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—— Abstract

Cutwidth is a widely studied parameter and it quantifies how well a graph can be decomposed along

small edge-cuts. It complements pathwidth, which captures decomposition by small vertex separators,
and it is well-known that cutwidth upper-bounds pathwidth. The SETH-tight parameterized
complexity of problems on graphs of bounded pathwidth (and treewidth) has been actively studied
over the past decade while for cutwidth the complexity of many classical problems remained open.

For HAMILTONIAN CYCLE, it is known that a (2++/2)P*n®® algorithm is optimal for pathwidth
under SETH [Cygan et al. JACM 2018]. Van Geffen et al. [J. Graph Algorithms Appl. 2020] and
Bojikian et al. [STACS 2023] asked which running time is optimal for this problem parameterized by
cutwidth. We answer this question with (1 + \/i)cmno(l) by providing matching upper and lower
bounds. Second, as our main technical contribution, we close the gap left by van Heck [2018] for
PARTITION INTO TRIANGLES (and TRIANGLE PACKING) by improving both upper and lower bound
and getting a tight bound of \B'/gdwno(l), which to our knowledge exhibits the only known tight
non-integral basis apart from HAMILTONIAN CYCLE [Cygan et al. JACM 2018] and C4-HITTING
SET [SODA 2025]. We show that the cuts inducing a disjoint union of paths of length three (unions of
so-called Z-cuts) lie at the core of the complexity of the problem — usually lower-bound constructions
use simpler cuts inducing either a matching or a disjoint union of bicliques. Finally, we determine the
optimal running times for Max Cut (2°"'n®®) and INDUCED MATCHING (3*n®M) by providing
matching lower bounds for the existing algorithms — the latter result also answers an open question
for treewidth by Chaudhary and Zehavi [WG 2023].
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1 Introduction

In parameterized complexity the (worst-case) complexity of problems is expressed in terms of
input size n and one or more parameters, often denoted k. The parameter can, for example,
be the size of the sought solution or some measure of the structure of the input. The goal is
to understand the influence of solution size or structure on the complexity. A problem is said
to be fixed-parameter tractable with parameter k if it admits an algorithm with running time
of f(k)-n®W (also denoted by O*(f(k))) for some computable function f. For NP-hard
problems, this function f is usually exponential and it may be doubly exponential or worse.

Due to space constraints, we defer full proofs and technical details to the full version [8].
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This motivates a line of research devoted to the study of the smallest possible functions f
for various problem-parameter combinations. In this context, one is often interested in
NP-hard problems and hence, conjectures stronger than P # NP are assumed for conditional
lower bounds. For example, it has been shown that unless the Exponential Time Hypothesis
(ETH) fails, some problems do not admit algorithms with running time O*(c*) for any
constant ¢ (e.g., [38]) — algorithms with such a running time are called single-exponential.
For problems admitting single-exponential algorithms, it is natural to search for the smallest
value of ¢ for which such an algorithm exists. An even stronger conjecture called the Strong
Exponential Time Hypothesis (SETH) has been assumed to prove for many problems that
existing algorithms with some running time O*(c*) are essentially optimal, i.e., for any & > 0,
there is no algorithm for this problem running in time O*((c — ¢)¥). This conjecture states,
informally speaking, that the SAT problem cannot be solved much more efficiently than
brute-forcing all truth-value assignments.

SETH-tight complexity of problems parameterized by treewidth has been actively studied
over the last decade. This was initiated by Lokshtanov et al. [37] who showed that for
many classical graph problems (e.g., INDEPENDENT SET or Max CuT) the folklore dynamic-
programming (DP) algorithms are essentially optimal under SETH. In parallel, there is also
a line of research devoted to accelerating the existing DP algorithms by employing more
careful analysis and advanced tools like fast subset convolution (e.g., [4, 48, 5]), Discrete
Fourier Transform (e.g., [47]), rank-based approach (e.g., [6]), isolation lemma ([40]), and
Cut&Count (e.g., [17]), we refer to the survey by Nederlof [41] for more details.

Such dynamic-programming algorithms on graphs of bounded treewidth employ the fact
that those graphs can be decomposed along small vertex separators and therefore, when
processing this decomposition in a bottom-up way, one only needs to remember how a partial
solution interacts with the current small separator, also called a bag. Thus it is also natural
to study parameters based on small edge-cuts (as edge-counterparts of vertex separators). A
linear arrangement of a graph places its vertices on a horizontal line so that no two vertices
have the same z-coordinate. Now suppose every edge is drawn as an z-monotone curve,
then the cutwidth of this linear arrangement is the maximum number of edges crossing any
vertical line — observe that the edges crossing such a line separate the vertices on the left
side of the vertical line from the vertices on the right side so they form an edge-cut. The
cutwidth of the graph, denoted ctw, is then the minimum over all of its linear arrangements.
It is well-known that pathwidth, denoted pw, can be defined similarly but instead of the
edges crossing the vertical line, one counts its end-vertices on, say, the right side of the cut.
In particular, this implies that the cutwidth of a graph upper-bounds its pathwidth.

