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Abstract
Many application areas collect unstructured trajectory data. In subtrajectory clustering, one is
interested to find patterns in this data using a hybrid combination of segmentation and clustering.
We analyze two variants of this problem based on the well-known SetCover and CoverageMax-
imization problems. In both variants the set system is induced by metric balls under the Fréchet
distance centered at polygonal curves. Our algorithms focus on improving the running time of the
update step of the generic greedy algorithm by means of a careful combination of sweeps through a
candidate space. In the first variant, we are given a polygonal curve P of complexity n, distance
threshold ∆ and complexity bound ℓ and the goal is to identify a minimum-size set of center curves
C, where each center curve is of complexity at most ℓ and every point p on P is covered. A point
p on P is covered if it is part of a subtrajectory πp of P such that there is a center c ∈ C whose
Fréchet distance to πp is at most ∆. We present an approximation algorithm for this problem with
a running time of O((n2ℓ +

√
k∆n5/2) log2 n), where k∆ is the size of an optimal solution. The

algorithm gives a bicriterial approximation guarantee that relaxes the Fréchet distance threshold by
a constant factor and the size of the solution by a factor of O(log n). The second problem variant
asks for the maximum fraction of the input curve P that can be covered using k center curves, where
k ≤ n is a parameter to the algorithm. For the second problem variant, our techniques lead to an
algorithm with a running time of O((k + ℓ)n2 log2 n) and similar approximation guarantees. Note
that in both algorithms k, k∆ ∈ O(n) and hence the running time is cubic, or better if k ≪ n.
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1 Introduction

Trajectory analysis is a broad field ranging from gait analysis of full-body motion traject-
ories [16, 20, 13], via traffic analysis [21] and epidemiological hotspot detection [25] to
Lagrangian analysis of particle simulations [24]. Using the current availability of cheap track-
ing technology, vast amounts of unstructured spatio-temporal data are collected. Clustering
is a fundamental problem in this area and can be formulated under various similarity metrics,
among them the Fréchet distance. However, the unstructured nature of trajectory data
poses the additional challenge that the data first needs to be segmented before the trajectory
segments, which we call subtrajectories, can be clustered in a metric space. Subtrajectory
clustering aims to find clusters of subtrajectories that represent complex patterns that reoccur
along the trajectories [1, 8, 17], such as commuting patterns in traffic data.
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We study two variants of a problem posed by Akitaya, Brüning, Chambers, and Driemel [3],
which are based on the well-known set cover and coverage maximization problems. Both
rely on the definition of a geometric set system built using metric balls under the Fréchet
distance. Given a polygonal curve, we are asked to produce a set of “center” curves that
either
1. has minimum cardinality and covers the entirety of the input curve, or
2. covers as much as possible of the input curve under cardinality constraints.
In either setting a point p of the input-curve is considered as “covered”, if there is a subcurve
πp of the input curve that contains p and has small Fréchet distance to some center curve.
Note that a point p may be covered by multiple center curves. For the precise formulation
refer to Section 2. This formulation extends immediately to a set of input curves – instead
of one – where one is now tasked to cover the entirety (respectively as much as possible) of
all points on all input curves combined.

In this paper we study the continuous variant of the problem where we need to cover the
continuous set of points given by the input polygonal curve. It is instructive, however, to first
consider a discrete variant of the set cover instance as follows. Given a discrete point sequence
A = a1, . . . , an, consider the set of contiguous subsequences of the form Aij = ai, . . . , aj .
We say ak is contained in the set defined by Aij if there exist i′ ≤ k ≤ j′ such that Ai′j′ is
similar to Aij . Note that a full specification of this set system has size Θ(n3) in the worst
case. This phenomenon is shared with the continuous setting where all known discretizations
lead to a cubic-size set system. In this paper, we examine the question of whether we can
obtain subcubic-time algorithms by internally representing the set system implicitly.

2 Preliminaries

An edge is a map e : [0, 1]→ Rd defined by two points p, q ∈ Rd as the linear interpolation
t 7→ p + t(q − p). A polygonal curve is a map P : [0, 1] → Rd defined by an ordered set
(p1, . . . , pn) ⊂ Rd as the result of concatenating the edges (e1, . . . , en−1), where ei is the
edge from pi to pi+1. Any point P (t) is said to lie on the edge ei if t lies in the preimage of
ei. Any point P (t) lies on at most two edges, exactly if it defines the endpoint of edge ei

which coincides with the start point of ei+1. The number of points n defining the polygonal
curve P is its complexity, and we denote it by |P |. The set of all polygonal curves in Rd of
complexity at most ℓ we denote by Xd

ℓ . For any polygonal curve P and values 0 ≤ s ≤ t ≤ 1
we define P [s, t] to be the subcurve of P from s to t, which itself is a polygonal curve of
complexity at most |P |. For two polygonal curves P and Q we define the continuous
Fréchet distance to be dF (P, Q) = inff,g maxt∈[0,1] ∥P (f(t)) − Q(g(t))∥ where f and g

range over all non-decreasing surjective functions from [0, 1] to [0, 1].

▶ Definition 1 (∆-coverage [3]). Let P be a polygonal curve in Rd, and let ∆ ∈ R>0 and
ℓ ∈ N≥2 be given. For any Q ⊂ Xd

ℓ , define the ∆-coverage of Q on P (refer to Figure 1) as

CovP (Q, ∆) =
⋃

Q∈Q

 ⋃
0≤s≤t≤1, dF (P [s,t],Q)≤∆

[s, t]

 ⊂ [0, 1].

For a curve Q ∈ Xd
ℓ we denote the ∆-coverage CovP ({Q}, ∆) by CovP (Q, ∆).

Problem 1: Subtrajectory Covering (SC). Let P be a polygonal curve in Rd, and let
∆ ∈ R>0 and ℓ ∈ N≥2 be given. The task is to identify a set Q of curves in Xd

ℓ minimizing
|Q| such that CovP (Q, ∆) = [0, 1].
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Figure 1 a): Example of all points on P that lie on subcurve of P that have Fréchet distance at
most ∆ to a curve Q of complexity 3. b): The set CovP (Q, ∆) ⊂ [0, 1].

