidental cancellations occur. It is crucial to perform so-called bookkeeping operations that
ensure that the temporary buffers remain small during the entire application of the buffer.

The paper is organized as follows. The algorithm is described in Section 2, where we
also discuss its correctness. The running time is analyzed in Section 3. We should mention
that, to achieve this running time, we need to keep track of the field operations in a global
way, rather than adding the contributions of the worst-case scenarios at each step. Together,
these two sections establish Theorem 1. We provide several consequences of our result in
Section 4.

2 The Algorithm

We now describe the algorithm Fast Gaussian Elimination. We start with the definition
of a tree decomposition, which we now state. Let G = (V, E) be a ν-vertex graph, with
the standard assumption that V = [ν] = {1, . . . , ν}. A tree decomposition of a graph G is a
tree T with nodes {1, . . . , r}, where each node t is associated with a bag Bt ⊆ V , satisfying
the following properties: (1)

⋃r
t=1 Bt = V ; (2) For every edge {v, w} ∈ E, there exists Bt

containing v and w; (3) For any v ∈ V , the subgraph of T induced by the nodes whose bags
contain v is connected. The width of the tree decomposition T is defined as maxt (|Bt| − 1)
and the treewidth tw(G) of graph G is the smallest k such that G has a tree decomposition
of width k. Tree decompositions were popularized by the seminal work of Robertson and
Seymour [14, 15], but other definitions that are similar or even equivalent have appeared in
earlier work, see [1, 8]. As mentioned in the introduction, we use the concept of nice tree
decomposition introduced by Kloks [9], which is a rooted tree decomposition T of a graph G

such that all nodes are of one of the following types:
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(a) (Leaf) The node t is a leaf of T ;
(b) (Introduce) The node t introduces vertex v, that is, it has a single child s, v /∈ Bs and

Bt = Bs ∪ {v}.
(c) (Forget) The node t forgets vertex v, that is, t has a single child s, v /∈ Bt and

Bs = Bt ∪ {v};
(d) (Join) The node t is a join, that is, it has two children s and s′, and Bt = Bs = Bs′ .
We further assume that the bag associated with the root is empty. This is easy to accomplish,
as any tree decomposition T that satisfies (a)-(d), but does not satisfy this additional
requirement, may be turned into a nice tree decomposition with empty root bag by appending
a path of length at most k + 1 to the root of T , where all nodes have type forget. Having a
root with an empty bag ensures that each vertex of G = (V, E) is associated with exactly
one forget node that forgets it. Moreover, it ensures that, for any v ∈ V , the node of T that
is closest to the root among all t such that v ∈ Bt is the child of the node that forgets v.
Despite the additional structure, a nice tree decomposition may be efficiently derived from an
arbitrary tree decomposition. More precisely, Kloks [9, Lemma 13.1.2] has shown that, if G is
a graph of order ν and we are given an arbitrary tree decomposition of G with width k and r

nodes, it is possible to turn it into a nice tree decomposition of G with at most 4ν nodes and
width at most k in time O(k(ν + r)). Regarding the computation of a tree decomposition,
Bodlaender’s theorem [2] provides an optimal tree decomposition in linear time when the
treewidth k is a constant. Bodlaender et al. [3] and Korhonen [10] compute faster constant
factor approximations in linear time. Thus, for bounded k, there is no need to assume a tree
decomposition is given, since both the tree decomposition and the Gaussian elimination are
then computed in time O(n). However, the constants hidden in the O-notation grow quickly
with k.