Due to this relation, every O*(f(pw))-time algorithm is also a O*( f(ctw))-time algorithm.
However, it is possible that a problem admits a more efficient algorithm when parameterized
by cutwidth than when parameterized by pathwidth. For example, EDGE DI1SJOINT PATHS is
paraNP-hard for pathwidth [20] but becomes FPT for cutwidth [24]. This difference sparked
deeper interest in studying the cutwidth parameter, and in distinguishing problems whose
complexity differ between these two parameterizations. On a finer level, for some of the prob-
lems for which the SETH-tight complexity parameterized by treewidth is known, the study
continued for the parameterization by cutwidth. The SETH-tight bounds parameterized
by cutwidth are known for INDEPENDENT SET and DOMINATING SET [45], ODD CYCLE
TRANSVERSAL [7], CHROMATIC NUMBER [30], #¢-COLORING [26], as well as a list of con-
nectivity problems (e.g., FEEDBACK VERTEX SET and STEINER TREE) [7]. The CHROMATIC
NUMBER problem exposes again a particularly interesting behavior: for treewidth, it is
known that for any g > 3, the folklore O*(¢"") algorithm is optimal under SETH [37], but for
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cutwidth Jansen and Nederlof [30] proved that there is a (randomized) algorithm computing
the chromatic number of the graph in time O*(2°*V), i.e., independent of the number of colors
in question. Recently, a notable progress was also made for H-HOMOMORPHISM: Groenland
et al. [25] provided a non-algorithmic proof of the existence of so-called representative sets
of certain small size on which a dynamic-programming algorithm can rely, and they also
provided a lower-bound construction matching the size of these representative sets. They

leave it open, though, whether representative sets of small size can also be found efficiently.

The above-mentioned paper by Lokshtanov et al. [37] provided SETH-tight lower bounds
for six classical graph problems, namely INDEPENDENT SET, DOMINATING SET, PARTITION
INTO TRIANGLES, ODD CYCLE TRANSVERSAL, ¢-COLORING (for any fixed ¢ > 3), and MaAX
CuT when parameterized by treewidth [37]. The SETH-tight complexity of these problems
parameterized by cutwidth was only partially known till now.

Our results.  As a first contribution, we resolve the complexity of the two remaining problems
from [37], namely PARTITION INTO TRIANGLES (and also TRIANGLE PACKING) as well as
Max Cut when parameterized by cutwidth. The study of PARTITION INTO TRIANGLES
parameterized by cutwidth was initiated by van Heck [46]: it was shown that the problem
admits a O*({‘/gcm) algorithm and no O*((v/2 — €)°*™V) algorithm exists for any ¢ > 0
unless SETH fails. In this work, we close this gap by providing an algorithm that solves
TRIANGLE PACKING in time (’)*(\3/§th), together with a matching SETH-based lower bound
for the PARTITION INTO TRIANGLES. There is a trivial reduction from PARTITION INTO
TRIANGLES to TRIANGLE PACKING and hence, O*(\S/gcm) is the SETH-optimal running
time for both problems. Our algorithm is a straightforward dynamic programming over
a path decomposition. While a simple analysis yields running time O*(2¥) over a path
decomposition of width k, we show that given a linear arrangement ¢ of cutwidth ctw, one
can construct a specific path decomposition form ¢, where a careful analysis shows that
the number of states in the dynamic programming is bounded by (9*(\3/§th), resulting in
the desired running time. A bottleneck for the running time are the so-called Z-cuts, i.e.,
bipartite graphs consisting of a disjoint paths of length three. We show that these cuts
inherently determine the complexity of this problem, as the lower bound construction also
relies on them. For MAX CUT we provide a lower bound showing that no O*((2 — &)°*V)
algorithm can solve this problem for any € > 0 implying that the folklore algorithm for tree
decompositions is optimal for cutwidth as well.

