Tight Bounds for Some Classical Problems
Parameterized by Cutwidth

Narek Bojikian =

Humboldt-Universitat zu Berlin, Germany

Vera Chekan &

Humboldt-Universitat zu Berlin, Germany

Stefan Kratsch =

Humboldt-Universitat zu Berlin, Germany

—— Abstract

Cutwidth is a widely studied parameter and it quantifies how well a graph can be decomposed along

small edge-cuts. It complements pathwidth, which captures decomposition by small vertex separators,
and it is well-known that cutwidth upper-bounds pathwidth. The SETH-tight parameterized
complexity of problems on graphs of bounded pathwidth (and treewidth) has been actively studied
over the past decade while for cutwidth the complexity of many classical problems remained open.

For HAMILTONIAN CYCLE, it is known that a (2++/2)P*n®® algorithm is optimal for pathwidth
under SETH [Cygan et al. JACM 2018]. Van Geffen et al. [J. Graph Algorithms Appl. 2020] and
Bojikian et al. [STACS 2023] asked which running time is optimal for this problem parameterized by
cutwidth. We answer this question with (1 + \/i)cmno(l) by providing matching upper and lower
bounds. Second, as our main technical contribution, we close the gap left by van Heck [2018] for
PARTITION INTO TRIANGLES (and TRIANGLE PACKING) by improving both upper and lower bound
and getting a tight bound of \B'/gdwno(l), which to our knowledge exhibits the only known tight
non-integral basis apart from HAMILTONIAN CYCLE [Cygan et al. JACM 2018] and C4-HITTING
SET [SODA 2025]. We show that the cuts inducing a disjoint union of paths of length three (unions of
so-called Z-cuts) lie at the core of the complexity of the problem — usually lower-bound constructions
use simpler cuts inducing either a matching or a disjoint union of bicliques. Finally, we determine the
optimal running times for Max Cut (2°"'n®®) and INDUCED MATCHING (3*n®M) by providing
matching lower bounds for the existing algorithms — the latter result also answers an open question
for treewidth by Chaudhary and Zehavi [WG 2023].

2012 ACM Subject Classification Theory of computation — Parameterized complexity and exact
algorithms

Keywords and phrases Parameterized complexity, cutwidth, Hamiltonian cycle, triangle packing,
max cut, induced matching

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.13

Related Version Full Version: https://arxiv.org/abs/2502.15884 [8]

1 Introduction

In parameterized complexity the (worst-case) complexity of problems is expressed in terms of
input size n and one or more parameters, often denoted k. The parameter can, for example,
be the size of the sought solution or some measure of the structure of the input. The goal is
to understand the influence of solution size or structure on the complexity. A problem is said
to be fixed-parameter tractable with parameter k if it admits an algorithm with running time
of f(k)-n®W (also denoted by O*(f(k))) for some computable function f. For NP-hard
problems, this function f is usually exponential and it may be doubly exponential or worse.

Due to space constraints, we defer full proofs and technical details to the full version [8].

© Narek Bojikian, Vera Chekan, and Stefan Kratsch;

licensed under Creative Commons License CC-BY 4.0
33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 13; pp. 13:1-13:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:bojikian@hu-berlin.de
https://orcid.org/0000-0003-1072-4873
mailto:vera.chekan@hu-berlin.de
https://orcid.org/0000-0002-6165-1566
mailto:stefan.kratsch@hu-berlin.de
https://orcid.org/0000-0002-0193-7239
https://doi.org/10.4230/LIPIcs.ESA.2025.13
https://arxiv.org/abs/2502.15884
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

13:2

Tight Bounds for Some Classical Problems Parameterized by Cutwidth

This motivates a line of research devoted to the study of the smallest possible functions f
for various problem-parameter combinations. In this context, one is often interested in
NP-hard problems and hence, conjectures stronger than P # NP are assumed for conditional
lower bounds. For example, it has been shown that unless the Exponential Time Hypothesis
(ETH) fails, some problems do not admit algorithms with running time O*(c*) for any
constant ¢ (e.g., [38]) — algorithms with such a running time are called single-exponential.
For problems admitting single-exponential algorithms, it is natural to search for the smallest
value of ¢ for which such an algorithm exists. An even stronger conjecture called the Strong
Exponential Time Hypothesis (SETH) has been assumed to prove for many problems that
existing algorithms with some running time O*(c*) are essentially optimal, i.e., for any & > 0,
there is no algorithm for this problem running in time O*((c — ¢)¥). This conjecture states,
informally speaking, that the SAT problem cannot be solved much more efficiently than
brute-forcing all truth-value assignments.

SETH-tight complexity of problems parameterized by treewidth has been actively studied
over the last decade. This was initiated by Lokshtanov et al. [37] who showed that for
many classical graph problems (e.g., INDEPENDENT SET or Max CuT) the folklore dynamic-
programming (DP) algorithms are essentially optimal under SETH. In parallel, there is also
a line of research devoted to accelerating the existing DP algorithms by employing more
careful analysis and advanced tools like fast subset convolution (e.g., [4, 48, 5]), Discrete
Fourier Transform (e.g., [47]), rank-based approach (e.g., [6]), isolation lemma ([40]), and
Cut&Count (e.g., [17]), we refer to the survey by Nederlof [41] for more details.

Such dynamic-programming algorithms on graphs of bounded treewidth employ the fact
that those graphs can be decomposed along small vertex separators and therefore, when
processing this decomposition in a bottom-up way, one only needs to remember how a partial
solution interacts with the current small separator, also called a bag. Thus it is also natural
to study parameters based on small edge-cuts (as edge-counterparts of vertex separators). A
linear arrangement of a graph places its vertices on a horizontal line so that no two vertices
have the same z-coordinate. Now suppose every edge is drawn as an z-monotone curve,
then the cutwidth of this linear arrangement is the maximum number of edges crossing any
vertical line — observe that the edges crossing such a line separate the vertices on the left
side of the vertical line from the vertices on the right side so they form an edge-cut. The
cutwidth of the graph, denoted ctw, is then the minimum over all of its linear arrangements.
It is well-known that pathwidth, denoted pw, can be defined similarly but instead of the
edges crossing the vertical line, one counts its end-vertices on, say, the right side of the cut.
In particular, this implies that the cutwidth of a graph upper-bounds its pathwidth.

Due to this relation, every O*(f(pw))-time algorithm is also a O*(f(ctw))-time algorithm.
However, it is possible that a problem admits a more efficient algorithm when parameterized
by cutwidth than when parameterized by pathwidth. For example, EDGE DI1SJOINT PATHS is
paraNP-hard for pathwidth [20] but becomes FPT for cutwidth [24]. This difference sparked
deeper interest in studying the cutwidth parameter, and in distinguishing problems whose
complexity differ between these two parameterizations. On a finer level, for some of the prob-
lems for which the SETH-tight complexity parameterized by treewidth is known, the study
continued for the parameterization by cutwidth. The SETH-tight bounds parameterized
by cutwidth are known for INDEPENDENT SET and DOMINATING SET [45], ODD CYCLE
TRANSVERSAL [7], CHROMATIC NUMBER [30], #¢-COLORING [26], as well as a list of con-
nectivity problems (e.g., FEEDBACK VERTEX SET and STEINER TREE) [7]. The CHROMATIC
NUMBER problem exposes again a particularly interesting behavior: for treewidth, it is
known that for any g > 3, the folklore O*(¢"") algorithm is optimal under SETH [37], but for

N. Bojikian, V. Chekan, and S. Kratsch

cutwidth Jansen and Nederlof [30] proved that there is a (randomized) algorithm computing
the chromatic number of the graph in time O*(2°*V), i.e., independent of the number of colors
in question. Recently, a notable progress was also made for H-HOMOMORPHISM: Groenland
et al. [25] provided a non-algorithmic proof of the existence of so-called representative sets
of certain small size on which a dynamic-programming algorithm can rely, and they also
provided a lower-bound construction matching the size of these representative sets. They

leave it open, though, whether representative sets of small size can also be found efficiently.