We are now ready to describe the algorithm. Let A be an m × n matrix with entries
in a field F and let G = (V, E) be the underlying bipartite graph with vertex set V =
{v1, . . . , vm} ∪ {w1, . . . , wn} associated with it. We wish to find an m × m permutation
matrix P , an n × n permutation matrix Q and an m × n matrix U in row echelon form
such that PAQ is row equivalent to U in a direct way. We shall operate on a nice tree
decomposition T of G with node set [r] and width k rather than on the matrix A itself. The
algorithm Fast Gaussian Elimination works bottom-up on the rooted tree T , that is, it
only processes a node t after its children have been processed. Each node t except the root
produces a data structure known as a box and transmits it to its parent. A box is a matrix
At with O(k) rows and columns. It may be recorded as a triple of matrices (Mt, Nt, Jt)
whose rows and columns are labeled by distinct elements of {v1, . . . , vm} and {w1, . . . , wn},
respectively, associating rows and columns of the boxes with rows and columns of the original
matrix. We may view it as

At =

0mt×nt Mt

Nt Jt

, (1)

where Jt is an rt × ct matrix whose rows and columns are labeled by the elements in Bt, the
bag associated with node t. Here rt is the number of row vertices (i.e., vertices vi) in Bt

and ct is the number of column vertices (i.e., vertices wj) in Bt. The matrices Mt and Nt

have dimensions mt × ct and rt × nt, respectively, where mt < 2ct and nt < 2rt. Observe

ESA 2025
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that some of these matrices can be degenerated, in the sense that mt = 0, nt = 0, ct = 0 or
rt = 0. In a case where mt = 0, nt = 2, ct = 2 and rt = 3, for instance, the box At is 3 × 4
matrix, Mt is a matrix with no rows and two empty columns, and both Nt and Jt are 3 × 2
matrices. We should note that a similar data structure, also called a box, has been exploited
in the context of computing a diagonal matrix that is congruent to a given symmetric matrix
using a tree decomposition of its underlying graph [6].

It will also be useful to assign a canonical ordering to the rows and columns of the input
matrix. We assume that they are ranked according to the order in which their Forget nodes
appear in some topological ordering (e.g., obtained by a post-order traversal of T ), that is,
v1 is the first vertex that is forgotten among all vertices that represent rows, v2 is the second,
and so on. The same applies to w1, . . . , wn.

We start with an intuition about the meaning of the boxes and about how the algorithm
works. Recall that the nodes of the nice tree decomposition T are ordered bottom-up as
1 . . . , r, where r is the root and Br = ∅. At each node t ∈ V (T ), the algorithm initializes box
At (if t is a leaf) or produces a new box At based on its bag Bt and on the boxes transmitted
by its children. While producing the box At, the algorithm may access entries aij of the
input matrix such that both i and j are associated with vertices in Bt. The box At is then
transmitted to its parent, except if t is the root of T . We call this processing node t.

It is also useful to keep in mind that the algorithm performs two types of elementary
row operations, which we call authentic operations and bookkeeping operations. The former
are operations that can be performed in the full matrix A in order to reach row echelon
form. The latter are operations that are only performed on the boxes as a way to limit their
sizes, but which do not have full matrix counterparts. The effect of processing nodes may be
viewed as a sequence of m × n matrices

Ã0 = A, Ã1, . . . , Ãr = U, (2)

where U is in row echelon form and Ãt is obtained from Ãt−1 by performing the authentic
elementary row operations that have been performed while node t is processed. We should
mention that this sequence of row equivalent matrices is a simplification of what actually
happens, but that it could be achieved if an oracle gave us the proper ordering of rows and
columns of A. In reality, the proper orderings are also computed by the algorithm while
the nodes are processed, leading to the permutation matrices P and Q mentioned in the
statement of Theorem 1.

To achieve the complexity stated in Theorem 1, row operations cannot be actually
performed on m × n matrices, but are instead performed only in the (smaller) boxes. It is
useful to think that any row or column of the input matrix A, say row i, is initially untouched
and changes to a regular row when the vertex vi associated with it appears in the bag of a
node of the branch1 of the tree decomposition rooted at t. When vi is removed from the
bag (at the node that forgets it in the nice tree decomposition), either row i is assigned
a pivot in some column j, in which case row i is classified as processed (column j is also
classified as processed), or row i becomes a buffer row, meaning that it has been given the
green light for a pivot, but that the decision of assigning a pivot has been deferred to a later
step because no column has received a green light. In the process of keeping the size of the
box bounded, the algorithm may decide that it is impossible or unnecessary to assign a pivot
to a buffer row or to a buffer column, in which case the status of the row or column also

1 We use “branch” to refer to the subtree induced by all descendants of a node.
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changes to processed. We observe that the classification of each row and column is defined
independently for disjoint branches of the tree decomposition, and an important feature of
the algorithm is that these independent classifications can be made compatible when two
branches are merged (which happens at join nodes).