Apart from these two problems, we resolve two further open questions. We show that
SETH-tight complexity of HAMILTONIAN CYCLE is O*((1 + v/2)°*") when parameterized by
cutwidth — this was asked by van Geffen et al. [45] and Bojikian et al. [7]. Let us remark,
that although for pathwidth it is known that the O*((2 4 v/2)P¥) algorithm is optimal for
HAMILTONIAN CYCLE, the complexity relative to treewidth remains a challenging open
problem. Finally, Chaudhary and Zehavi [13] developed a O*(3%") algorithm for INDUCED
MATCHING problem and an SETH-based lower bound excluding O*((v/6 — £)*") algorithms
for any € > 0. They conjectured that their algorithm is optimal and asked for a matching
lower bound. We confirm their conjecture and provide a stronger result, namely that INDUCED
MATCHING cannot be solved in O*((3 —&)°*V) for any € > 0 when parameterized by cutwidth
— this resolves the complexity of the problem for both treewidth and cutwidth. !

1 Recently, the conjecture was also independently confirmed by Vasilakis and Lampis [36] by providing a
matching lower bound for the parameterization by pathwidth. We remark that our lower bound for
cutwidth is a stronger result.
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Table 1 Tight bounds for parameterizations by treewidth / pathwidth, and cutwidth. For all
problems but HAMILTONIAN CYCLE the tight bounds are known to be equal for treewidth and
pathwidth. And the tight complexity of HAMILTONIAN CYCLE parameterized by treewidth remains
open. The results of this paper are in the right column.

TRIANGLE PACKING (TP) 2t 3
PARTITION INTO TRIANLGES (PT) 20 V3
HamirroniaN Cycre (HC) (2+V2)PY | (14 v2)™
Max Cut (MC) 20 204w
INDUCED MATCHING (IM) 30 3o

Related Work. The (S)ETH tight complexity of problems parameterized by structural
parameters has been widely studied. Apart from the already mentioned results, there
is a long list of papers related to such algorithms on graphs of bounded treewidth (e.g.,
10, 14, 15, 18, 19, 21, 22, 32, 43, 44]), treedepth (e.g., [27, 31, 32, 42]), clique-width (e.g.,
[1, 2,9, 23, 28, 31, 33]), rank-width (e.g., [3, 11]), and cutwidth (e.g., [7, 39]). There is also
a line of work devoted to conjectures weaker than SETH and yielding the same lower bounds
for structural parameterizations (e.g., [12, 35, 34]).

Organization. We start by providing a short summary of the used notation. Section 3 is
devoted to TRIANGLE PACKING, there we provide our algorithm together with the main steps
required to justify its running time. We also sketch the lower-bound construction. After that
in Section 4 we present the main idea behind the lower bound state the lower bound for
HAMILTONIAN CYCLE. In Section 5 we state our lower bounds for INDUCED MATCHING and
Max Cut. We conclude in Section 6 by providing some open questions.

2 Preliminaries

We use O* notation to suppress factors polynomial in the input size. For an integer i € Ny
by [i] we denote the set {1,...,4} (in particular, we have [0] = §)) and by [i]o we denote the
set [i] U {0}. For a vector a = (aq,...,a,) over a ground set U and a mapping f: U — V
for some set V', we denote by (f(v))vea the vector (f(a1),..., f(an)).

Given a graph G = (V, E) and a vertex v € V, the neighborhood of v in G is defined as
Ng(v) ={w € V(G): {v,w} € E(G)}. We omit the index G when clear from the context.
For an edge set F' C E, we define G[F| = (V, F) and we define V(F) as the set of end-points
of F. For a vertex set S C V and a vertex v € V we define Ng(v) = Ng(v) NS and
degg(v) = |Ng(v)|. We define cc(G) as the set of all connected components of G, where a
connected component of G is a maximal connected subgraph of G.

We base our lower bounds on the Strong Exponential Time Hypothesis (SETH) [29]:

» Conjecture 1 (SETH). For every e > 0, there exists a constant d > 0 such that d-SAT
cannot be solved in time O*((2 — €)™), where n is the number of variables.