▶ Definition 2 (Bicriteria approximation for SC). Let P be a polygonal curve in Rd, and let
∆ ∈ R>0 and ℓ ∈ N≥2 be given. Let C∗ ⊂ Xd

ℓ be a set of minimum cardinality such that
CovP (C∗, ∆) = [0, 1]. Let α, β ≥ 1 be given. An algorithm that outputs a set C ⊂ Xd

ℓ of size
α|C∗| such that CovP (C, β∆) = [0, 1] is called an (α, β)-approximation for SC.

Problem 2: Subtrajectory Coverage Maximization (SCM). Let P be a polygonal curve in
Rd, and let ∆ ∈ R>0, ℓ ∈ N≥2 and k ∈ N≥1 be given. The task is to identify a set Q of k

curves in Xd
ℓ maximizing the Lebesgue measure ∥CovP (Q, ∆)∥.

▶ Definition 3 (Bicriteria approximation for SCM). Let P be a polygonal curve in Rd, and let
∆ ∈ R>0 and ℓ ∈ N≥2 be given. Let C∗ ⊂ Xd

ℓ be a set of size k such that ∥CovP (C∗, ∆)∥ is
maximum. Let α ≥ 0 and β ≥ 1 be given. An algorithm that outputs a set C ⊂ Xd

ℓ of size k

such that ∥CovP (C, β∆)∥ ≥ α ∥CovP (C∗, ∆)∥ is called an (α, β)-approximation for SCM.

2.1 Prior work on Subtrajectory Covering and Coverage Maximization
We first discuss prior work on the SC problem. The SC problem was introduced by Akitaya,
Brüning, Chambers, and Driemel [3]. Their results were later improved by Brüning, Conradi,
and Driemel [4]. Both works identified a curve S that approximates the input P , such that
any solution to the problem induces an approximate solution of similar size consisting of
only subcurves of S. This set of subcurves defines a set system which turns out to have low
VC-dimension. This enables randomized set cover algorithms with improved approximation
factors and expected running time in O(n(k∆)3(log4(Λ/∆) + log3(n/k∆)) + n log2 n), where
Λ corresponds to the arc length of the curve P . While the complexity of the main algorithm
in [3] depends on the relative arclength of the input curve, the latter [4] also identified a set
of points on S that define O(n3) subcurves of complexity 2 which induce the set-system of
the SetCover instance resulting in an expected running time of Õ(k∆n3), where Õ(·) hides
polylogarithmic factors. The approximation quality of both approaches depends on ℓ, k∆ as
well as on the VC-dimension of the set system. A drawback of these algorithms is that they
generate cluster centers that are line segments only and that the algorithm is randomized
with large constants in the approximation factors. Conradi and Driemel [9] took a different
approach by focusing on the greedy set cover algorithm, which successively adds the candidate
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curve maximizing the added coverage to a partial solution until the entirety of [0, 1] is covered.
Their algorithm computes O(n3ℓ) candidate curves that have complexity up to ℓ instead of 2.
Applying the greedy algorithm, this results in a deterministic (O(log n), 11)-approximation
algorithm with running time Õ(k∆n4ℓ + n4ℓ2). Recently, van der Hoog, van der Horst and
Ophelders showed [23] that the cardinality of the candidate curve set can be further reduced
to a size of O(n2 log n). They improve the quality of the approximating curve S resulting in
a (O(log n), 4)-approximation with running time in Õ(k∆n3).

As for the SCM problem, by standard sub-modular function maximization arguments
[19, 15], the greedy algorithm used in all these approaches [3, 4, 9, 23] yields an (O(1),O(1))-
approximation. Using this reduction, the candidate curve set identified in [23] yields a
(O(1), 4)-approximation to the SCM problem with a running time of Õ(kn3).

2.2 Structure and contributions
In Section 3 we describe how to obtain a set of Õ(n2) candidate center curves C based on
known transformations [23]. Unlike the recent line of work discussed above [3, 4, 9, 23], we do
not improve any further on the size of the set C. Instead, our focus lies on the update step of
the greedy set cover algorithm. In this step, we have to find the element c ∈ C that maximizes
the coverage that is added to a partial solution. In Section 4 we describe our first contribution:
a partition of the set C into few ordered lists, called sweep-sequences, which we each process
via a sweep algorithm computing their coverage reusing prior computations. Unfortunately,
the coverage does not immediately allow efficient maintenance along a sweep-sequence. Here,
we introduce our second contribution: a candidate-specific approximation of the coverage,
called the proxy coverage. In Section 5, we describe how sweep-sequences allow efficient
maintenance of the proxy coverage and with Theorem 26 describe the culmination of our
techniques enabling our algorithm: for a weighted set A ⊂ [0, 1] of points we are able to
compute the total weight of points that lie inside the proxy coverage of every element in the
sweep-sequence in logarithmic time per element.

In Section 6 we present two (O(log n), 4)-approximation algorithms for Subtrajectory
Covering. The algorithms discretize the ground-set [0, 1] by the arrangement (of size Õ(n3))
of the intervals representing the coverage of each element in C. Computing the arrangement
together with standard greedy set cover techniques and the subroutine from Theorem 26
results in a first approximation algorithm for SC with running time in Õ(|C|n+k∆|C|) = Õ(n3)
(see Corollary 30). Our third contribution is a sampling technique improving the running time:
we identify a representative subset (comparable to a sampling) of size roughly O(

√
k∆n3/2) of

the arrangement. This enables a faster algorithm by first covering the representative subset
and with it almost the entire arrangement in an initial pass. The remaining O(

√
k∆n5/2)

elements of the arrangement are then identified and covered resulting in the following theorem.

▶ Theorem 4. There is a (96 ln(n) + 128, 4)-approximation for SC. Given a polygonal curve
P of complexity n, ∆ > 0 and ℓ ≤ n, its running time is in O

((
n2ℓ +

√
k∆n

5
2

)
log2 n

)
,

where k∆ is the size of the smallest subset C∗ ⊂ Xd
ℓ such that CovP (C∗, ∆) = [0, 1].

As trivially k∆ ≤ ⌈n
ℓ ⌉, Theorem 4 yields an algorithm with (near-)cubic running time.

Further, in the case that k∆ ∈ O(n1−ε), it yields an algorithm with subcubic running time.
This compares favorably to the best known algorithm with running time Õ(k∆n3) [23].