This finally gets us to the meaning of a box At = (Mt, Nt, Jt) at node t. The rows and
columns of the matrix Jt are precisely the regular rows and columns of the branch Tt of
T rooted at node t. In other words, these are the rows and columns corresponding to the
vertices in the bag Bt. Moreover, each entry ij of Jt records the net change to the original
entry aij due to row operations performed while processing nodes in Tt. The matrix Mt

records the entries ij of the matrix Ãt defined in (2) in the case where i is a buffer row (with
respect to Tt) and j is a regular column. Analogously, Nt records the entries ij of Ãt in the
case where i is a regular row and j is a buffer column. This reveals another important feature
of the algorithm: The entries of the full m × n matrix associated with regular rows and
regular columns can easily be modified in parallel by computations in disjoint branches, as
the algorithm does not capture their exact values while processing a single branch. The boxes
just store the net changes to the values due to operations in this branch. However, this does
not happen for buffer rows and buffer columns, for which exact values are recorded in the
box. The top left corner of At in (1) shows that, if i is a buffer row and j is a buffer column,
the entry ij in Ãt is equal to zero. This is consistent with the idea that the algorithm selects
a new pivot whenever there are a buffer row i and a buffer column j for which the element
ij is nonzero, as both the row and the column had already been given the green light as
possible rows and columns for a pivot. So, if row i and column j are in the buffer at the end
of step t, then the entry ij must be 0.

While producing the boxes, the algorithm may select pivots for the output matrix U , it
may identify zero rows that cannot contain a pivot and it may identify columns that are
linear combinations2 of other columns, and therefore cannot contain pivots together with the
other columns. The status of these rows and columns changes to processed, which means
that information about them is recorded by global variables, while they are removed from
the box.

After this description, we come back to a matrix Ãt in (2), depicted in Figure 13. The top
left entries lie in processed rows and processed columns that contain pivots. These entries are
not modified later in the algorithm. The bottom rows are (processed) zero rows that have
been produced while limiting the size of the set of buffer rows (it is indeed impossible to find
a pivot in such a row), while the rightmost columns are (processed) columns that have been
identified as linear combinations of other columns (except for possible entries in rows whose
pivot had already been computed when this column was processed). As a consequence, it is
unnecessary to assign a pivot to them. Moreover, while the actual values in the rightmost
columns may be modified in later steps of the algorithm, we need not keep track of them,
as each such column may be computed as a linear combination of (a known set of) O(k)
columns with smaller index at the end of the algorithm. The central submatrix represents
entries in the buffer, and in regular or untouched rows and columns. Some of them lie in the
box where computations are actually performed in a given step.

Before giving a formal description of every step of the algorithm, we briefly describe what
is done at a node of each type. A node of type leaf merely initializes a box with regular rows
or columns, while a node of type introduce simply adds a new regular row or column to the

2 Actually, they are not necessarily linear combinations of the other columns with respect to the entire
matrix, but they are linear combinations with respect to a submatrix as depicted in Figure 1.

3 The authors thank Elizandro Max Borba for the figure.
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Figure 1 A description of an intermediate matrix in the Gaussian elimination process.

box transmitted by its child. Nodes of type join combine the information that is passed on
by two different branches of the decomposition, which have been processed independently of
each other. Let Aj and Aℓ denote the boxes produces by the children of t. A new matrix
Mt is produced by stacking the matrix Mj on top of Mℓ, and a new matrix Nt is produced
by juxtaposing Nj to the left of Nℓ. Such matrices Mt and Nt may become too large, so
that row operations are performed to remove some rows and/or columns from the buffer.
Producing Jt also requires merging Jj and Jℓ , as the regular rows and columns are the same.
Being able to easily merge the matrices transmitted by the children is the reason why the
rows and columns are considered with the canonical ordering mentioned above.