Cutwidth. A linear arrangement ¢ = v1,...,v, of a graph G = (V, E) is a linear ordering
of V. We define Vo = 0, V; = {v1,...,v;} and V; = V\'V; for i € [n]o. We define the
cut-graph at i € [n]o as the bipartite graph H; = G[V;,V;]. The set E; denotes the edge
set of H;. The cutwidth of ¢ is defined as ctw({) = max;¢p,) [E(H;)|. The cutwidth of G is
defined as ctw(G) = ming ctw(£), where the minimum is taken over all linear arrangements
of G. We define L; and R; as the set of the left and right endpoints of edges in E;, respectively.
Finally, for i € [n], we define Y; = L;_1 U{v;}, i.e., Y; contains all left end-points of the edges
of E;_1 together with v;.
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Path decompositions. A path decomposition of a graph G is a pair (P,B: V(P) — 2V),
where P is a simple path and the following properties hold:
1. For every vertex v € V(G), the set {z € V(P): v € B(z)} induces a non-empty connected
subgraph of P.
2. For every edge {u,v} € E(G), there exists a node z € V(P) with {u,v} C B(x).
Let 21,...,z, be the nodes of P in the order they occur on P. The sets B(x1),...,B(z,) are
called bags. For every x; € V(P), we define By, = B(z;), Vo, = Uj<;B(z;), and G, = G[V,,].
A path decomposition (P, B) is nice, if we have B(x1) = B(z,) = 0 and for any two consecutive
nodes x,z’ on P, we have |B(x)AB(z’)| < 1. Hence, one can define a nice path decomposition
by a sequence of introduce- and forget-vertex operations. It is sometimes useful to have
designated introduce-edge operations as well, in this case, we call the path decomposition
very nice. For a node x of a very nice path decomposition, by G, = (V,., E,) we denote the
(not necessarily induced) subgraph of G whose vertex resp. edge set consists of the vertices
resp. edges of G introduced in this decomposition up to the node z.

3 Triangle Packing

A triangle packing of a graph G = (V, E) is a subgraph T of G such that each connected
component of T is a cycle of length three, the size of T' is the number of its connected
components. In the TRIANGLE PACKING problem, given a graph GG and a positive integer b*,
we are asked whether there exists a triangle packing of size b* in G. In the PARTITION INTO
TRIANGLES problem, we are asked whether a triangle packing of size |V|/3 exists in G. We
obtain the following result:

» Theorem 2. There exists an algorithm that given an instance (G,b*) of TRIANGLE
PACKINtG together with a linear arrangement of G of width at most ctw, runs in time
(9*(\3/§C W) and outputs whether G admits a triangle packing of size b*.

We emphasize that in what follows we only provide a sketch of the proof of this theorem and
we refer to the full version for all details.

Let (G = (V, E),b*) be an instance of TRIANGLE PACKING and let £ = vy,...,v, be a
linear arrangement of G of cutwidth at most ctw. First, we describe a dynamic-programming
algorithm over a nice path decomposition (P, B) of G. After that, we construct a nice path
decomposition of G from ¢ and show that it has certain useful properties, namely, the number
of possible states of our dynamic-programming algorithm is bounded for each bag.

Algorithm over a path decomposition

Let (P,B) be a nice path decomposition of G. For every node z of P, every set S C By,
and every integer b, we define the family #2[S] of all triangle packings of G, of size b whose
intersection with B, is precisely S and furthermore, each triangle in this packing contains at
least one vertex of V. \ B, (i.e., forgotten already). We define the set SY consisting of all
subsets S C B, such that H%[S] is non-empty. We call S, = [,y S5 the set of realizable
states at x. For a set Y C By, let S, [Y] ={SNY | S € 8.} be the set of states “induced”
by the set Y.

A straightforward algorithm computing all sets S can be informally summarized as
follows. Let ' be the node preceding x. At every node x forgetting a vertex, say v, we iterate
over all triangles containing the vertex v whose other end-points are still in the bag, iterate
over all sets in 8271, and “combine” the two if they are vertex-disjoint. For every S € 8%, we
also add S\ {v} to 8% as the corresponding triangle packing of G, remains “valid” in G,,.

13:5
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At every introduce-node x we just keep the family S?,. Recall that the root-node, say r, of
the nice path decomposition (P, B) is an empty bag. Then the graph G admits a triangle
packing of size b if and only if ) € S? holds. We can show that if o denotes the maximum
size of a family S% over all nodes z and all integers b € [| 2]]o, then all families S can be
computed in time O*(a). In order to achieve this, we describe a data structure that allows
the insertion of a single “state” in time polynomial in n as well as the iteration over all states
present in the data structure in time O*(«). In the remainder of the proof, we show how to
get a nice path decomposition of G from its linear arrangement ¢ so that the value of « is
sufficiently small.

From linear arrangement to path decomposition

To obtain the desired path decomposition (P, B) we will proceed as follows. We will first
define a set of the so-called checkpoint bags X, ..., X, corresponding to the cut graphs
Hy, ..., H, of £. Later we will show how to add so-called transition bags to turn this sequence
into a nice path decomposition, while still keeping the number of possible states bounded.

First, for a bipartite graph H (think of H = Hy, ..., H,), we define the sets Fiy and Iy
by an iterative process formally defined next. The set Fiy is intended to represent the set of
vertices from the left side of the cut that are forgotten already, while the set Iy corresponds
to the vertices on the right side of the cut that are introduced already. To ensure that the
corresponding “ordering” of the forget- and introduce-operations even yields a valid path
decomposition, i.e., no vertex is forgotten before one of its neighbors is introduced, we will
ensure that Iy contains all neighbors of Fiy.