The above-mentioned paper by Lokshtanov et al. [37] provided SETH-tight lower bounds
for six classical graph problems, namely INDEPENDENT SET, DOMINATING SET, PARTITION
INTO TRIANGLES, ODD CYCLE TRANSVERSAL, ¢-COLORING (for any fixed ¢ > 3), and MaAX
CuT when parameterized by treewidth [37]. The SETH-tight complexity of these problems
parameterized by cutwidth was only partially known till now.

Our results. As a first contribution, we resolve the complexity of the two remaining problems
from [37], namely PARTITION INTO TRIANGLES (and also TRIANGLE PACKING) as well as
Max Cut when parameterized by cutwidth. The study of PARTITION INTO TRIANGLES
parameterized by cutwidth was initiated by van Heck [46]: it was shown that the problem
admits a O*({‘/gcm) algorithm and no O*((v/2 — €)°*™V) algorithm exists for any ¢ > 0
unless SETH fails. In this work, we close this gap by providing an algorithm that solves
TRIANGLE PACKING in time (’)*(\3/§th), together with a matching SETH-based lower bound
for the PARTITION INTO TRIANGLES. There is a trivial reduction from PARTITION INTO
TRIANGLES to TRIANGLE PACKING and hence, O*(\S/gcm) is the SETH-optimal running
time for both problems. Our algorithm is a straightforward dynamic programming over
a path decomposition. While a simple analysis yields running time O*(2¥) over a path
decomposition of width k, we show that given a linear arrangement ¢ of cutwidth ctw, one
can construct a specific path decomposition form ¢, where a careful analysis shows that
the number of states in the dynamic programming is bounded by (9*(\3/§th), resulting in
the desired running time. A bottleneck for the running time are the so-called Z-cuts, i.e.,
bipartite graphs consisting of a disjoint paths of length three. We show that these cuts
inherently determine the complexity of this problem, as the lower bound construction also
relies on them. For MAX CUT we provide a lower bound showing that no O*((2 — &)°*V)
algorithm can solve this problem for any € > 0 implying that the folklore algorithm for tree
decompositions is optimal for cutwidth as well.

Apart from these two problems, we resolve two further open questions. We show that
SETH-tight complexity of HAMILTONIAN CYCLE is O*((1 + v/2)°*") when parameterized by
cutwidth — this was asked by van Geffen et al. [45] and Bojikian et al. [7]. Let us remark,
that although for pathwidth it is known that the O*((2 4 v/2)P¥) algorithm is optimal for
HAMILTONIAN CYCLE, the complexity relative to treewidth remains a challenging open
problem. Finally, Chaudhary and Zehavi [13] developed a O*(3%") algorithm for INDUCED
MATCHING problem and an SETH-based lower bound excluding O*((v/6 — £)*") algorithms
for any € > 0. They conjectured that their algorithm is optimal and asked for a matching
lower bound. We confirm their conjecture and provide a stronger result, namely that INDUCED
MATCHING cannot be solved in O*((3 —&)°*V) for any € > 0 when parameterized by cutwidth
— this resolves the complexity of the problem for both treewidth and cutwidth. !

1 Recently, the conjecture was also independently confirmed by Vasilakis and Lampis [36] by providing a
matching lower bound for the parameterization by pathwidth. We remark that our lower bound for
cutwidth is a stronger result.

13:3

ESA 2025

13:4

Tight Bounds for Some Classical Problems Parameterized by Cutwidth

Table 1 Tight bounds for parameterizations by treewidth / pathwidth, and cutwidth. For all
problems but HAMILTONIAN CYCLE the tight bounds are known to be equal for treewidth and
pathwidth. And the tight complexity of HAMILTONIAN CYCLE parameterized by treewidth remains
open. The results of this paper are in the right column.

TRIANGLE PACKING (TP) 2t 3
PARTITION INTO TRIANLGES (PT) 20 V3
HamirroniaN Cycre (HC) (2+V2)PY | (14 v2)™
Max Cut (MC) 20 204w
INDUCED MATCHING (IM) 30 3o

Related Work. The (S)ETH tight complexity of problems parameterized by structural
parameters has been widely studied. Apart from the already mentioned results, there
is a long list of papers related to such algorithms on graphs of bounded treewidth (e.g.,
10, 14, 15, 18, 19, 21, 22, 32, 43, 44]), treedepth (e.g., [27, 31, 32, 42]), clique-width (e.g.,
[1, 2,9, 23, 28, 31, 33]), rank-width (e.g., [3, 11]), and cutwidth (e.g., [7, 39]). There is also
a line of work devoted to conjectures weaker than SETH and yielding the same lower bounds
for structural parameterizations (e.g., [12, 35, 34]).

Organization. We start by providing a short summary of the used notation. Section 3 is
devoted to TRIANGLE PACKING, there we provide our algorithm together with the main steps
required to justify its running time. We also sketch the lower-bound construction. After that
in Section 4 we present the main idea behind the lower bound state the lower bound for
HAMILTONIAN CYCLE. In Section 5 we state our lower bounds for INDUCED MATCHING and
Max Cut. We conclude in Section 6 by providing some open questions.

2 Preliminaries

We use O* notation to suppress factors polynomial in the input size. For an integer i € Ny
by [i] we denote the set {1,...,4} (in particular, we have [0] = §)) and by [i]o we denote the
set [i] U {0}. For a vector a = (aq,...,a,) over a ground set U and a mapping f: U — V
for some set V', we denote by (f(v))vea the vector (f(a1),..., f(an)).

Given a graph G = (V, E) and a vertex v € V, the neighborhood of v in G is defined as
Ng(v) ={w € V(G): {v,w} € E(G)}. We omit the index G when clear from the context.
For an edge set F' C E, we define G[F| = (V, F) and we define V(F) as the set of end-points
of F. For a vertex set S C V and a vertex v € V we define Ng(v) = Ng(v) NS and
degg(v) = |Ng(v)|. We define cc(G) as the set of all connected components of G, where a
connected component of G is a maximal connected subgraph of G.

We base our lower bounds on the Strong Exponential Time Hypothesis (SETH) [29]:

» Conjecture 1 (SETH). For every e > 0, there exists a constant d > 0 such that d-SAT
cannot be solved in time O*((2 — €)™), where n is the number of variables.

Cutwidth. A linear arrangement ¢ = v1,...,v, of a graph G = (V, E) is a linear ordering
of V. We define Vo = 0, V; = {v1,...,v;} and V; = V\'V; for i € [n]o. We define the
cut-graph at i € [n]o as the bipartite graph H; = G[V;,V;]. The set E; denotes the edge
set of H;. The cutwidth of ¢ is defined as ctw({) = max;¢p,) [E(H;)|. The cutwidth of G is
defined as ctw(G) = ming ctw(£), where the minimum is taken over all linear arrangements
of G. We define L; and R; as the set of the left and right endpoints of edges in E;, respectively.
Finally, for i € [n], we define Y; = L;_1 U{v;}, i.e., Y; contains all left end-points of the edges
of E;_1 together with v;.