Nodes of type forget concentrate most of the action. Recall that each row i of A is
associated with a vertex vi of G, which in turn is associated with the unique Forget node
of T that forgets vi. Analogously, each column j of A is associated with a vertex wj of G

and the unique Forget node of T that forgets wj . Assume that the algorithm is processing a
Forget node t, which means that it received a box As of its child s. Further assume that
node t forgets a vertex vi corresponding to row i. This means that the algorithm singles
out this row as a candidate for having a pivot. In the box As, it checks whether there is
a column j that has already been singled out for a possible pivot, but which has no pivot
so far. These are precisely the columns of Ns. If such a column exists, it checks whether
the entry ij in Ns nonzero. If this is also satisfied, the algorithm performs operations to
create a pivot in row i and column j, and they are both removed from the box. If one of the
conditions fails, row i is removed from Js and added to Mt, which contains rows singled out
for a pivot, but which have no pivot so far. Furthermore, if the condition on the maximum
number of rows of Mt fails after the addition of this new row, the algorithm acts to remove
some rows from the buffer.

Analogously, if node t forgets vertex wj corresponding to column j, it first checks whether
there are rows that have been singled out for pivots, but have not been used, namely the
rows of Ms. It then looks for one such row i for which the entry ij is nonzero. If such a row
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exists, the algorithm performs operations to create a pivot in row i and column j, and they
are both removed from the box. If one of the conditions fails, column j is removed from Js

and added to Nt, which contains columns singled out for a pivot, but which have no pivot
so far. If the condition on the number of columns of Nt fails after the addition of this new
column, the algorithm acts to remove some columns from the buffer.

A high level description of the algorithm may be found in Figure 2. Note that, in this
descriptiom, we have five global variables: the number ρ of pivots already computed, two
vectors u and p of length m and two vectors w and q of length n. Initially, these are zero
vectors. At the end of the algorithm, vector u allows us reconstruct the rows of the output
matrix U , while vectors p and q encode the permutations that generate P and Q, respectively.
As we discussed, the algorithm may also find columns of A that are linear combinations of
other columns and remove them from boxes. When this happens, the linear combination that
produces it is recorded in the vector w, so that the values of entries of U in these columns
can also be recovered at the end of the algorithm.

Fast Gaussian Elimination(A)
input: a nice tree decomposition T of width k of the underlying
graph G associated with the m × n matrix A, the nonzero entries of A

output: matrices U, P and Q

Initialize zero vectors p and u of length m

Initialize zero vectors q and w of length n

Initialize the counter ρ = 0 for the number of pivots
Order the nodes of T as 1, 2, . . . , r in post-order
for t from 1 to |T | do

if is-Leaf(t) then (Mt, Nt, Jt)=LeafBox(Bt)
if is-Introduce(t) then (Mt, Nt, Jt)=IntroBox(Bt, v, As)
if is-Join(t) then (Mt, Nt, Jt)=JoinBox(Bt, As, As′)
if is-Forget(t) then (Mt, Nt, Jt)=ForgetBox(Bt, v, As, A[Bt])

Figure 2 High level description of the algorithm Fast Gaussian Elimination. The entries of
matrix U and the permutations leading to P and Q are constructed stepwise during the ForgetBox
and JoinBox operations.

In the remainder of this section, we shall describe each operation in detail. To simplify
our discussion, for a node t, we say that buffer rows and buffer columns have type 1, while
regular rows and regular columns have type 2.

Leaf Box

When a node is a leaf corresponding to a bag Bt, then we apply procedure Leaf Box. This
procedure simply initializes a box At where mt = 0, nt = 0, and Jt is a zero matrix of
dimension rt × ct whose rows and columns are labeled by the elements of Bt, which contains
rt row vertices and ct column vertices. No elementary row operations are performed.