Clearly, one can safely forget a vertex if all of its neighbors have already been introduced.
We additionally apply the following non-trivial rule. We forget a vertex v if (1) it has a
single neighbor w in H that is not introduced yet, and (2) the vertex v has degree at most
two in H. In this case we introduce the unique missing neighbor of v before forgetting v.
We define Qg as the vertices on the right side that have not been introduced yet, i.e., do not
belong to Iy. We provide formal definitions of these sets (see Figure 1 for an illustration):

» Definition 3. Let H = (L, R, E) be a bipartite graph. First, we define F(°) = (. For j >0,
let IV) = Ny (FU)), and let QU) = R\ 1Y), We define the sets FUtD) recursively as follows:

FUTD — {veL: degyu (v) =0V (deggu (v) =1 Adeg(v) <2)}.

In the full version we show, that there exists an integer k£ such that F*) = p(®) for
all ¥ > k. Let k be the smallest such value. We define Fy = F*) Iy = I® and Qi = Q).
We also define the sets L}; and L% as the vertices of Ly \ Fiy that have exactly one or at least
two neighbors in @, respectively. Finally, we define the bag at H as Xy = Ly, U L%, U Ip.

For every i € [n]y, we define L? = L%{i, L} = L}LL,7 F, = Fy,, I, = Iy,,Q; = Qu,,
and X; = Xp,. We call F; the set of forgotten vertices at i, I; the set of introduced vertices,
and @); the set of unintroduced vertices.

It can be shown that X; is a vertex separator for every i € [n]: this follows from the
fact that I; is the neighborhood of F;. Furthermore, we show in the full version that if in
Definition 3 instead of F(©) = (), we start with the set F(©) = F;_; of the vertices already
forgotten at the previous cut, then we obtain the same set F; of vertices forgotten at the
current cut. From this we can then conclude that a nice path decomposition of G can
be constructed by using X, ..., X, as the main building blocks. We emphasize that the

sequence of vertex separators Xy, ..., X, itself does not even necessarily contain every vertex
of G. To resolve this, we will turn it into a nice path decomposition by adding the so-called
transition bags. The bags X1, ..., X,, are called the checkpoint bags, and x4, ..., x, denote

the corresponding nodes in the arising path decomposition.
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Figure 1 For i = 1,2, 3,4, the family F¥ is red on the left-hand side of the cut while the families
I10=D and Q™Y are blue and gray, respectively, on the right-hand side. The sets Fi, I, Qu are
the red, blue, and gray vertices, respectively, in (4). The black vertex in (4) belongs to L¥; as it has
a single gray neighbor. The bag X is the set of all black and blue vertices in (4).

The reason why we distinguish the sets L} and L? is two-fold. First, to bound the number
of states in terms of cutwidth, we will “assign” the edges of the cut H; to certain sets of
vertices in the bag, these sets are then called components. Since every vertex in L? has at
least two neighbors in @);, and since no vertex of @); belongs to the bag X; by definition,
we can assign at least two cut-edges to every vertex of L?. Based on this, we show that for
some components of a specific structure, enough edges of the cut can be assigned to these

components to “allow” all possible state combinations of the vertices of these components.

Let us elaborate a bit more on what we mean by this. Our goal is to bound the number of
states of the bag X; in terms of the number of edges in the cut H;. To prove the desired
bound, it suffices to partition the bag into the components, partition the edges of the cut to
be assigned to these components, and then show that the bound holds for each component
with respect to the number of assigned edges. We will show that if a component contains a
vertex from L?, then for the number s of vertices of this component and the number ¢ of
edges assigned to it, we have 2° < \3/§q’ i.e., the desired bound holds even without a further
careful analysis. We will provide more details later. Second, we also need to ensure that
along the way between the checkpoint bags, i.e., in transition bags, we do not have too many
possible states. This will be achieved by a careful choice of the ordering in which the vertices
are forgotten and introduced. The sets L} and L? will be used to determine this ordering.

Bounding the number of realizable states

We define the graph H; as H; = H;[V;, I;] to represent the part of the cut restricted to the

vertices introduced so far (i.e., we discard the not yet introduced vertices of @; from H;).

For a set Sy C R; of vertices on the right side of the cut-graph H;, we also define the graph

HiS ° = H;[V;, I; \ So] that additionally removes the vertices Sy from the right side of the cut.

This graph will be crucial to bound the number of the possible states for the transition bags:
for example, the graph Hz{fl} will be useful to analyze the first step of the transition from

the cut H;_; to the cut H;, i.e., removing v; from the right side of the cut.