N. Bojikian, V. Chekan, and S. Kratsch

Path decompositions. A path decomposition of a graph G is a pair (P,B: V(P) — 2V),
where P is a simple path and the following properties hold:
1. For every vertex v € V(G), the set {z € V(P): v € B(z)} induces a non-empty connected
subgraph of P.
2. For every edge {u,v} € E(G), there exists a node z € V(P) with {u,v} C B(x).
Let 21,...,z, be the nodes of P in the order they occur on P. The sets B(x1),...,B(z,) are
called bags. For every x; € V(P), we define By, = B(z;), Vo, = Uj<;B(z;), and G, = G[V,,].
A path decomposition (P, B) is nice, if we have B(x1) = B(z,) = 0 and for any two consecutive
nodes x,z’ on P, we have |B(x)AB(z’)| < 1. Hence, one can define a nice path decomposition
by a sequence of introduce- and forget-vertex operations. It is sometimes useful to have
designated introduce-edge operations as well, in this case, we call the path decomposition
very nice. For a node x of a very nice path decomposition, by G, = (V,., E,) we denote the
(not necessarily induced) subgraph of G whose vertex resp. edge set consists of the vertices
resp. edges of G introduced in this decomposition up to the node z.

3 Triangle Packing

A triangle packing of a graph G = (V, E) is a subgraph T of G such that each connected
component of T is a cycle of length three, the size of T' is the number of its connected
components. In the TRIANGLE PACKING problem, given a graph GG and a positive integer b*,
we are asked whether there exists a triangle packing of size b* in G. In the PARTITION INTO
TRIANGLES problem, we are asked whether a triangle packing of size |V|/3 exists in G. We
obtain the following result:

» Theorem 2. There exists an algorithm that given an instance (G,b*) of TRIANGLE
PACKINtG together with a linear arrangement of G of width at most ctw, runs in time
(9*(\3/§C W) and outputs whether G admits a triangle packing of size b*.

We emphasize that in what follows we only provide a sketch of the proof of this theorem and
we refer to the full version for all details.

Let (G = (V, E),b*) be an instance of TRIANGLE PACKING and let £ = vy,...,v, be a
linear arrangement of G of cutwidth at most ctw. First, we describe a dynamic-programming
algorithm over a nice path decomposition (P, B) of G. After that, we construct a nice path
decomposition of G from ¢ and show that it has certain useful properties, namely, the number
of possible states of our dynamic-programming algorithm is bounded for each bag.

Algorithm over a path decomposition

Let (P,B) be a nice path decomposition of G. For every node z of P, every set S C By,
and every integer b, we define the family #2[S] of all triangle packings of G, of size b whose
intersection with B, is precisely S and furthermore, each triangle in this packing contains at
least one vertex of V. \ B, (i.e., forgotten already). We define the set SY consisting of all
subsets S C B, such that H%[S] is non-empty. We call S, = [,y S5 the set of realizable
states at x. For a set Y C By, let S, [Y] ={SNY | S € 8.} be the set of states “induced”
by the set Y.

A straightforward algorithm computing all sets S can be informally summarized as
follows. Let ' be the node preceding x. At every node x forgetting a vertex, say v, we iterate
over all triangles containing the vertex v whose other end-points are still in the bag, iterate
over all sets in 8271, and “combine” the two if they are vertex-disjoint. For every S € 8%, we
also add S\ {v} to 8% as the corresponding triangle packing of G, remains “valid” in G,,.

13:5

ESA 2025

13:6

Tight Bounds for Some Classical Problems Parameterized by Cutwidth

At every introduce-node x we just keep the family S?,. Recall that the root-node, say r, of
the nice path decomposition (P, B) is an empty bag. Then the graph G admits a triangle
packing of size b if and only if) € S? holds. We can show that if o denotes the maximum
size of a family S% over all nodes z and all integers b € [| 2]]o, then all families S can be
computed in time O*(a). In order to achieve this, we describe a data structure that allows
the insertion of a single “state” in time polynomial in n as well as the iteration over all states
present in the data structure in time O*(«). In the remainder of the proof, we show how to
get a nice path decomposition of G from its linear arrangement ¢ so that the value of « is
sufficiently small.

From linear arrangement to path decomposition

To obtain the desired path decomposition (P, B) we will proceed as follows. We will first
define a set of the so-called checkpoint bags X, ..., X, corresponding to the cut graphs
Hy, ..., H, of £. Later we will show how to add so-called transition bags to turn this sequence
into a nice path decomposition, while still keeping the number of possible states bounded.

First, for a bipartite graph H (think of H = Hy, ..., H,), we define the sets Fiy and Iy
by an iterative process formally defined next. The set Fiy is intended to represent the set of
vertices from the left side of the cut that are forgotten already, while the set Iy corresponds
to the vertices on the right side of the cut that are introduced already. To ensure that the
corresponding “ordering” of the forget- and introduce-operations even yields a valid path
decomposition, i.e., no vertex is forgotten before one of its neighbors is introduced, we will
ensure that Iy contains all neighbors of Fiy.

Clearly, one can safely forget a vertex if all of its neighbors have already been introduced.
We additionally apply the following non-trivial rule. We forget a vertex v if (1) it has a
single neighbor w in H that is not introduced yet, and (2) the vertex v has degree at most
two in H. In this case we introduce the unique missing neighbor of v before forgetting v.
We define Qg as the vertices on the right side that have not been introduced yet, i.e., do not
belong to Iy. We provide formal definitions of these sets (see Figure 1 for an illustration):

» Definition 3. Let H = (L, R, E) be a bipartite graph. First, we define F(°) = (. For j >0,
let IV) = Ny (FU)), and let QU) = R\ 1Y), We define the sets FUtD) recursively as follows:

FUTD — {veL: degyu (v) =0V (deggu (v) =1 Adeg(v) <2)}.

In the full version we show, that there exists an integer k£ such that F*) = p(®) for
all ¥ > k. Let k be the smallest such value. We define Fy = F*) Iy = I® and Qi = Q).
We also define the sets L}; and L% as the vertices of Ly \ Fiy that have exactly one or at least
two neighbors in @, respectively. Finally, we define the bag at H as Xy = Ly, U L%, U Ip.

For every i € [n]y, we define L? = L%{i, L} = L}LL,7 F, = Fy,, I, = Iy,,Q; = Qu,,
and X; = Xp,. We call F; the set of forgotten vertices at i, I; the set of introduced vertices,
and @); the set of unintroduced vertices.

It can be shown that X; is a vertex separator for every i € [n]: this follows from the
fact that I; is the neighborhood of F;. Furthermore, we show in the full version that if in
Definition 3 instead of F(©) = (), we start with the set F(©) = F;_; of the vertices already
forgotten at the previous cut, then we obtain the same set F; of vertices forgotten at the
current cut. From this we can then conclude that a nice path decomposition of G can
be constructed by using X, ..., X, as the main building blocks. We emphasize that the

sequence of vertex separators Xy, ..., X, itself does not even necessarily contain every vertex
of G. To resolve this, we will turn it into a nice path decomposition by adding the so-called
transition bags. The bags X1, ..., X,, are called the checkpoint bags, and x4, ..., x, denote

the corresponding nodes in the arising path decomposition.