In Section 7, we sketch how our techniques can be applied to obtain faster algorithms for
the SCM problem which compares favorably to the best known algorithm with running time
Õ(kn3) [23]. All omitted proofs and discussions can be found in the full version.
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▶ Theorem 5. Let ε ∈
(
0, 1

5
]
. There is a ( e−1

16e , 4 + ε)-approximation algorithm for SCM,
where e is the base of the natural logarithm. Given a polygonal curve P of complexity n,
∆ > 0, ℓ ≤ n and k > 0, its running time is in O((k + ℓ)n2ε−2 log2 n log ε−1).

2.3 Related work
Prior to the line of work on the SC and SCM problem discussed in Section 2.1, Buchin et
al. [7] presented one of the earlier works on subtrajectory clustering for both the discrete
and continuous Fréchet distance. Their work focuses on finding the largest subtrajectory
cluster, where different variants of “largest” are considered. They present hardness results for
(2− ε)-approximations for any ε and a matching polynomial time 2-approximation algorithm.
Gudmundsson and Wong [12] present a cubic lower bound conditioned on SETH for the same
problem and show that this lower bound is tight. In subsequent experimental work [11, 5, 6, 8]
the formulation from [7] was studied, but these works do not offer any theoretical guarantees.

Agarwal et al. [1] base their formulation of the subtrajectory clustering problem on
FacilityLocation. In this formulation there is an opening cost associated with every
center curve, a cost for every point on the input that is assigned to a cluster, and a cost for
points that are not assigned. They present conditional NP-hardness results and an O(log2 n)-
approximation for well-behaved classes of curves under the discrete Fréchet distance.

3 Set system discretization

In this section we show that, given a curve P of complexity n, there is a curve S of complexity
n and a set CS(P ) of at most O(n2 log n) subcurves of S, each of complexity at most ℓ, such
that for any set of curves C ⊂ Xd

ℓ there is a subset Ĉ ⊂ CS(P ) of size O(|C|) such that
CovP (C, ∆) ⊂ CovP (Ĉ, 4∆). This result is known and follows the line of research in [4, 9, 23].
All of these approaches compute a “maximally simplified” version S of P , see also [10]. Our
definition of a simplification follows the notion of pathlet-preserving simplifications from [23],
as it yields the best constants.

▶ Definition 6. Let a polygonal curve P , ∆ ≥ 0, and ℓ ≥ 1 be given. A curve S is a simplific-
ation of P if dF (S, P ) ≤ 2∆, and for any curve Q ∈ Xd

ℓ and P [s, t] with dF (Q, P [s, t]) ≤ ∆
there is a subcurve S[s′, t′] with dF (P [s, t], S[s′, t′]) ≤ 2∆ and |S[s′, t′]| ≤ ℓ + 2.

▶ Theorem 7 ([23]). For any curve P of complexity n a simplification S of P of complexity
O(n) can be computed in O(n log n) time.

By definition of the simplification S of P and the triangle inequality for any curve π ∈ Xd
ℓ

there is a subcurve π̂ of S of complexity at most ℓ + 2 such that CovP (π, ∆) ⊂ CovP (π̂, 4∆).

▶ Definition 8 (Free space diagram). Let S and P be two polygonal curves parametrized over
[0, 1]. The free space diagram of S and P is defined as the joint parametric space [0, 1]2
together with a not necessarily uniform grid, where each vertical grid line corresponds to
a vertex of P and each horizontal grid line to a vertex of S. The ∆-free space (refer to
Figure 2) of S and P is defined as

D∆(S, P ) =
{

(x, y) ∈ [0, 1]2 | ∥P (x)− S(y)∥ ≤ ∆
}

.

This is the set of points in the parametric space, whose corresponding points on S and P are
at a distance at most ∆. The edges of S and P segment the free space diagram into cells.
We call the intersection of D∆(S, P ) with the boundary of cells the free space intervals.

ESA 2025
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∆

Q
P

Q

P

Figure 2 Illustration of the ∆-free space of two curves P and Q as well as their extremal points.

As was noted by Alt and Godau [2], the Fréchet distance of S and P is at most ∆ if and
only if there is a monotone (in both x- and y-direction) path from (0, 0) to (1, 1) in ∆-free
space of S and P . They further observed that the free space inside any cell is described by
an ellipse intersected with the cell and thus is convex and has constant complexity. Observe
that two subcurves P [a, c] and S[b, d] have Fréchet distance at most ∆ if and only if there is
a monotone (in both x- and y-direction) path from (a, b) to (c, d) in ∆-free space of S and P .

▶ Definition 9 (Extremal points [4]). As the ∆-free space of two curves S and P is convex in
any cell C, the set of points of D∆(S, P ) minimizing the x-coordinate in C are described by
either a single point or a vertical line segment. We call either the single point or the start
and end point of the line segment the leftmost points of D∆(S, P ) in C. Similarly C has at
most two bottommost, rightmost and topmost points. The set of all these at most eight points
of D∆(S, P ) in every cell defines the set of extremal points of D∆(S, P ).

Similar to [23], we define specific subcurves via the extremal points of the 4∆-free space.

▶ Definition 10 ((I)-, (II)- and (III)-subcurves). Let P be a polygonal curve and let S be a
simplification of P . Let ∆ and ℓ be given. Define the following three types of subcurves of S

via the (sorted) set E(S, P ) of y-coordinates of extremal points in D∆(S, P ). For every edge
e let E(e, P ) be the subset of E(S, P ) corresponding to the extremal points in D∆(e, P ) (refer
to Figure 3).

(I): A (I)-subcurve of S is a subcurve of S that starts at some ith vertex of S and ends
at the (i + j)th vertex for j ∈ {2m | 0 ≤ m ≤ ⌊log2(ℓ)⌋}.

(II): A (II)-subcurve of S is either a subcurve e[0, εi] or e[εi, 1] of an edge e of S defined
by a vertex of e and a value εi ∈ E(e, P ) or its reversal rev(e[0, εi]) or rev(e[εi, 1]).

(III): A (III)-subcurve of S is either a subcurve e[εi, εi+j ] of an edge e of S defined by
two values εi, εi+j ∈ E(e, P ) such that j ∈ {2m | 0 ≤ m ≤ ⌊log2(|E(e, P )|)⌋}, or its
reversal rev(e[εi, εi+j ]).