» Definition 4. For every i € [n] and S C V(H;), we define the set EY of all edges of H;
incident with S and we define m;(S) = |EY|.

By definition of the bipartite graph H;, each edge of H; either has both end-points in some
connected component of H;, or it has its left end-point in some connected component of H;
and its right end-point in @Q);. First, this implies that we have Eiv(C) = E(C)UEg,(C,Q;) for

13:7
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every connected component C' of H;. And second, it shows that every edge of H; is incident
with the vertices of exactly one connected component of H;. Therefore, the sets EZV ©
for C € cc(H;) partition E(H;). This will be crucial to bound the number of states in
the checkpoint bags. An analogous argument shows that for any choice of Sy C R;, the
sets El-v(c) for C' € cc(H?°) partition the set E(H;) as well.

Now we aim at showing that for each connected component C' € cc(H;), the number
of possible states of S;,[V(C)] is upper-bounded by \?/gmi(v(c)). The bound on S, then
follows by the fact that the sets Ezv ©) are pairwise disjoint. This will actually be the part
where it becomes evident, as we shall see in the following proof, that the so-called Z-cuts
form the bottleneck of the algorithm: We will distinguish different types of components C
of H; and the tight upper bound on the number of possible states is achieved by the Z-cuts.

We actually prove a more general statement. First, we prove that the claimed bound
holds not only for C' € CC(HZ-)7 but for any connected component C' of His ® where Sy C R; is
arbitrary. Here it is important to remember that Sy only contains vertices from the right
side of the cut. Second, we will show that the bound holds even if we allow to add any subset
of L; \ F; to every realizable state. This motivates the next definition of the set 7;°[S] which

can be considered as a robust generalization of the set of possible states: intuitively, this

A

permits us to say that even if we allow, instead of G[V;], an arbitrary graph on the left-hand
side of the cut (i.e., a triangle packing is allowed to use an arbitrary subset of vertices on the
left-hand side), the number of states is still bounded. This will later allow us to prove the
bound for the transition bags as well, given that the transitions are carried out in the correct
order. For every i € [n] and every b € [| 2 ]]o, we will use S as a shorthand for S? .

» Definition 5. For b < [|§]]o, i € [n], and S C V(H;), we define
TS| ={S'UT: 8" € S8, T C SN (L; UL} and Ti[S] = Upe[a)) T15)

n
31lo

For a connected component C' of a subgraph of H;, we use 7;[C] and m;(C') as shorthands
for T;[V(C)] and m;(V(C)), respectively. Now we prove the main technical lemma.

> Lemma 6. For alli € [n], all Sy C Ry, and all C € cc(H) it holds that |T;[C]| < /3™,

Sketch. Let FF = F,nNV(C), I = L nV(C), L' = LI nV(C), L? = L? N V(C), and
X = X; NV(C). By definition of these sets we thus get |X| = |L| + |L?| + |I|. First of all,
it can be argued that the claim is true whenever m;(C) < 2 so we assume m;(C) > 3 in the
remainder. The proof is based on two main inequalities. The first follows directly from the
definition of the T;?: as every element of 7; is a subset of V(C) N X; = X, we have:

ITi[C]| < 2. (1)

For the second inequality, recall that ES = E(C)UEg,(C,Q;) holds, i.e., we have
mi(C) = |E(C)| +|Em, (C,Q;)|. Since C is a connected component of H;°, its edge set E(C)
contains at least |V(C)| — 1 = |L?| + |L'| + |F| + |I| — 1 edges. Moreover, we claim that
|F'| > || holds. Recall that by definition of the sets F/) and %) for j > 0 (see Definition 3),
we have that |F')| > |IU)]: this is because a vertex can only be added to I; (i.e., introduced)
if at least one of its neighbors is added to F; (i.e., forgotten). Furthermore, for any vertex v
in 1) N V(0), the unique vertex in F¢) due to which v was introduced belongs to the same
connected component C. Thus we have |E(C)| > |L?| + |L!| + 2|I| — 1. Finally, recall that
by definition, each vertex of L' has exactly one neighbor in @; while each vertex of L? has at
least two neighbors in @;. Hence, it holds that |Eg, (C, Q;)| > |L*| + 2|L?|. Tt follows that
m;(C) > (|[L?] + |LY + 21| — 1) + (| LY + 2| L?|) = 2|X| + | L?| — 1, and hence we get:

C)+1

x| < ™ 2
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First, assume that at least one of the following hold: C contains a cycle, or L? is not
empty, or |F| > |I], or V(C) N L; has a neighbor in Sy N I;. It is not hard to verify that in
this case m;(C) > 2|X| holds and therefore, |7;[C]| < 2IXI < \@mi(c) < f/gmi(c).