Ot

N. Bojikian, V. Chekan, and S. Kratsch

(251

U1

w1 w1 w1
Vo Vg Vo Vo,
Wo Wo W2 W2
v V3 V3 U3
w3 w3 w3 w3
v. V. V. .
Wy Wy Wy Wy

Usy

™

Vs

2)

Vs

®3)

Vs

4)

Figure 1 For i = 1,2, 3,4, the family F¥ is red on the left-hand side of the cut while the families
I10=D and Q™Y are blue and gray, respectively, on the right-hand side. The sets Fi, I, Qu are
the red, blue, and gray vertices, respectively, in (4). The black vertex in (4) belongs to L¥; as it has
a single gray neighbor. The bag X is the set of all black and blue vertices in (4).

The reason why we distinguish the sets L} and L? is two-fold. First, to bound the number
of states in terms of cutwidth, we will “assign” the edges of the cut H; to certain sets of
vertices in the bag, these sets are then called components. Since every vertex in L? has at
least two neighbors in @);, and since no vertex of @); belongs to the bag X; by definition,
we can assign at least two cut-edges to every vertex of L?. Based on this, we show that for
some components of a specific structure, enough edges of the cut can be assigned to these

components to “allow” all possible state combinations of the vertices of these components.

Let us elaborate a bit more on what we mean by this. Our goal is to bound the number of
states of the bag X; in terms of the number of edges in the cut H;. To prove the desired
bound, it suffices to partition the bag into the components, partition the edges of the cut to
be assigned to these components, and then show that the bound holds for each component
with respect to the number of assigned edges. We will show that if a component contains a
vertex from L?, then for the number s of vertices of this component and the number ¢ of
edges assigned to it, we have 2° < \3/§q’ i.e., the desired bound holds even without a further
careful analysis. We will provide more details later. Second, we also need to ensure that
along the way between the checkpoint bags, i.e., in transition bags, we do not have too many
possible states. This will be achieved by a careful choice of the ordering in which the vertices
are forgotten and introduced. The sets L} and L? will be used to determine this ordering.

Bounding the number of realizable states

We define the graph H; as H; = H;[V;, I;] to represent the part of the cut restricted to the

vertices introduced so far (i.e., we discard the not yet introduced vertices of @; from H;).

For a set Sy C R; of vertices on the right side of the cut-graph H;, we also define the graph

HiS ° = H;[V;, I; \ So] that additionally removes the vertices Sy from the right side of the cut.

This graph will be crucial to bound the number of the possible states for the transition bags:
for example, the graph Hz{fl} will be useful to analyze the first step of the transition from

the cut H;_; to the cut H;, i.e., removing v; from the right side of the cut.

» Definition 4. For every i € [n] and S C V(H;), we define the set EY of all edges of H;
incident with S and we define m;(S) = |EY|.

By definition of the bipartite graph H;, each edge of H; either has both end-points in some
connected component of H;, or it has its left end-point in some connected component of H;
and its right end-point in @Q);. First, this implies that we have Eiv(C) = E(C)UEg,(C,Q;) for

13:7

ESA 2025

13:8

Tight Bounds for Some Classical Problems Parameterized by Cutwidth

every connected component C' of H;. And second, it shows that every edge of H; is incident
with the vertices of exactly one connected component of H;. Therefore, the sets EZV ©
for C € cc(H;) partition E(H;). This will be crucial to bound the number of states in
the checkpoint bags. An analogous argument shows that for any choice of Sy C R;, the
sets El-v(c) for C' € cc(H?°) partition the set E(H;) as well.

Now we aim at showing that for each connected component C' € cc(H;), the number
of possible states of S;,[V(C)] is upper-bounded by \?/gmi(v(c)). The bound on S, then
follows by the fact that the sets Ezv ©) are pairwise disjoint. This will actually be the part
where it becomes evident, as we shall see in the following proof, that the so-called Z-cuts
form the bottleneck of the algorithm: We will distinguish different types of components C
of H; and the tight upper bound on the number of possible states is achieved by the Z-cuts.

We actually prove a more general statement. First, we prove that the claimed bound
holds not only for C' € CC(HZ-)7 but for any connected component C' of His ® where Sy C R; is
arbitrary. Here it is important to remember that Sy only contains vertices from the right
side of the cut. Second, we will show that the bound holds even if we allow to add any subset
of L; \ F; to every realizable state. This motivates the next definition of the set 7;°[S] which

can be considered as a robust generalization of the set of possible states: intuitively, this

A

permits us to say that even if we allow, instead of G[V;], an arbitrary graph on the left-hand
side of the cut (i.e., a triangle packing is allowed to use an arbitrary subset of vertices on the
left-hand side), the number of states is still bounded. This will later allow us to prove the
bound for the transition bags as well, given that the transitions are carried out in the correct
order. For every i € [n] and every b € [| 2]]o, we will use S as a shorthand for S? .

» Definition 5. For b < [|§]]o, i € [n], and S C V(H;), we define
TS| ={S'UT: 8" € S8, T C SN (L; UL} and Ti[S] = Upe[a)) T15)

n
31lo

For a connected component C' of a subgraph of H;, we use 7;[C] and m;(C') as shorthands
for T;[V(C)] and m;(V(C)), respectively. Now we prove the main technical lemma.

> Lemma 6. For alli € [n], all Sy C Ry, and all C € cc(H) it holds that |T;[C]| < /3™,

Sketch. Let FF = F,nNV(C), I = L nV(C), L' = LI nV(C), L? = L? N V(C), and
X = X; NV(C). By definition of these sets we thus get |X| = |L| + |L?| + |I|. First of all,
it can be argued that the claim is true whenever m;(C) < 2 so we assume m;(C) > 3 in the
remainder. The proof is based on two main inequalities. The first follows directly from the
definition of the T;?: as every element of 7; is a subset of V(C) N X; = X, we have:

ITi[C]| < 2. (1)

For the second inequality, recall that ES = E(C)UEg,(C,Q;) holds, i.e., we have
mi(C) = |E(C)| +|Em, (C,Q;)|. Since C is a connected component of H;°, its edge set E(C)
contains at least |V(C)| — 1 = |L?| + |L'| + |F| + |I| — 1 edges. Moreover, we claim that
|F'| > || holds. Recall that by definition of the sets F/) and %) for j > 0 (see Definition 3),
we have that |F')| > |IU)]: this is because a vertex can only be added to I; (i.e., introduced)
if at least one of its neighbors is added to F; (i.e., forgotten). Furthermore, for any vertex v
in 1) N V(0), the unique vertex in F¢) due to which v was introduced belongs to the same
connected component C. Thus we have |E(C)| > |L?| + |L!| + 2|I| — 1. Finally, recall that
by definition, each vertex of L' has exactly one neighbor in @; while each vertex of L? has at
least two neighbors in @;. Hence, it holds that |Eg, (C, Q;)| > |L*| + 2|L?|. Tt follows that
m;(C) > (|[L?] + |LY + 21| — 1) + (| LY + 2| L?|) = 2|X| + | L?| — 1, and hence we get:

C)+1

x| < ™ 2

N. Bojikian, V. Chekan, and S. Kratsch

First, assume that at least one of the following hold: C contains a cycle, or L? is not
empty, or |F| > |I], or V(C) N L; has a neighbor in Sy N I;. It is not hard to verify that in
this case m;(C) > 2|X| holds and therefore, |7;[C]| < 2IXI < \@mi(c) < f/gmi(c).