The set containing all Type (I)-, (II)- and (III)-subcurves which we denote by CS(P )
describes the set of candidate curves similar to the candidate set from [23].

▶ Theorem 11 (adapted from [23]). Let P be a polygonal curve, and let S be a simplification
of P . Then for any curve π ∈ Xd

ℓ there is a set Sπ ⊂ CS(P ) of size at most 8 such that

CovP (π, ∆) ⊂
⋃

s∈Sπ

CovP (s, 4∆).
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j = 1j = 2
j = 4

Type (II)Type (I)Type (III)

Figure 3 Illustration of all Type (I)-, (II)- and (III)-subcurves of Q (as vertical lines) that are
not reversals, induced by the 4∆-free space of Q and P from Figure 2. Further denoted are the
values j, which induced the set of Type (III)-subcurves on the first edge of Q.

4 Sweep-sequences and the proxy coverage

In this section we define an ordering of Type (II) and Type (III) subcurves in the set CS(P )
and introduce an approximate ∆-coverage called the proxy coverage. Later on, we show
that a coarse representation of the proxy coverage can be maintained along the ordering.

Throughout this section we are given a polygonal curve P of complexity n, values ∆ > 0
and ℓ ≤ n, as well as a simplification S of P . As |E(e, P )| = O(n) for any edge e, there are
O(n log ℓ) Type (I)-, O(n2) Type (II)- and O(n2 log n) Type (III)-subcurves in CS(P ).

▶ Definition 12 (Sweep-sequence). Let E = (e1, . . .) be a sorted list of values in R. We say
s is a sweep-sequence of E if s is a list of tuples of E such that either for all consecutive
tuples (ea, eb) and (ec, ed) it holds that a ≤ b, c ≤ d, 0 ≤ a− c ≤ 1 and 0 ≤ b− d ≤ 1 or for
all consecutive tuples it holds that a ≥ b, c ≥ d, 0 ≤ c− a ≤ 1 and 0 ≤ d− b ≤ 1.

We are able to construct few sweep-sequences that already capture the entirety of CS(P ).

▶ Lemma 13. Let e be an edge of S. In time O(n log n), one can compute a set Se of
O(log n) sweep-sequences of E(e, P ), each of length O(n), such that for any Type (II)- or Type
(III)-subcurve π ∈ CS(P ) on the edge e there is a tuple (εi, εj) in one of the sweep-sequences
in Se such that π = e[εi, εj ] if εi ≤ εj (refer to Figure 4), and π = rev(e[εj , εi]) if εi > εj.
Further, for the first and last pair (ea, eb) in every sweep-sequence it holds that a = b.

We focus our analysis on sweep-sequences of E(e, P ) where for every tuple (εa, εb) it holds
that a ≤ b (refer to Figure 4). This analysis carries over to all sweep-sequences of E(e, P ) by
setting e← rev(e), and thus to all sweep-sequences in Se.

We now turn to defining the proxy coverage on P which approximates the 4∆-coverage.

▶ Definition 14. Let e be an edge of S. Define li(·) to be the function mapping any y to the
x-coordinate of the leftmost point of the ith cell in D4∆(e, P ) at height y. If this point does
not exist, li(y) =∞. Similarly define rj(y) to be the x-coordinate of the rightmost point at
height y, and ∞ otherwise.

We assume that for every edge e and every i < n the functions li(·) and ri(·) of the free
space D∆(e, P ) can be evaluated in O(1) time.

ESA 2025
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e

Figure 4 Illustration of three of the eight sweep-sequences in Se of the edge e that are constructed
for Type (III)-subcurves. From left to right one for j = 4, one for j = 2 and one for j = 1.

▶ Definition 15 (Combinatorial representation). Let e be an edge of S and let 0 ≤ s ≤ t ≤ 1
be given. The combinatorial representation R(e[s, t]) of the 4∆-coverage CovP (e[s, t], 4∆) of
e[s, t] is the set of all inclusionwise-maximal pairs of indices (i, j) such that there are points
s′ and t′ on the ith and jth edge of P respectively such that there is a monotone path from
(s′, s) to (t′, t) in D∆(e, P ). An index pair (i, j) includes (i′, j′) if i ≤ i′ and j′ ≤ j.

The combinatorial representation can be partitioned into two sets, the global group
G(e[s, t]) consisting of all index-pairs (i, j) ∈ R(e[s, t]) such that i < j and the local group
L(e[s, t]) consisting of all index-pairs (i, i) ∈ R(e[s, t]).

▶ Observation 16. Let e[s, t] be a subcurve of an edge e of S. Then (refer to Figure 5)

CovP (e[s, t], 4∆) =
⋃

(i,j)∈R(e[s,t])

[li(s), rj(t)] =
⋃

(i,j)∈L(e[s,t])∪G(e[s,t])

[li(s), rj(t)]

Let an edge e of S together with 0 ≤ s ≤ t ≤ 1 be given. We say an index i is bad for
e[s, t], if all topmost points in cell i of the free space of e and P are to the left of both li(s)
and ri(t), and both li(s) and ri(t) are to the left of all bottom most points in cell i. Call
this set of bad indices B(e[s, t]). If i ̸∈ B(e[s, t]), i is said to be good for e[s, t]. Intuitively,
an index is bad if the free-space inside the cell is a diagonal from the top left to the bottom
right. For Lemma 21 to hold, the definition a bad index is stronger and depends on s and t.

▶ Observation 17. Let i be good for e[s, t] and P . If li(s) ̸=∞ ≠ ri(t) then li(s) ≤ ri(t).

We now turn to defining our central tool, the proxy coverage, which approximates the
∆-coverage and is easy to maintain. It is defined via a reduced combinatorial representation.

▶ Definition 18 (Reduced global group). Let e be an edge of S and let 0 ≤ s ≤ t ≤ 1 be given.
Based on the global group G(e[s, t]) we define the reduced global group G̃(e[s, t]) which results
from G(e[s, t]) after merging all pairs of index pairs (a, b) and (c, d) if either a < c < b < d,
or b = c and b = c is good for e (see Figure 5).