In the remainder of the proof we may thus assume that C' is a tree, L? is empty, |F| = |I|,
and each neighbor of V(C) N L; in Sy belongs to ;. We can show that in this case, each
vertex of F' has degree at most 2 in H;. After that we carry out an extensive case distinction
and show that in each case, there exists a constant fraction of all subsets of X that are
certainly not elements of 7[C]. The main idea behind each of the cases is to find a vertex,
say v, in I with certain nice properties, namely there exists a constant-sized subset, say U, of
X such that any triangle packing using v has to use at least one of the vertices in X. Thus,
every subset of X that contains v and has an empty intersection with U is not a possible
state — let us remark that this intuition reflects the proof in an overly simplified manner for
space reasons.

The simplest of these cases is when C' contains a leaf v in I. Then let w be the unique
neighbor of v in L;. As v was introduced due to forgetting one of its neighbors, this neighbor

has to be w, i.e., we have w € F. As m;(C) > 3, there exists a vertex v’ # v € I adjacent to w.

Since every vertex in F' has degree at most 2 in H;, the vertex w does not have neighbors
other than v and v’. Recall that the dynamic-programming algorithm only considers triangles
where at least one vertex is forgotten already. Since w is the unique forgotten neighbor of v,
every such triangle packing containing the vertex v, uses the triangle v, w,v’. Recall that we
have v,v’ € I C X. Hence, for every S € T;[C], the property v € S implies v' € S. This way
we exclude one fourth of all subsets of X from 7;[C] and get:

Tie) < 21 < 2R < 95,

where the last inequality holds due to m;(C) > 3.

This is the spot where a Z-cut occurs: If C' contains exactly three edges, then it consists
of the vertices v,v’, w as well as a vertex, say w’ € F, adjacent to v’ only, and C induces a
Z-cut. Recall that by definition we have X = {v,v’} (i.e., the bag contains v and v’) since
the vertices w and w’ are forgotten, i.e., belong to F. One can verify that in this case all
states other than {v} are possible and therefore, the above inequality is tight and the equality
is achieved by a Z-cut.

If C contains no leaves in I, we can show that m;(C) > 5 holds. Analyzing the structure
of the cut, we then show the inequality |7;[C]| < 3—32“ I implying the desired bound. <

By applying the above lemma with Sy = (), we can show that the number of states at
3/=Ctw

each checkpoint bag is upper-bounded by /3 :
» Corollary 7. For alli € [n] and b € [|[%]]o, it holds that |S?| < {s/ﬁlEi‘.

Due to space constraints, we omit the proof of the following bound for transition bags. It
relies on a careful choice of the ordering of the forget- and introduce-operations together with
an involved analysis of the relation between the connected components of the graphs H; 4
and H; as well as the states of these components:

» Lemma 8. For every transition node ) and every b € (L5 [lo, it holds that |Sij| < 4.3

In Figure 2 we sketch the idea behind our lower-bound construction matching the running
time of our algorithm from the previous subsection and refer to the full version for a formal
description. We prove the following result for PARTITION INTO TRIANGLES:

13:9
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Figure 2 Sketch of the lower-bound construction for n = 4 variables and m = 4 clauses in an
instance of d-CSP-3. Each of the gray boxes is a path gadget which may have one of the three
states. Blue boxes are small cliques. Dotted lines reflect that there exist all possible edges between
the sets. Every colored box is a constraint gadget. The cutwidth of the construction is essentially
upper-bounded by 3n as each of the n Z-cuts contributes three edges to the size of a cut.

» Theorem 9. Assuming SETH, there exists no algorithm that solves PARTITION INTO
TRIANGLES on graphs given with linear arrangements of cutwidth k in time O* ((\‘73 — s)k)
for any € > 0.

Since there is a trivial reduction from PARTITION INTO TRIANGLES to TRIANGLE PACKING,

this lower bound then also holds for TRIANGLE PACKING and so the running time of
t

O*(¥/3°") is optimal for both problems under SETH.

4 Hamiltonian Cycle

For a graph G = (V, E), a set C C E of edges is called a Hamiltonian cycle of G if C induces
a single cycle visiting all vertices of G. In the HAMILTONIAN CYCLE problem, we are given a
graph G and asked if there is a Hamiltonian cycle in G.