In the remainder of the proof we may thus assume that C' is a tree, L? is empty, |F| = |I|,
and each neighbor of V(C) N L; in Sy belongs to ;. We can show that in this case, each
vertex of F' has degree at most 2 in H;. After that we carry out an extensive case distinction
and show that in each case, there exists a constant fraction of all subsets of X that are
certainly not elements of 7[C]. The main idea behind each of the cases is to find a vertex,
say v, in I with certain nice properties, namely there exists a constant-sized subset, say U, of
X such that any triangle packing using v has to use at least one of the vertices in X. Thus,
every subset of X that contains v and has an empty intersection with U is not a possible
state — let us remark that this intuition reflects the proof in an overly simplified manner for
space reasons.

The simplest of these cases is when C' contains a leaf v in I. Then let w be the unique
neighbor of v in L;. As v was introduced due to forgetting one of its neighbors, this neighbor

has to be w, i.e., we have w € F. As m;(C) > 3, there exists a vertex v’ # v € I adjacent to w.

Since every vertex in F' has degree at most 2 in H;, the vertex w does not have neighbors
other than v and v’. Recall that the dynamic-programming algorithm only considers triangles
where at least one vertex is forgotten already. Since w is the unique forgotten neighbor of v,
every such triangle packing containing the vertex v, uses the triangle v, w,v’. Recall that we
have v,v’ € I C X. Hence, for every S € T;[C], the property v € S implies v' € S. This way
we exclude one fourth of all subsets of X from 7;[C] and get:

Tie) < 21 < 2R < 95,

where the last inequality holds due to m;(C) > 3.

This is the spot where a Z-cut occurs: If C' contains exactly three edges, then it consists
of the vertices v,v’, w as well as a vertex, say w’ € F, adjacent to v’ only, and C induces a
Z-cut. Recall that by definition we have X = {v,v’} (i.e., the bag contains v and v’) since
the vertices w and w’ are forgotten, i.e., belong to F. One can verify that in this case all
states other than {v} are possible and therefore, the above inequality is tight and the equality
is achieved by a Z-cut.

If C contains no leaves in I, we can show that m;(C) > 5 holds. Analyzing the structure
of the cut, we then show the inequality |7;[C]| < 3—32“ I implying the desired bound. <

By applying the above lemma with Sy = (), we can show that the number of states at
3/=Ctw

each checkpoint bag is upper-bounded by /3 :
» Corollary 7. For alli € [n] and b € [|[%]]o, it holds that |S?| < {s/ﬁlEi‘.

Due to space constraints, we omit the proof of the following bound for transition bags. It
relies on a careful choice of the ordering of the forget- and introduce-operations together with
an involved analysis of the relation between the connected components of the graphs H; 4
and H; as well as the states of these components:

» Lemma 8. For every transition node) and every b € (L5 [lo, it holds that |Sij| < 4.3

In Figure 2 we sketch the idea behind our lower-bound construction matching the running
time of our algorithm from the previous subsection and refer to the full version for a formal
description. We prove the following result for PARTITION INTO TRIANGLES:

13:9

ESA 2025

13:10

Tight Bounds for Some Classical Problems Parameterized by Cutwidth

7 A A

R
|
|

|

R

Figure 2 Sketch of the lower-bound construction for n = 4 variables and m = 4 clauses in an
instance of d-CSP-3. Each of the gray boxes is a path gadget which may have one of the three
states. Blue boxes are small cliques. Dotted lines reflect that there exist all possible edges between
the sets. Every colored box is a constraint gadget. The cutwidth of the construction is essentially
upper-bounded by 3n as each of the n Z-cuts contributes three edges to the size of a cut.

» Theorem 9. Assuming SETH, there exists no algorithm that solves PARTITION INTO
TRIANGLES on graphs given with linear arrangements of cutwidth k in time O* ((\‘73 — s)k)
for any € > 0.

Since there is a trivial reduction from PARTITION INTO TRIANGLES to TRIANGLE PACKING,

this lower bound then also holds for TRIANGLE PACKING and so the running time of
t

O*(¥/3°") is optimal for both problems under SETH.

4 Hamiltonian Cycle

For a graph G = (V, E), a set C C E of edges is called a Hamiltonian cycle of G if C induces
a single cycle visiting all vertices of G. In the HAMILTONIAN CYCLE problem, we are given a
graph G and asked if there is a Hamiltonian cycle in G.

Here we provide a randomized algorithm solving HAMILTONIAN CYCLE in time O*((1 4+
Vv2)¥) on graphs provided with a linear arrangement of cutwidth k. For this we adapt
the O*((2 + v/2)P) algorithm by Cygan et al. [16] working on graphs provided with a path
decomposition of pathwidth p. We will transform a linear arrangement of cutwidth k into a
path decomposition having a useful algorithmic property, namely, the dynamic-programming
table as defined by Cygan et al. has only O*((1 + v/2)*) non-zero entries and there is an
efficient way to determine the “certainly zero” entries. Now we provide some details. The
algorithm by Cygan et al. [16] strongly relies on their algebraic result about the Fa-rank of a
certain “compatibility” matrix reflecting, for each pair of perfect matchings, whether their
union is a Hamiltonian cycle. We summarize the necessary parts of this result:

» Theorem 10 ([16]). Let t € N be even. Then there exists a set X; of perfect matchings
of the complete graph K; with the following properties: (1) |X;| = 21/~ (2) X; can be
computed in time ﬂtto(l), and (8) for every matching M € X, there exists a unique
matching M' € X; such that M U M’ forms a Hamiltonian cycle of K.

Observe that the third property implies that one can partition the set X} into pairs of
matchings such that the union of two perfect matchings forms a Hamiltonian cycle, if and
only if the two matchings are paired in this partition. In other words, the family A} induces
a permutation submatrix of the compatibility matrix mentioned above. Like Cygan et al.,
we will sometimes identify some ordered set, say S, of even cardinality ¢ with the vertex
set [t] of K;. Then by X(S) we denote the set obtained from A} by identifying the elements
of S with [t]. In particular, every element of X'(S) is a perfect matching on the vertex set S.

N. Bojikian, V. Chekan, and S. Kratsch

In the following, we assume that the graph G is provided with a weight function w: E(G) —
N. As many other algorithms for connectivity problems, the algorithm of Cygan et al. [16]
makes use of the classic isolation lemma (see [40]) and samples w in a certain probabilistic way.
Their algorithm works on a very nice path decomposition of the input graph G. Essentially,
it processes such a path decomposition and for every bag, counts, modulo 2, the number
of subgraphs of the already processed graph such that every vertex in this subgraph has
degree 2, except for vertices in the current bag which may have lower degree. The dynamic-
programming table refines these counts depending on the weight of the subgraph, its degree
sequence on the bag, and whether this subgraph forms a single cycle with a certain matching
defined on the vertex set of the bag. A crucial implication of Theorem 10 (as proven in their
paper) is that instead of taking all such matchings into account, it suffices to consider only
the “base matchings” from A} to solve the problem. Now we summarize this more formally:

» Definition 11 ([16]). A partial cycle cover of a graph is a set of edges such that every
vertex has at most two incident edges in this set. For every node x of the provided very
nice path decomposition, every s: B, — {0,1,2} where s~1(1) has even cardinality, every
M € X(s71(1)), and every w € N, the value Ty[s, M, w] is defined as the number, modulo 2,
of partial cycle covers C of the graph G, with the following properties:

1. the set C'U M of edges induces a single cycle,

2. the total weight (with respect to w) of the edges in C' is w,

3. every vertex v € By has precisely s(v) incident edges in C,

4. every vertex v € V(G,) \ By has precisely two incident edges in C.

We say that a partial cycle cover C of G, has footprint s on x if it satisfies the last two items.