▶ Definition 19 (Proxy coverage). For edge e of S, 0 ≤ s ≤ t ≤ 1 and 1 ≤ i, j < n define

l̂i,e[s,t](s) =
{

li(s), if i is good for e[s, t]
ri(s), if i is bad for e[s, t]

r̂j,e[s,t](t) =
{

lj(t), if j is good for e[s, t]
rj(t), if j is bad for e[s, t].
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e[
s,
t]

l1(s) r4(t)l4(s) r5(t) l6(s) r6(t) l7(s) r7(t)

CovP (e[s, t], 4∆)

Figure 5 Illustration of the 4∆-coverage of e[s, t]. The global group of e[s, t] is {(1, 4), (4, 5)}.
The reduced global group of e[s, t] is {(1, 4), (4, 5)} also, as 4 is bad for e[s, t].

With these at hand, define the proxy coverage of subedges of S as the union

ĈovP (e[s, t]) =

 ⋃
(i,i)∈L(e[s,t])\B(e[s,t])

[li(s), ri(t)]

∪
 ⋃

(i,j)∈G̃(e[s,t])

[l̂i,e[s,t](s), r̂j,e[s,t](t)]

 ,

where by a slight abuse of notation let L(e[s, t]) \ B(e[s, t]) be all index-pairs (i, i) in L(e[s, t])
such that i is not in B(e[s, t]).

We observe that the proxy coverage can be expressed as a disjoint union via G̃(e[s, t]).

▶ Lemma 20. Let e be an edge and let 0 ≤ s ≤ t ≤ 1. Then ĈovP (e[s, t]) is the disjoint
union (refer to Figure 6)

ĈovP (e[s, t]) =

 ⊔
i∈L(e[s,t])\B(e[s,t])

[li(s), ri(t)]

 ⊔
 ⊔

(i,j)∈G̃(e[s,t])

[l̂i,e[s,t](s), r̂j,e[s,t](t)]

 .

▶ Lemma 21. If i is bad for e[s, t], then i is good for rev(e[s, t]) and li(s), ri(t) ∈ [li(t), ri(s)].

▶ Lemma 22. Let e be an edge of S and let 0 ≤ s ≤ t ≤ 1 be given. Then (refer to Figure 6)

CovP (e[s, t], 4∆) ⊂ ĈovP (e[s, t]) ∪ ĈovP (rev(e[s, t])) ⊂ CovP ({e[s, t], rev(e[s, t])}, 4∆).

We extend the proxy coverage Ĉov to also be defined for Type (I)-subcurves of S, where
we set ĈovP (S[s, t]) = CovP (S[s, t], 4∆). Overall, we see that for any π ∈ CS(P ) – not just
Type (II)- and (III)-subcurves of S – there are at most two elements π1, π2 ∈ CS(P ) with

CovP (π, 4∆) ⊂ ĈovP (π1) ∪ ĈovP (π2) ⊂ CovP ({π1, π2}, 4∆).

▶ Theorem 23. Let P be a polygonal curve, and let S be a simplification of P . Then for
any curve π ∈ Xd

ℓ there is a set Sπ ⊂ CS(P ) of size at most 16 such that

CovP (π, ∆) ⊂
⋃

s∈Sπ

ĈovP (s).

Proof. This follows from the definition of the proxy coverage, Lemma 22 and Theorem 11. ◀
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5 Maintaining the proxy coverage along a sweep-sequence

In this section we present an algorithm that given s ∈ Se maintains a symbolic representation
of ĈovP (e[s, t]) in (roughly) logarithmic time per element in s. To this end we maintain the
set U(e[s, t]) of inclusion-wise maximal index-pairs (i, j) such that there is a path from cell i at
height s to cell j at some height t̂ ≤ t, which helps maintain G̃(e[s, t]) and L(e[s, t])\B(e[s, t]).
We want to highlight that maintaining G(e[s, t]) and L(e[s, t]) as a symbolic representation
of the 4∆-Coverage can take total time in Θ(n|Se|) (Figure 7) motivating our techniques.

▶ Theorem 24. At the beginning and end of the loop in Lines 7 − 15 of Maintain of
Algorithm 1, the set of index-pairs G̃ coincides with G̃(e[s, t]), L coincides with L(e[s, t]) \
B(e[s, t]) and U coincides with U(e[s, t]). Further, executing Maintain takes O(n log n) time.

▶ Corollary 25. Let s ∈ Se be a sweep-sequence. There are m = O(n) (not necessarily
distinct) index-pairs p1 = (i1, j1), . . . , pm = (im, jm) together with m contiguous subsets
Ii = {(sai , tai), . . . , (sbi , tbi)} ⊂ s such that for every (s, t) ∈ s it holds that

G̃(e[s, t]) ∪ (L(e[s, t]) \ B(e[s, t])) =
⋃

1≤i≤m,(s,t)∈Ii

{pi}.

Further for pk = (ik, jk) the index ik is either always good or always bad for e[s, t] for
(s, t) ∈ Ik, and the index jk is either always good or always bad for e[s, t] for (s, t) ∈ Ik. The
index-pair pi as well as the values ai and bi can be computed for all i in total time O(n log n).

Overall, we can maintain a symbolic representation of ĈovP (·) during a sweep-sequence in
total time O(n log n) which enables the use of the maintained sets for batch point-queries.

▶ Theorem 26. Let s ∈ Se, and let Q ⊂ [0, 1] together with wQ : Q→ N be a weighted point-
set. For any Q′ ⊂ Q let wQ(Q′) =

∑
q∈Q′ wq(q) denote its weight. There is an algorithm

which computes wQ(Q ∩ ĈovAS
(e[s, t])) for every (s, t) ∈ s in O(|Q| log |Q|+ n log n) time.

e[
s,
t]

e[
s,
t]

re
v
(e
[s
,t
])

ĈovP ({e[s, t], rev(e[s, t])})

CovP (e[s, t], 4∆)

Figure 6 Illustration of the proxy coverage of e[s, t] and rev(e[s, t]) compared to the 4∆-coverage
of e[s, t]. Cells with bad index for e[s, t] and rev(e[s, t]) are highlighted in red.
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c1

c2

c3

c4

c5

CovP (c5, 4∆)

CovP (c4, 4∆)

CovP (c3, 4∆)

CovP (c2, 4∆)

CovP (c1, 4∆)

Figure 7 Illustration of how the combinatorial description of the 4∆-coverage of two neighbouring
elements in a sweep-sequence may differ by up to n index-pairs. Instead, Ĉov(ci) = ∅ for all i.