Introduce Box

When a node t introduces a vertex u, its bag satisfies Bt = Bs ∪ {u}, where Bs (which does
not contain u) is the bag of its child s. The input of Introduce Box is the vertex u that
has been introduced and the box As transmitted by its child. The box At is obtained by the
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insertion of a new type 2 row or column labeled u whose elements are all zero4, taking care
to insert it in the correct order (with respect to the canonical order of rows and columns
of Jt. More precisely, if u is a row vertex vi, this means that Nt and Jt are obtained from
Ns and Js, respectively, by the addition of a zero row, while Mt = Ms. It is clear that
nt = ns < 2rs < 2(rs + 1) = 2rt. Similarly, if v is a column vertex wj , the addition of this
column means that Mt and Jt are obtained from Ms and Js, respectively, by the addition
of a zero column, while Nt = Ns. It is clear that mt = ms < 2cs < 2(cs + 1) = 2ct. No
elementary row operations are performed.

Join Box

Let t be a node of type Join and let As and As′ be the boxes transmitted by its children,
where s < s′ < t. By the definition of box, As and As′ have the same rows and columns
of type 2, that is, Js and Js′ have the same dimension and have rows and columns labeled
by the same elements (in the same order). Moreover, because vertices of type 1 have been
forgotten in their respective branches, the labels of the rows of Ms and Ms′ are all different,
as are the labels of the columns of Ns and Ns′ . The JoinBox operation first creates a matrix
A∗

t whose rows and columns are labeled by the union of the labels of As and As′ with the
structure below.

A∗
t =

0ms×ns 0ms×ns′ Ms

0ms′ ×ns 0ms′ ×ns′ Ms′

Ns Ns′ J∗
t

. (3)

Here J∗
t = Js + Js′ has order rt × ct and records the net change of the entries of the original

matrix because of row operations in the two branches that are being merged at this step.
Let M∗

t be the (ms + ms′) × ct matrix obtained by stacking Ms on top of Ms′ 5. Let N∗
t be

the rt × (ns + ns′) matrix obtained by placing Ns to the left of Ns′ .
If ms + ms′ < 2ct, define Mt = M∗

t . Otherwise ms + ms′ ≥ 2ct. Apply Gaussian
elimination to M∗

t until we get a matrix M̃t in row echelon form. Here, we can use a standard
algorithm for dense matrices that takes O(c3

t ) operations, as M∗
t has ct columns and at most

4ct − 2 rows. Since ms + ms′ ≥ 2ct, this process ends with at least ct zero rows. The matrix
Mt is obtained from M̃t by removing all the zero rows, and by reordering the rows so that
they remain in the original ordering of M∗

t . Assume that the zero rows are labeled by the
vertices vi1 , . . . , viℓ

. The algorithm updates the permutation vector p by assigning the values
i1, . . . , iℓ to the last ℓ components of p with value 0, which means that the ℓ zero rows of
M∗

t become the top zero rows in the description of Figure 1. Given that the new box is
defined based on the matrix that has been modified, the type II row operations used for
Gaussian elimination are authentic row operations. Given that the order of the rows has
been preserved, type I row operations are bookkeeping operations (we observe that the labels
of the rows used for authentic row operations will always refer to the original input matrix
to account for the fact that row interchanging is not actually performed)6.

Similarly, if ns + ns′ < 2rt, define Nt = N∗
t . Otherwise, make an auxiliary copy of N∗

t

and apply Gaussian elimination on it until we get a matrix Ñt in row echelon form. As above,
we can use a standard algorithm for dense matrices that takes O(r3

t ) operations. There is

4 The added row or column may actually be empty if a new row vertex is introduced, but cs = 0 and
ns = 0, or a new column vertex is introduced, but rs = 0 and ms = 0.

5 Alternatively, to preserve the canonical ordering of rows, we could merge the two matrices Ms and M ′
s

in a way that preserves the canonical ordering. However, this does not affect the final result.
6 The algorithm could be easily adapted to a version where row interchanges are also authentic row

operations, but this makes the analysis slightly more involved.
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a set St of at most rt columns that form a basis of the column space of N∗
t (precisely the

columns of N∗
t with pivots in Ñt). The matrix Nt is obtained from N∗

t by removing the
columns that are not in St, form which there are at least ns + ns′ − rt ≥ rt.