» Theorem 12 ([16]). Let x be a non-first node of a very nice path decomposition of a graph G
and let y denote its predecessor. For any fized s: B, — {0,1,2} where s~1(1) has even
cardinality, every M € X(s~*(1)), and every w € N, given the table Ty, the value Ty [s, M, w)
can be computed in time O*(1) by querying O(1) entries of T,.

Let G be a graph and let £ = vq,...,v, be a linear arrangement of G of cutwidth at most k.
The aim now is to compute from ¢ a path decomposition of G with certain nice properties to
which we will later apply the algorithm from Theorem 12. We recall that by definition for
every i € [n], the set Y; consists of all left end-points of the edges in the (i — 1)st cut F;_;
of ¢ together with the vertex v;. Thus, we have |E;_1| <k and |Y;| <k +1foralli e [n]. It
is well-known that the sequence Y7, ..., Y, of bags is a path decomposition of G (see e.g., [26]
for the idea and [7] for a formal proof). To reverse the ordering in which these bags are
traversed, for every i € [n], we define the set X; = Y, 41

» Definition 13. For a node x of a path decomposition we define the sets
Bi(z) = {u € B, | degg, (u) =1} and By(x) = {u € B, | degg, (u) > 2}.

We call a mapping s: B, — {0, 1,2} relevant if all of the following hold: (1) |s~1(1)] is even,
(2) s71(2) C Ba(x), and (3) s71(1) C By(z) U Ba(x).

» Lemma 14. Let x be a node of a very nice path decomposition of G and P be a partial
cycle cover of G,. Let s: B, — {0,1,2} be such that P has footprint s. Then s is relevant.

Furthermore, if |Bi(x)| + 2 - |Ba(z)| < k 4+ O(1) holds, then the number of pairs (s, M)
such that s: B, — {0,1,2} is relevant and M € X (s~ (1)) is upper-bounded by O((1++/2)%).

13:11

ESA 2025

13:12

Tight Bounds for Some Classical Problems Parameterized by Cutwidth

Sketch. Let P be a partial cycle cover of G, and let s: B, — {0,1,2} be such that P has
footprint s. By definition of a footprint, all end-vertices of P belong to B,. Furthermore,
every vertex of degree 1 resp. 2 in P has the degree of at least 1 resp. 2 in G, so the first
claim holds. Now let ¢; = |Bi(z)| and ¢2 = |Ba(z)|. The number of pairs (s, M) such
that s: B, — {0,1,2} is relevant and M € X(s~1(1)) is at most

22, (e

- . . 11
0<iz <ty 0<i1 <(€2—iz)+L1
A careful analysis upper-bounds this by O((1 + v/2)%) if £, +2 - 5 < k 4+ O(1) holds. <

» Lemma 15. From the linear arrangement vy, ..., v, of the graph G, in polynomial time
we can construct a very nice path decomposition of G in which each node x satisfies |Bi(x)| +
2 |By(x)] < k+0O(1).

Sketch. The desired path decomposition is obtained by starting with the nodes x1,...,x,
corresponding to the bags X1, ... X,, respectively, and making the decomposition very nice
by a careful choice of the ordering of introduce-vertex-, introduce-edge-, and forget-vertex-
operations. This ordering, in particular, ensures that the graph G, contains no edges with
both end-points in X; \ {vn+1-:}. We recall that for every i € [n], all vertices in the bag X;
(apart from v,,11_;) are left end-points of edges in the cut F,_; (whose size is bounded by k).
So every vertex in By(z;) \ {vnt1-i} resp. Ba(x;) \ {vnt1-:} contributes 1 resp. at least 2 to
the size of E,_;. And therefore |B;(x;)| 4+ 2 - |Bz2(x;)| is upper-bounded by k + 2. We also
show that the intermediate bags added to make the decomposition very nice also have this
property as they can be upper-bounded using x; for some ¢ € [n]. <

We can then run the dynamic-programming algorithm from Theorem 12 restricted to relevant
footprints only to compute the values T,.[0, #, w] for every “reasonable” integer w where r
denotes the root of a path decomposition satisfying the above lemma. Cygan et al. [16] show
that this information suffices to find out, with high probability, if the graph G admits a
Hamiltonian cycle. We refer to the full version for all details.

» Theorem 16. There exists a one-sided error Monte-Carlo algorithm that takes a graph G
together with a linear arrangement of G of cutwidth at most ctw, runs in time O*((14+/2)°™"),
and solves the HAMILTONIAN CYCLE problem. The algorithm cannot give false positives and
may give false negatives with probability at most 1/2.

Cygan et al. [16] showed that unless SETH fails, no algorithm working on path decom-
positions of pathwidth pw can solve the problem in time O*((2 + v/2 — £)P%) for any € > 0.
We show that their ideas are also useful to exclude the O*((1 + v/2 — €)°*V) algorithms for
any £ > 0. To ensure that the construction has bounded cutwidth (and not only pathwidth),
we modify the connections between path gadgets and employ new clause gadgets:

» Theorem 17. Assuming SETH, there is no algorithm that solves HAMILTONIAN CYCLE on

graphs given with linear arrangements of cutwidth k in time O*((14 /2 —&)*) for any € > 0.

5 Max Cut and Induced Matching

In INDUCED MATCHING, given a graph G and an integer b, we are asked whether G contains
a matching M of cardinality b such that (V (M), M) is an induced subgraph of G, i.e., there
are no edges other than M with both endpoints in V(M). We prove the following result:

N. Bojikian, V. Chekan, and S. Kratsch

» Theorem 18. Assuming SETH, there is no algorithm that solves INDUCED MATCHING on
graphs given with linear arrangements of cutwidth k in time (’)*((3 — E)k) for any e > 0.

We recall that the treewidth of a graph is upper-bounded by its cutwidth. This shows
that the O* (3k) algorithm by Chaudhary and Zehavi [13] working on graphs provided with
tree decompositions of treewidth at most k is optimal for both treewidth and cutwidth and
thus answers their open question. In MAX CUT we are given a graph and asked to partition
its vertex set into two sets to maximize the number of edges between these sets. We prove
that the folklore O* (2’“) algorithm working on graphs provided with tree decompositions of
treewidth at most k is optimal for both treewidth and cutwidth:

» Theorem 19. Assuming SETH, there is no algorithm that solves MAX CUT on graphs
given with linear arrangements of cutwidth k in time (’)*((2 — s)k) for any e > 0.

6 Conclusion and Future Work

Our results together with previous work [7, 30] show an interesting variety of behaviors for
the complexity of problems relative to treewidth/pathwidth vs. relative to cutwidth: We
may get the same tight bound, a small decrease in complexity, or a substantial decrease.
We also discovered two more rare examples of tight exponential bounds with non-integral
bases, especially TRIANGLE PACKING, which has an integral base relative to treewidth. In
our opinion, this makes parameterization by cutwidth a very good test bed for deepening
the understanding of dynamic programming and width parameters.

There are several avenues for future work: (i) Some edge-disjoint packing problems are
intractable for treewidth but we may be able to dertermine tight bounds for cutwidth. (ii)
Going beyond classical problems, it would be interesting to determine the tight complexity
of (o, p)-domination problems for cutwidth which is known for treewidth [21]. (iii) Closing
the gap for H-HOMOMORPHISM left by Groenland et al. [25] is a challenging open question.

—— References

1 Benjamin Bergougnoux and Mamadou Moustapha Kanté. Fast exact algorithms for some
connectivity problems parameterized by clique-width. Theor. Comput. Sci., 782:30-53, 2019.
doi:10.1016/j.tcs.2019.02.030.