Algorithm 1 Maintenance of the reduced global group.

1: procedure Maintain(D4∆(e, P ), sweep-sequence s = {(s1, t1), . . . , (sm, tm)} of E(e, P ))
2: for i < n do compute the contiguous sets Bi = {(s, t) ∈ s | i is bad for e[s, t]}
3: Compute coverage CovP (e[sm, tm], 4∆) represented as O(n) disjoint intervals
4: Compute L(e[sm, tm]) and G(e[sm, tm]) from CovP (e[sm, tm], 4∆)
5: U ,L,G, (s, t)← L(e[sm, tm]) ∪ G(e[sm, tm]),L(e[sm, tm]),G(e[sm, tm]), (sm, tm)
6: Compute B(e[s, t]) from Bi and with it G̃ ← G̃(e[sm, tm])
7: for (s′, t′) in Reversed(S) do ▷ sweeping window events
8: if s′ ̸= s then ▷ s′ = s− 1
9: Compute B(e[s′, t]) \ B(e[s, t]) and B(e[s, t]) \ B(e[s′, t]) via the sets Bi

10: Update U ,L,G and G̃ via AdvanceStart(s, s′, t) from Algorithm 2
11: Update B(e[s, t]) to B(e[s′, t]) via the sets Bi, and s← s′

12: if t′ ̸= t then ▷ t′ = t− 1
13: Compute B(e[s, t′]) \ B(e[s, t]) and B(e[s, t]) \ B(e[s, t′]) via the sets Bi

14: Update U ,L,G and G̃ via AdvanceEnd(s, t, t′) from Algorithm 2
15: Update B(e[s, t]) to B(e[s′, t]) via the sets Bi, and t← t′

Proof. Define following values for all i, j along the sweep-sequence s where for (s, t) ∈ s:

Li((s, t)) =
∑

q∈Q, q in cell i

l̂i,e[s,t](s)̸=∞, l̂i,e[s,t](s)≤q

wQ(q), Rj((s, t)) =
∑

q∈Q, q in cell j
r̂j,e[s,t](t)̸=∞, q≤r̂j,e[s,t](t)

wQ(q),

Mi((s, t)) =
∑

q∈Q, i ̸∈B(e[s,t]), q in cell i
li(s)̸=∞, ri(t) ̸=∞, li(s)≤q≤ri(t)

wQ(q), D(i, j) =
∑

q∈Q, q in cell m
i≤m≤j

wQ(q).

The value Li((s, t)) corresponds to the weight of points in cell i that lie right of l̂i,e[s,t](s).
Similarly, Ri((s, t)) corresponds to the weight of points in cell i that lie left of r̂i,e[s,t](t). The
value Mi((s, t)) corresponds to the weight of points in cell i that lie in between l̂i,e[s,t](s)
and r̂i,e[s,t](t) if i is good for e[s, t]. Lastly D(i, j) corresponds to the total weight of points
that lie on edge i, . . . , j. Then for any (s, t) ∈ s and any (i, i) ∈ L(e[s, t]) \ B(e[s, t]) it holds
that Mi((s, t)) = wQ(Q ∩ [li(s), ri(t)]). Similarly, for any (i, j) ∈ G̃(e[s, t]) it holds that
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Algorithm 2 Advancing the start/end point of the sweeping window.

1: procedure AdvanceStart(s,s′,t)
2: Get U , L, G, G̃, B(e[s, t]), B(e[s′, t]) \ B(e[s, t]), B(e[s, t]) \ B(e[s′, t]) and D4∆(e, P )
3: if s is induced by a lowest point in cell i of D4∆(e, P ) then
4: Identify smallest j > i such that lj(s) ̸=∞
5: Update index-pairs in U and in G starting at i to start at j

6: if s′ is induced by a upper boundary of free space interval of cell i of D4∆(e, P ) then
7: Identify largest j < i such that lj(s) is in the interior of cell j

8: Update index-pairs in U and in G starting at i to start at j

9: if s′ is induced by a highest point in cell i of D4∆(e, P ) then add (i, i) to U
10: for changed index-pair (i, j) in U and G do
11: if i ̸= j and rj(t) ̸=∞ then move index-pair to G, else move it to U
12: Remove any dominated index-pairs involving (i, j) from G and U
13: Update G̃ from G after merging overlapping intervals via B(e[s, t]) and B(e[s′, t])
14: Update L via the changes to U , B(e[s, t]) and B(e[s, t′])
15: procedure AdvanceEnd(s,t,t′)
16: dual to AdvanceStart; refer to full version in appendix

Li((s, t)) + D(i + 1, j − 1) + Rj((s, t)) = wQ(Q ∩ [l̂i,e[s,t](s), r̂i,e[s,t](t)]). Then, by Lemma 20

wQ(Q ∩ ĈovAS
(e[s, t])) =

=

 ∑
i∈L(e[s,t])\B(e[s,t])

wQ(Q ∩ [li(s), ri(t)])

+

 ∑
(i,j)∈G̃(e[s,t])

wQ(Q ∩ [l̂i,e[s,t](s), r̂j,e[s,t](t)])


=

 ∑
i∈L(e[s,t])\B(e[s,t])

Mi((s, t))

+

 ∑
(i,j)∈G̃(e[s,t])

Li((s, t)) + D(i + 1, j − 1) + Rj((s, t))

 .

Observe that D(i, j) can be provided via a data-structure that first computes di =∑
q∈Q,q in cell i wQ(q) for every i in total time O(|Q| log n) and stores them in a balanced

binary tree as leaves, where every inner node stores the sum of the values of its children.
For every i ≤ j the value D(i, j) =

∑
i≤m≤j dm can then be returned in O(log n) time by

identifying in O(log n) time all O(log n) maximal subtrees whose children lie in the interval
[i, j] and then returning the sum of the stored values in the root of each maximal subtree.

Next we show that Li(·) (resp. Rj(·) and Mi(·)) can correctly be maintained when
performing the sweep of s. To this end let

Iq = {(s, t) ∈ s | q is in cell i and l̂i,e[s,t](s) ̸=∞, l̂i,e[s,t] ≤ q}.