▶ Remark 2. We emphasize that Nt is defined in terms of N∗
t rather than Ñt in this case,

which means that the row operations performed to obtain Ñt are not performed in the full
matrix while producing the sequence (2), but are instead auxiliary operations to find a basis
of the column space of N∗

t and to write the remaining columns as linear combinations of
the columns in this basis. This is crucial. If we consider the effect of the row operations in
the full matrix, while the nonzero entries of the rows corresponding to Mt in the full matrix
lie entirely within Mt (except perhaps for entries in columns that are linear combinations
of other columns), there may be nonzero entries in the rows corresponding to Nt that lie
outside the box At. Indeed, the rows of Nt are regular rows, so that they may even be
processed in parallel by different branches of the tree decomposition. Adding multiples of
them to other rows might affect entries that are not being monitored at this step. This is
why the operations performed to turn a copy of N∗

t to row echelon form must be bookkeeping
operations.

Coming back to the description of the algorithm, assume that wj1 , . . . , wjℓ
are the labels of

the columns of N∗
t with no pivot in Ñt, so that they are linear combinations of the remaining

columns of Ñt. The algorithm updates the permutation vector q by assigning the values
j1, . . . , jℓ to the last ℓ components of q with value 0, which may be seen as moving these
columns to the right (see Figure 1). Moreover, the corresponding entries of the vector w
record information about the linear combinations. For each column wji , this information
consists of the indices of the columns that produce the linear combination, the coefficients
of this linear combination, and the number of pivots ρ at this step of the algorithm (as the
linear combinations are with respect to the part of the column that does not include rows
for which pivots have been assigned.)

Forget Box

Assume that t forgets vertex v and let s be its child, so that Bt = Bs \ {v}. This procedure
uses As to produce a new box At where the row or column associated with v gets a pivot
(and is therefore removed from the box) or changes to type 1.

Assume first that v = vi for a row i. Consider the matrix A∗
t given by7

A∗
t =

0ms×ns M∗
t

N∗
t J∗

t

xi yi

, (4)

where M∗
t = Ms, xi is row vi of Ns, N∗

t is obtained from Ns by removing row xi, J∗
t is

obtained from Js by removing row vi, and yi is obtained from row vi of Js by adding the
entry aij of the input matrix to the entry corresponding to each column wj .

7 Representing the row associated with vi as the last row is helpful for visualizing the operations, but this
need not be part of an implementation.
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If xi is empty or zero, the algorithm sets Jt = J∗
t , and adds yi to M∗

t as the new bottom
row to produce M∗∗

t . If M∗∗
t has at most 2ct −1 rows, the algorithm calls this matrix Mt and

concludes the step. Intuitively, this means that row vi is a new buffer row. Otherwise M∗∗
t

has 2ct rows. The algorithm turns this matrix into a matrix M̃t in row echelon form and
removes ℓ ≥ ct zero rows of M̃t to produce Mt, as was done in Join Box. As a byproduct
of these authentic row operations, the algorithm updates p. Similarly, if ns < 2rt, we set
Nt = N∗

t . However, because rt = rs − 1 and the number of columns of N∗
t is ns, it may

be that ns ≥ 2rt. If this happens, as was the case for Join Box, the algorithm performs
bookkeeping operations to define Nt, and update q and w.

If xi is nonempty and nonzero, the algorithm selects the first nonzero entry of xi, suppose
that it is in column wj . It then performs row operations in A∗

t in order to eliminate all the
other nonzero elements in column wj (note that these elements are necessarily in rows of
type 2, so that only rows in N∗

t and J∗
t are modified). The algorithm defines p(ρ) = i and

q(ρ) = j, while u(ρ) records information about the nonzero entries of the vector [xi yi],
namely the labels j of the nonzero columns of the vector [xi yi] and the actual values of
the nonzero entries. The algorithm then adds one to the value of ρ. Matrix Jt is assigned
this modified J∗

t , matrix Mt is defined as M∗
t . Moreover, column j is removed from N∗

t to
produce N∗∗

t . The row operations performed up to this point are authentic. If the number of
columns in N∗∗