2 Benjamin Bergougnoux and Mamadou Moustapha Kanté. More Applications of the d-Neighbor
Equivalence: Acyclicity and Connectivity Constraints. SIAM J. Discret. Math., 35(3):1881—
1926, 2021. doi:10.1137/20M1350571.

3 Benjamin Bergougnoux, Tuukka Korhonen, and Jesper Nederlof. Tight Lower Bounds for
Problems Parameterized by Rank-Width. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar,
and Mamadou Moustapha Kanté, editors, 40th International Symposium on Theoretical
Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume
254 of LIPIcs, pages 11:1-11:17. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023.
d0i:10.4230/LIPIcs.STACS.2023.11.

4 Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets mébius:
fast subset convolution. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-183,
2007, pages 67-74. ACM, 2007. doi:10.1145/1250790.1250801.

5 Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, Mikko Koivisto, Jesper Nederlof, and
Pekka Parviainen. Fast Zeta Transforms for Lattices with Few Irreducibles. ACM Trans.
Algorithms, 12(1):4:1-4:19, 2016. doi:10.1145/2629429.

13:13

ESA 2025

https://doi.org/10.1016/j.tcs.2019.02.030
https://doi.org/10.1137/20M1350571
https://doi.org/10.4230/LIPIcs.STACS.2023.11
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1145/2629429

13:14

Tight Bounds for Some Classical Problems Parameterized by Cutwidth

10

11

12

13

14

15

16

17

18

Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86-111, 2015. doi:10.1016/j.ic.2014.12.008.

Narek Bojikian, Vera Chekan, Falko Hegerfeld, and Stefan Kratsch. Tight Bounds for
Connectivity Problems Parameterized by Cutwidth. In Petra Berenbrink, Patricia Bouyer,
Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Symposium on
Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany,
volume 254 of LIPIcs, pages 14:1-14:16. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik,
2023. doi:10.4230/LIPIcs.STACS.2023.14.

Narek Bojikian, Vera Chekan, and Stefan Kratsch. Tight Bounds for some Classical Problems
Parameterized by Cutwidth. CoRR, abs/2502.15884, 2025. doi:10.48550/arXiv.2502.15884.

Narek Bojikian and Stefan Kratsch. A tight Monte-Carlo algorithm for Steiner Tree paramet-
erized by clique-width. CoRR, abs/2307.14264, 2023. doi:10.48550/arXiv.2307.14264.

Glencora Borradaile and Hung Le. Optimal Dynamic Program for r-Domination Problems
over Tree Decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International
Symposium on Parameterized and Fxzact Computation, IPEC 2016, August 24-26, 2016,
Aarhus, Denmark, volume 63 of LIPIcs, pages 8:1-8:23. Schloss Dagstuhl — Leibniz-Zentrum
fir Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.8.

Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. H-join decomposable graphs and
algorithms with runtime single exponential in rankwidth. Discret. Appl. Math., 158(7):809-819,
2010. doi:10.1016/j.dam.2009.09.009.

Barig Can Esmer, Jacob Focke, Déaniel Marx, and Pawel Rzazewski. Fundamental Problems on
Bounded-Treewidth Graphs: The Real Source of Hardness. In Karl Bringmann, Martin Grohe,
Gabriele Puppis, and Ola Svensson, editors, 51st International Colloguium on Automata,
Languages, and Programming (ICALP 2024), volume 297 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 34:1-34:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik. doi:10.4230/LIPIcs.ICALP.2024.34.

Juhi Chaudhary and Meirav Zehavi. P-Matchings Parameterized by Treewidth. In Daniél
Paulusma and Bernard Ries, editors, Graph-Theoretic Concepts in Computer Science — 49th
International Workshop, WG 2023, Fribourg, Switzerland, June 28-30, 2023, Revised Selected
Papers, volume 14093 of Lecture Notes in Computer Science, pages 217-231. Springer, 2023.
doi:10.1007/978-3-031-43380-1_16.

Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A Tight Lower Bound for Counting
Hamiltonian Cycles via Matrix Rank. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1080-1099. STAM, 2018. doi:10.1137/1.9781611975031.70.

Radu Curticapean and Déniel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650-1669. STAM,
2016. doi:10.1137/1.9781611974331.ch113.

Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity Checking Via Bases of
Perfect Matchings. J. ACM, 65(3):12:1-12:46, 2018. doi:10.1145/3148227.

Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. CoRR, abs/1103.0534, 2011. arXiv:1103.0534.

Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by Treewidth
in Single Exponential Time. ACM Trans. Algorithms, 18(2):17:1-17:31, 2022. doi:10.1145/
3506707.

https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.4230/LIPIcs.STACS.2023.14
https://doi.org/10.48550/arXiv.2502.15884
https://doi.org/10.48550/arXiv.2307.14264
https://doi.org/10.4230/LIPIcs.IPEC.2016.8
https://doi.org/10.1016/j.dam.2009.09.009
https://doi.org/10.4230/LIPIcs.ICALP.2024.34
https://doi.org/10.1007/978-3-031-43380-1_16
https://doi.org/10.1137/1.9781611975031.70
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1145/3148227
https://arxiv.org/abs/1103.0534
https://doi.org/10.1145/3506707
https://doi.org/10.1145/3506707

N. Bojikian, V. Chekan, and S. Kratsch

19

20

21

22

23

24

25

26

27

28

29

Baris Can Esmer, Jacob Focke, Déniel Marx, and Pawel Rzazewski. List homomorphisms by
deleting edges and vertices: tight complexity bounds for bounded-treewidth graphs. CoRR,
abs/2210.10677, 2022. doi:10.48550/arXiv.2210.10677.

Krzysztof Fleszar, Matthias Mnich, and Joachim Spoerhase. New algorithms for maximum
disjoint paths based on tree-likeness. Math. Program., 171(1-2):433-461, 2018. doi:10.1007/
S10107-017-1199-3.

Jacob Focke, Déniel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp
Schepper, and Philip Wellnitz. Tight Complexity Bounds for Counting Generalized Dominating
Sets in Bounded-Treewidth Graphs. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Ttaly, January 22-25, 2023, pages 3664—-3683. SIAM, 2023. doi:10.1137/1.9781611977554.
ch140.

Jacob Focke, Daniel Marx, and Pawel Rzazewski. Counting list homomorphisms from graphs
of bounded treewidth: tight complexity bounds. In Joseph (Seffi) Naor and Niv Buchbinder,
editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9 — 12, 2022, pages 431-458. STAM, 2022.
d0i:10.1137/1.9781611977073.22.

Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov.
The Fine-Grained Complexity of Graph Homomorphism Parameterized by Clique-Width. In
Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloguium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris,
France, volume 229 of LIPIcs, pages 66:1-66:20. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.66.

Robert Ganian and Sebastian Ordyniak. The Power of Cut-Based Parameters for Computing
Edge-Disjoint Paths. Algorithmica, 83(2):726-752, 2021. doi:10.1007/S00453-020-00772-W.

Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Pawel Rzazewski. To-
wards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via
Asymptotic Matrix Parameters. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola
Svensson, editors, 51st International Colloguium on Automata, Languages, and Programming,
ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 77:1-77:21. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.77.

Carla Groenland, Isja Mannens, Jesper Nederlof, and Krisztina Szildgyi. Tight Bounds for
Counting Colorings and Connected Edge Sets Parameterized by Cutwidth. In Petra Berenbrink
and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of
Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference),
volume 219 of LIPIcs, pages 36:1-36:20. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2022. doi:10.4230/LIPIcs.STACS.2022.36.