Refer to Figure 8. As the free space in every cell is convex, throughout s the first indices are
monotone and the y-coordinates of the left-most and right-most points are stored in E(Ae),
for every q ∈ Q the contiguous subsets

Lq = {(s, t) ∈ s | q is in cell i and li(s) ̸=∞, li(s) ≤ q} and
Rq = {(s, t) ∈ s | q is in cell i and li(s) ̸=∞, ri(s) ≥ q}

can be computed in O(log n) time. Similarly the set Bi = {(s, t) ∈ s | i is bad for e[s, t]} is
also a contiguous subset of s and can be computed in O(log n) time. Let Qi denote all q ∈ Q

that lie on the ith edge of P . Then for any q ∈ Qi
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Lq

Rq

Bi

Iq

s q

Figure 8 Construction of the set Iq encoding when l̂i,e[s,t](s) ≤ q from Proof of Theorem 26 via
the sets Lq and Rq encoding when li(s) ≤ q and ri(s) ≥ q and the set Bi for all (s, t) ∈ s.

Iq = (Lq ∩ (s \Bi)) ∪ ((s \Rq) ∩Bi),

and thus Iq consists of O(1) contiguous disjoint subsets of s. Thus all sets Iq (represented as
O(1) contiguous subsets of s) can be computed in time O(|Q| log n + n log n). Further,

Li((s, t)) =
∑

q∈Qi

1q∈Iq
wQ(q),

and hence Li(·) can be maintained in total time O(|Q|+n log n) after one initial computation
of all Iq, by adding wQ(q) for q ∈ Qi whenever (s, t) enters the O(1) contiguous disjoint
subsets of Iq, and subtracting wQ(q) for q ∈ Qi whenever (s, t) exits the O(1) contiguous
disjoint subsets of Iq. Sorting the boundaries of all Iq preparing them for the maintenance of
Li(·) takes O(|Q| log |Q|) time. Similarly Mi(·) and Rj(·) can be maintained.

Overall, the values Li(·), Rj(·), Mi(·) and D(i, j) are correctly maintained in total time
O(|Q| log |Q|) time such that they can be evaluated in O(log n). By Corollary 25 there are
only O(n) total updates to G̃(·) and L(·) \ B(·). Hence, wQ(·) can be correctly maintained
along s by updating it whenever Li(·), Rj(·), Mi(·), G̃(·), L(·) \ B(·) or B(·) change. Thus
computing wQ(e[s, t]) for all (s, t) ∈ S takes O(|Q| log |Q|+ n log n) time. ◀

6 Ground-set discretization and sampling

We now present two (O(log n), 4)-approximation algorithm for SC that uses the efficient
batch point queries from Theorem 26.

▶ Definition 27 (Atomic intervals). Let P be a polygonal curve, and let ∆ > 0 and ℓ be given.
Let S be a simplification of P . Let G be the set of all intersection-points of horizontal lines
at height h for y-coordinates h ∈ E(S, P ) of extremal points of D4∆(S, P ) with the boundary
of the free space D4∆(S, P ). From this, define the set of atomic intervals A(S, P ) as the set
of intervals describing the arrangement of [0, 1] defined by the set {x ∈ [0, 1] | ∃y ∈ [0, 1] :
(x, y) ∈ G} (Figure 9).
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E(
e,
P
)

A(e, P )

Figure 9 Illustration of atomic intervals A(e, P ) induced by E(e, P ).

▶ Observation 28. As |E(S, P )| ≤ 8n2, and each horizontal line intersects at most n cells,
and the free space in every cell is convex it follows, the set of all midpoints of atomic intervals
A(S, P ) is a point set A ⊂ [0, 1] of size 16n3 such that for any C ⊂ CS(P ) it holds that

ĈovP (C) = [0, 1] ⇐⇒ A ⊂ ĈovP (C).

▶ Lemma 29. Let P be a polygonal curve of complexity n and let ∆ > 0 and ℓ ≤ n be
given. Let S be a simplification of P . Let E(S, P ) be the extremal points of D4∆(S, P ). Let
A ⊂ [0, 1] be a given set of size at most cn3 points. For every edge e of S let We be the set
of atomic intervals a in A(e, P ) such that wA(a) = |A ∩ a| ≠ 0. Let k∆ be the size of the
smallest set C∗ ⊂ Xd

ℓ such that CovP (C∗, ∆) = [0, 1]. There is an algorithm that computes a
set C ⊂ CS(P ) of size 16(3 ln(n) + ln c + 1)k∆ such that A ⊂ ĈovAS

(C) in time

O

(
n2ℓ log2 n + |A| log n + k∆n2 log3 n + log n

∑
e

|We|

)
.

Proof Sketch. The algorithm operates in rounds. In every round we start with a subset A′

of A, where initially A′ = A, and in every round for the partial solution R of the greedy
algorithm it holds that A′ = A \ ĈovP (R). Further in every round and for every edge e of
S we maintain the set W ′

e of atomic intervals a in A(e, P ) such that wA′(a) = |A′ ∩ a| ≠ 0.
These weights in combination with Theorem 26 allow us to identify the Type (II)- or
(III)-subedge r of S maximizing |A′ ∩ ĈovP (r)| = |(A \ ĈovP (R)) ∩ ĈovP (r)|. We similarly
identify the Type (I)-curve r maximizing |A′ ∩ ĈovP (r)| by initially computing ĈovP (r) for
every Type (I)-curve and then in every round recomputing |A′ ∩ ĈovP (r)|. Afterwards we
add the subcurve maximizing |A′ ∩ ĈovP (r)| to R. Lastly we update A′ ← A′ \ ĈovP (r).
This results in almost all intervals in W ′

e whose weights are updated, to have their weights
set to zero and are thus removed from W ′

e. The number of updates setting such a weight to
zero, together with the initial application of Theorem 26 dominate the running time. Lastly,
by standard greedy SetCover arguments [14, 22, 18] and Theorem 23 the number of rounds
until the algorithm terminates (A′ = ∅) is bounded by 16(ln(|A|) + 1). ◀

▶ Corollary 30. There is an (48 ln(n) + 64, 4)-approximation algorithm for SC. Given a
polygonal curve P of complexity n, ∆ > 0 and ℓ ≤ n, its running time is in O

(
n3 log3 n

)
.