t is less than 2rt (note that rt = rs − 1 and that N∗∗
t has ns − 1 columns), Nt

is set to be N∗∗
t . Otherwise, nt = 2rt and the algorithm performs bookkeeping operations as

in Join Box to define Nt, and update q and w.
Next assume that v = wj for a column j. Consider the matrix A∗

t given by

A∗
t =

0ms×ns M∗
t cj

N∗
t J∗

t dj

, (5)

where N∗
t = Ns, M∗

t is obtained from Ms by removing column wj , cj is column wj of Ms,
J∗

t is obtained from Js by removing column wj and dj is obtained from column wj of Js by
adding the entry aij (of the input matrix) to the entry corresponding to each row vi.

If cj is empty or zero, the algorithm sets Jt = J∗
t and adds dj as a new column of to

N∗
t to produce N∗∗

t . If N∗∗
t has fewer than 2rt columns, the algorithm calls this matrix

Nt and concludes the step. Otherwise N∗∗
t has 2rt columns and the algorithm defines Nt

with bookkeeping operations as was done in Join Box (this leads to changes in q and w).
Similarly, if ms < 2ct, we set Mt = M∗

t . However, because ct = cs − 1 and the number of
rows of M∗

t is ms, it may be that ms ≥ 2ct. If this happens, the algorithm turns M∗
t into a

matrix M̃t in row echelon form and removes the ℓ ≥ ct zero rows of M̃t to produce Mt, as
was done above (this leads to changes in p). These operations are authentic.

If cj is nonempty and nonzero, the algorithm selects the first nonzero entry of cj , suppose
that it is in row i (of type 1). Let cij be this nonzero entry and let xi be row i in M∗

t . The
algorithm then performs authentic row operations in A∗

t using row i to eliminate all the
other nonzero elements in column j (note that only rows in M∗

t and J∗
t are modified). It

then removes row i from M∗
t to produce M∗∗

t . As in the case of rows, the algorithm defines
p(ρ) = i and q(ρ) = j, while u(ρ) records the nonzero entries of [xi, yi]. It then updates
ρ to ρ + 1. If the number of columns rows of M∗∗

t is less than 2ct = 2cs − 2, Mt is set to
be M∗∗

t . Otherwise, the algorithm turns M∗∗
t into a matrix M̃t in row echelon form with

authentic operations and removes ℓ ≥ ct zero rows of M̃t to produce Mt, as was done in Join
Box (this leads to changes in p)). Matrix Nt is defined as N∗

t .
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3 Running time of the algorithm

In this section, we find an upper bound on the number of operation required to produce
matrices P , Q and U as in the statement of Theorem 1 using algorithm Fast Gaussian
Elimination. If the algorithm is given a tree decomposition T with r nodes and width k of
the underlying graph G of matrix M , it first computes a nice tree decomposition T ′ of the
same width k with fewer than 4(m + n) nodes in time O(k(r + m + n)) as discussed above.
As it turns out, the number of nodes of each type in T ′ is at most m + n.

We consider the number of operations performed at each type of node. Leaf Box initializes
a matrix in rt × ct = O(k2) trivial steps. Introduce Box uses O(k) steps to create a row or
column filled with zeros.

For Join Box and Forget Box, the main cost comes from row operations. As each row
has size at most nt + ct ≤ 2rt + ct ≤ 2(rt + ct) ≤ 2k + 2, each such row operation requires
O(k) additions and multiplications. Regarding Forget Box, when vertex vi associated with
a row i or vertex wj associated with a column j is forgotten, either a new type 1 row or
column is created, or a new pivot is found. If the latter happens, the algorithm performs
at most mt + rt − 1 = O(k) row operations, where each row has size at most O(k), leading
to O(k2) field operations. Additionally, the algorithm may perform row operations to keep
Mt or Nt of the right size, just as in Join Box (see below). If a new type 1 row or column
is created, the algorithm just inserts the new row in Mt or the new column in Nt, possibly
performing row operations to keep Mt or Nt of the right size, just as in Join Box.