Falko Hegerfeld and Stefan Kratsch. Solving Connectivity Problems Parameterized by
Treedepth in Single-Exponential Time and Polynomial Space. In Christophe Paul and
Markus Bléaser, editors, 37th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of
LIPIcs, pages 29:1-29:16. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020. doi:
10.4230/LIPICS.STACS.2020.29.

Falko Hegerfeld and Stefan Kratsch. Tight Algorithms for Connectivity Problems Parameterized
by Clique-Width. In Inge Li Ggrtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz
Herman, editors, 81st Annual European Symposium on Algorithms, ESA 2023, September 4-6,
2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 59:1-59:19. Schloss Dagstuhl
— Leibniz-Zentrum fir Informatik, 2023. doi:10.4230/LIPIcs.ESA.2023.59.

Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367-375, 2001. doi:10.1006/jcss.2000.1727.

13:15

ESA 2025

https://doi.org/10.48550/arXiv.2210.10677
https://doi.org/10.1007/S10107-017-1199-3
https://doi.org/10.1007/S10107-017-1199-3
https://doi.org/10.1137/1.9781611977554.ch140
https://doi.org/10.1137/1.9781611977554.ch140
https://doi.org/10.1137/1.9781611977073.22
https://doi.org/10.4230/LIPIcs.ICALP.2022.66
https://doi.org/10.1007/S00453-020-00772-W
https://doi.org/10.4230/LIPICS.ICALP.2024.77
https://doi.org/10.4230/LIPIcs.STACS.2022.36
https://doi.org/10.4230/LIPICS.STACS.2020.29
https://doi.org/10.4230/LIPICS.STACS.2020.29
https://doi.org/10.4230/LIPIcs.ESA.2023.59
https://doi.org/10.1006/jcss.2000.1727

13:16

Tight Bounds for Some Classical Problems Parameterized by Cutwidth

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph
decompositions via matrix rank. Theor. Comput. Sci., 795:520-539, 2019. doi:10.1016/j.
tcs.2019.08.006.

Joannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters,
tight bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90-117, 2019.
doi:10.1016/j.dam.2018.11.002.

Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structurally parameterized
d-scattered set. Discret. Appl. Math., 308:168-186, 2022. doi:10.1016/j.dam.2020.03.052.
Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math.,
34(3):1538-1558, 2020. doi:10.1137/19M1280326.

Michael Lampis. Circuits and Backdoors: Five Shades of the SETH, 2024. doi:10.48550/
arXiv.2407.09683.

Michael Lampis. The Primal Pathwidth SETH. In Yossi Azar and Debmalya Panigrahi,
editors, Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2025, New Orleans, LA, USA, January 12-15, 2025, pages 1494-1564. SIAM, 2025.
do0i:10.1137/1.9781611978322.47.

Michael Lampis and Manolis Vasilakis. Structural Parameterizations for Induced and Acyclic
Matching. CoRR, abs/2502.14161, 2025. doi:10.48550/arXiv.2502.14161.

Daniel Lokshtanov, Déaniel Marx, and Saket Saurabh. Known Algorithms on Graphs of
Bounded Treewidth Are Probably Optimal. ACM Trans. Algorithms, 14(2):13:1-13:30, 2018.
doi:10.1145/3170442.

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Slightly Superexponential Parameterized
Problems. SIAM Journal on Computing, 47(3):675-702, 2018. doi:10.1137/16M1104834.
Déniel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and Gaps: Tight Complexity
Results of General Factor Problems Parameterized by Treewidth and Cutwidth. In Nikhil
Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloguium on
Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference), volume 198 of LIPIcs, pages 95:1-95:20. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.95.

Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Comb., 7(1):105-113, 1987. doi:10.1007/BF02579206.

Jesper Nederlof. Algorithms for NP-Hard Problems via Rank-Related Parameters of Matrices.
In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels,
and Algorithms — Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday, volume 12160 of Lecture Notes in Computer Science, pages 145—-164. Springer, 2020.
doi:10.1007/978-3-030-42071-0_11.

Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Hamilto-
nian Cycle Parameterized by Treedepth in Single Exponential Time and Polynomial Space.
In Proc. WG 2020, volume 12301 of Lecture Notes Comput. Sci., pages 27-39, 2020.
doi:10.1007/978-3-030-60440-0_3.

Karolina Okrasa, Marta Piecyk, and Pawel Rzazewski. Full Complexity Classification of the
List Homomorphism Problem for Bounded-Treewidth Graphs. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
74:1-74:24. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.74.

Karolina Okrasa and Pawel Rzazewski. Fine-Grained Complexity of the Graph Homomorphism
Problem for Bounded-Treewidth Graphs. SIAM J. Comput., 50(2):487-508, 2021. doi:
10.1137/20M1320146.

Bas A. M. van Geffen, Bart M. P. Jansen, Arnoud A. W. M. de Kroon, and Rolf Morel.
Lower Bounds for Dynamic Programming on Planar Graphs of Bounded Cutwidth. J. Graph
Algorithms Appl., 24(3):461-482, 2020. doi:10.7155/jgaa.00542.

https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.dam.2018.11.002
https://doi.org/10.1016/j.dam.2020.03.052
https://doi.org/10.1137/19M1280326
https://doi.org/10.48550/arXiv.2407.09683
https://doi.org/10.48550/arXiv.2407.09683
https://doi.org/10.1137/1.9781611978322.47
https://doi.org/10.48550/arXiv.2502.14161
https://doi.org/10.1145/3170442
https://doi.org/10.1137/16M1104834
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://doi.org/10.1007/BF02579206
https://doi.org/10.1007/978-3-030-42071-0_11
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.1137/20M1320146
https://doi.org/10.1137/20M1320146
https://doi.org/10.7155/jgaa.00542

N. Bojikian, V. Chekan, and S. Kratsch

46

47

48

Ivo van Heck. Triangle partition on graphs of bounded cutwidth upper- and lower bounds
on algorithmic and communication complexity. Master’s thesis, Eindhoven University of
Technology, Eindhoven, June 2018. Available at https://pure.tue.nl/ws/portalfiles/
portal/109480417/Thesis0775551_Ivo_van_Heck.pdf.

Johan M. M. van Rooij. Fast Algorithms for Join Operations on Tree Decompositions. In
Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels,
and Algorithms — Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday, volume 12160 of Lecture Notes in Computer Science, pages 262—297. Springer, 2020.
doi:10.1007/978-3-030-42071-0_18.

Johan M. M. van Rooij. A Generic Convolution Algorithm for Join Operations on Tree
Decompositions. In Rahul Santhanam and Daniil Musatov, editors, Computer Science —
Theory and Applications — 16th International Computer Science Symposium in Russia, CSR
2021, Sochi, Russia, June 28 — July 2, 2021, Proceedings, volume 12730 of Lecture Notes in
Computer Science, pages 435-459. Springer, 2021. doi:10.1007/978-3-030-79416-3_27.

13:17

ESA 2025

https://pure.tue.nl/ws/portalfiles/portal/109480417/Thesis0775551_Ivo_van_Heck.pdf
https://pure.tue.nl/ws/portalfiles/portal/109480417/Thesis0775551_Ivo_van_Heck.pdf
https://doi.org/10.1007/978-3-030-42071-0_18
https://doi.org/10.1007/978-3-030-79416-3_27

	1 Introduction
	2 Preliminaries
	3 Triangle Packing
	4 Hamiltonian Cycle
	5 Max Cut and Induced Matching
	6 Conclusion and Future Work