Proof. Lemma 29 together with Observation 28 and Theorem 23 yields the claim. ◀
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Figure 10 Illustration to Proof Sketch of Lemma 29. Modification of non-zero weights when
adding r to R. All weights that are updated but not necessarily set to 0 are highlighted with a ∗.

The running time of Corollary 30 is dominated by the size of A(S, P ). We now present
techniques enabling identification of a representative subset of A(S, P ).

▶ Theorem 31. Let n lists Li be given, each containing mi sorted values such that all values
are distinct and in every list Li and for every j ≤ mi identifying the item at position j takes
O(log mi) time and also for given v determining the maximal index j such that the jth item
is less than v takes O(log mi) time. Then for every K ≤

∑
i mi in O(Kn log maxi mi) time

one can determine K values v1 < . . . < vK such that
1. for every x ∈

⋃
i Li there is an i such that x ∈ [vi, vi+1] and

2. |[vi, vi+1] ∩
⋃

i Li| = O

(∑
i

mi

K

)
for all i.

Proof Sketch. We recursively compute a value m such that both a constant fraction of
values among all lists is smaller than m and a constant fraction of values among all lists is
bigger than m. To find m we compute the middle element of every list in O(n log maxi mi)
time. Then m is (roughly) the middle element of these middle elements. ◀

▶ Lemma 32. For every α ∈ [0, 3] in O(n1+α log n) time one can determine O(nα) so called
α-coarse intervals partitioning [0, 1], each containing at most O(n3−α) intervals of A(S, P ).

Proof Sketch. By the structure of D4∆(e, P ) we can compute how many atomic intervals of
A(e, P ) are contained on any edge of P in O(log n) time. Similarly, on any edge of P we can
compute the ith atomic interval boundary via O(1) binary searches of E(e, P ). Hence after
O(n log n) precomputation time per edge e of S, we can output the ith interval boundary of
A(e, P ) in O(log n) time for any i. Hence Theorem 31 implies the claim. ◀

We now use Lemma 32 together with Lemma 29 to obtain the following lemma and
theorem. The overarching approach for the algorithm is as follows: First use Lemma 32
to compute roughly O(n3/2) points from A(S, P ). These points we cover with a set R1 of
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Õ(k∆) elements from CS(P ) in time Õ(k∆n5/2) via Lemma 29. Between any two consecutive
points of the O(n3/2) points there are at most O(n3/2) other points from A(S, P ), and at
most Õ(k∆n) of these sets are not covered by R1. This leaves us with Õ(k∆n5/2) uncovered
points in A(S, P ). We again invoke Lemma 29, covering these remaining points with a set
R2 of Õ(k∆) elements from CS(P ) in time Õ(k∆n5/2).

▶ Lemma 33. Let α ∈ [0, 3] and K > 0 be given. Let C ⊂ CS(P ) be a set covering all
midpoints of α-coarse intervals of size O(K log n). Then there are O(Kn4−α log n) atomic
intervals in A(S, P ) and O(Kn4−α log n+Kn2 log n) atomic intervals in

⋃
eA(e, P ) that are

not contained in ĈovAS
(C). They can be computed in O(Kn4−α log2 n + Kn2 log2 n) time.

▶ Theorem 4. There is a (96 ln(n) + 128, 4)-approximation for SC. Given a polygonal curve
P of complexity n, ∆ > 0 and ℓ ≤ n, its running time is in O

((
n2ℓ +

√
k∆n

5
2

)
log2 n

)
,

where k∆ is the size of the smallest subset C∗ ⊂ Xd
ℓ such that CovP (C∗, ∆) = [0, 1].

Proof Sketch. The algorithm maintains an internal guess K of k∆, which initially is 1. We
describe a subroutine that decides, whether K < k∆ or outputs a solution of size O(K log n).
If the subroutine outputs that K < k∆ we set K ← 2K, which then implies the claim.

First set α = 3
2 + log K

2 log n + log log n
log n . Next compute a set of α-coarse intervals via Lemma 32.

From them compute their midpoints M and for every edge e of S compute the subset We

of A(e, P ) containing such a midpoint. Then We is the set of atomic intervals in A(e, P )
with wM (·) ̸= 0. The algorithm then attempts to cover the mid-points of these intervals via
O(K log n) rounds of the algorithm from Lemma 29. If the algorithm does not terminate
after O(K log n) rounds we return that K < k∆. Otherwise we compute the set of atomic
intervals A ⊂ A(S, P ) and for every e the set of atomic intervals in W ′

e ⊂ A(e, P ) that
are not fully contained in the solution returned from the first call of the algorithm from
Lemma 29 via Lemma 33. We then invoke the algorithm from Lemma 29 on the midpoints
M ′ of A and W ′

e which is precisely the set of atomic intervals in A(e, P ) with wM ′(·) ̸= 0.
As K ∈ O(k∆) and thus K ∈ O(n), the running time of the subroutine is

O(n1+α log n + Kn4−α log3 n + Kn2 log2 n) = O(K 1
2 n

5
2 log2 n).

And thus overall the running time of the algorithm is

O

n2ℓ log2 n +
log(k∆)∑

K=1

((
2K
) 1

2 n
5
2 log2 n

) = O
(

n2ℓ log2 n +
√

k∆n
5
2 log2 n

)
. ◀

7 Subtrajectory Coverage Maximization

The techniques discussed in this paper can also be used to obtain the following result.

▶ Theorem 5. Let ε ∈
(
0, 1

5
]
. There is a ( e−1

16e , 4 + ε)-approximation algorithm for SCM,
where e is the base of the natural logarithm. Given a polygonal curve P of complexity n,
∆ > 0, ℓ ≤ n and k > 0, its running time is in O((k + ℓ)n2ε−2 log2 n log ε−1).

Proof Sketch. We first compute an ε-approximation of the 4∆-free space, which allows
describing ∥ĈovP (·)∥ as a sum of linear functions. A sum of linear functions is a linear
function itself. As we can maintain a combinatorial description of the proxy coverage we are
able to parsimoniously maintain this linear function during a scan of a sweep-sequence in
Se, which allows evaluating ∥ĈovP (·)∥ for all elements in a single sweep-sequence in time
roughly O(n log n). Using this subroutine once per round and sweep-sequence results in a
running time of O(kn2 log2 n). ◀
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