It remains to account for the row operations performed to keep matrices Mt and Nt of
the right size. Recall that, every time row operations of this type are necessary to produce
Mt, we start with a matrix of dimension m∗ × ct, where m∗ ≥ 2ct and we create at least
m∗ − ct ≥ ct zero rows. These rows become processed. For Nt, we start with a matrix of
dimension rt ×n∗, where n∗ ≥ 2rt and we identify at least n∗ −rt ≥ rt columns that are linear
combinations of other columns. Again, the columns become processed. We shall keep track
of the overall number of field operations performed at these steps by “charging” the rows and
columns processed at this step, that is, if f field operations are performed and ℓ rows are
processed, each of the ℓ rows is charged with f/ℓ operations. Because of the dimensions of
the matrices, getting them to row echelon form takes O(m∗2ct) and O(n∗r2

t ) field operations,
respectively. In particular, each row can be charged at most O(m∗ct) = O(k2) and each
column can be charged at most O(r2

t ) = O(k2). Since any row or column may be processed
at most once in this way, the overall number of field operations that the algorithm performs
to keep matrices Mt or Nt of the right size is O((m + n)k2)).

Overall, the number of operations taken by the algorithm to produce the vectors p
and q, in addition to vectors u(i) and w(j) for every i ≤ ρ = rank(A) and every j > ρ is
O(k(|T | + m + n) + k2(m + n)).

We now consider the decomposition Ut = PtÃtQt. The matrices P and Q are defined
using p and q with no additional field operations. Indeed, P = (pij) is the permutation
matrix such that pp(i)i = 1 for 1 ≤ i ≤ m, while Q = (qij) is the permutation matrix such
that qq(i)i = 1 for 1 ≤ i ≤ n.

For U , the entries may be computed in two ways. They are either obtained from a vector
u(i) with no additional computation, or they are obtained as a linear combination of O(k)
earlier values using coefficients recorded in w(j), which requires O(k) sums and products.
The number of operations performed to obtain entries of the second type is at most

n∑
ℓ=rank(A)+1

(m − γℓ)O(k) = O((n − rank(A))km). (6)

This concludes the analysis.
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4 Consequences of Theorem 1

We conclude the paper with the statement of results that are immediate consequences of
Theorem 1.

▶ Corollary 3. If A is an m×n matrix whose bipartite graph is given with a tree decomposition
of width k with O(m+n) nodes and b is a column vector of length n, then using O(k2(m+n))
time and arithmetic operations, it can be decided whether the system of linear equations
Ax = b has a solution, and if so, then such a solution can be produced.

Proof. To get one solution of the system of linear equations Ax = b, the algorithm to
transform A into row echelon form is augmented by doing all row operations on the right
hand side as well. If one ever gets a zero row on the left hand side together with a non-zero
value on the right hand side, then the system has no solutions. Otherwise, with the left
hand side in row echelon form, a solution is obtained by back-substitution. Hereby, all
variables that correspond to columns that have been identified as linearly dependent during
the algorithm, or just have no pivot, are set to 0. ◀

▶ Corollary 4. The following hold if A is an m × n matrix whose bipartite graph is given
with a tree decomposition of width k with O(n) nodes:
(a) The rank of A can be computed using O(k2(m + n)) time and arithmetic operations.
(b) For m = n, the determinant of A can be computed using O(k2n) time and arithmetic

operations.

Proof. The rank is just the number of non-zero rows of the output matrix U . If one of the
columns is a linear combination of previous columns, the determinant is zero. Otherwise, the
determinant is just the product of the signs of the permutation matrices P and Q with the
product of the diagonal elements of the equivalent matrix in row echelon form. ◀

▶ Corollary 5. For a graph given with a tree decomposition of width k with O(n) nodes, the
size of a maximum matching can be computed using O(k2n) time and arithmetic operations
by a randomized algorithm with with one-sided error that is correct with probability at least
1 − 1/nc for an arbitrary constant. In case of an error, the algorithm reports a suboptimal
value.

Proof. This follows from Theorem 1.4 of Fomin et al. [5] by replacing their O(k3n) rank
algorithm by our O(k2n) rank algorithm. ◀
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