Here we provide a randomized algorithm solving HAMILTONIAN CYCLE in time O*((1 4+
Vv2)¥) on graphs provided with a linear arrangement of cutwidth k. For this we adapt
the O*((2 + v/2)P) algorithm by Cygan et al. [16] working on graphs provided with a path
decomposition of pathwidth p. We will transform a linear arrangement of cutwidth k into a
path decomposition having a useful algorithmic property, namely, the dynamic-programming
table as defined by Cygan et al. has only O*((1 + v/2)*) non-zero entries and there is an
efficient way to determine the “certainly zero” entries. Now we provide some details. The
algorithm by Cygan et al. [16] strongly relies on their algebraic result about the Fa-rank of a
certain “compatibility” matrix reflecting, for each pair of perfect matchings, whether their
union is a Hamiltonian cycle. We summarize the necessary parts of this result:

» Theorem 10 ([16]). Let t € N be even. Then there exists a set X; of perfect matchings
of the complete graph K; with the following properties: (1) |X;| = 21/~ (2) X; can be
computed in time ﬂtto(l), and (8) for every matching M € X, there exists a unique
matching M' € X; such that M U M’ forms a Hamiltonian cycle of K.

Observe that the third property implies that one can partition the set X} into pairs of
matchings such that the union of two perfect matchings forms a Hamiltonian cycle, if and
only if the two matchings are paired in this partition. In other words, the family A} induces
a permutation submatrix of the compatibility matrix mentioned above. Like Cygan et al.,
we will sometimes identify some ordered set, say S, of even cardinality ¢ with the vertex
set [t] of K;. Then by X(S) we denote the set obtained from A} by identifying the elements
of S with [t]. In particular, every element of X'(S) is a perfect matching on the vertex set S.
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In the following, we assume that the graph G is provided with a weight function w: E(G) —
N. As many other algorithms for connectivity problems, the algorithm of Cygan et al. [16]
makes use of the classic isolation lemma (see [40]) and samples w in a certain probabilistic way.
Their algorithm works on a very nice path decomposition of the input graph G. Essentially,
it processes such a path decomposition and for every bag, counts, modulo 2, the number
of subgraphs of the already processed graph such that every vertex in this subgraph has
degree 2, except for vertices in the current bag which may have lower degree. The dynamic-
programming table refines these counts depending on the weight of the subgraph, its degree
sequence on the bag, and whether this subgraph forms a single cycle with a certain matching
defined on the vertex set of the bag. A crucial implication of Theorem 10 (as proven in their
paper) is that instead of taking all such matchings into account, it suffices to consider only
the “base matchings” from A} to solve the problem. Now we summarize this more formally:

» Definition 11 ([16]). A partial cycle cover of a graph is a set of edges such that every
vertex has at most two incident edges in this set. For every node x of the provided very
nice path decomposition, every s: B, — {0,1,2} where s~1(1) has even cardinality, every
M € X(s71(1)), and every w € N, the value Ty[s, M, w] is defined as the number, modulo 2,
of partial cycle covers C of the graph G, with the following properties:

1. the set C'U M of edges induces a single cycle,

2. the total weight (with respect to w) of the edges in C' is w,

3. every vertex v € By has precisely s(v) incident edges in C,

4. every vertex v € V(G,) \ By has precisely two incident edges in C.

We say that a partial cycle cover C of G, has footprint s on x if it satisfies the last two items.

» Theorem 12 ([16]). Let x be a non-first node of a very nice path decomposition of a graph G
and let y denote its predecessor. For any fized s: B, — {0,1,2} where s~1(1) has even
cardinality, every M € X(s~*(1)), and every w € N, given the table Ty, the value Ty [s, M, w)
can be computed in time O*(1) by querying O(1) entries of T,.

Let G be a graph and let £ = vq,...,v, be a linear arrangement of G of cutwidth at most k.
The aim now is to compute from ¢ a path decomposition of G with certain nice properties to
which we will later apply the algorithm from Theorem 12. We recall that by definition for
every i € [n], the set Y; consists of all left end-points of the edges in the (i — 1)st cut F;_;
of ¢ together with the vertex v;. Thus, we have |E;_1| <k and |Y;| <k +1foralli e [n]. It
is well-known that the sequence Y7, ..., Y, of bags is a path decomposition of G (see e.g., [26]
for the idea and [7] for a formal proof). To reverse the ordering in which these bags are
traversed, for every i € [n], we define the set X; = Y, 41

» Definition 13. For a node x of a path decomposition we define the sets
Bi(z) = {u € B, | degg, (u) =1} and By(x) = {u € B, | degg, (u) > 2}.

We call a mapping s: B, — {0, 1,2} relevant if all of the following hold: (1) |s~1(1)] is even,
(2) s71(2) C Ba(x), and (3) s71(1) C By(z) U Ba(x).

» Lemma 14. Let x be a node of a very nice path decomposition of G and P be a partial
cycle cover of G,. Let s: B, — {0,1,2} be such that P has footprint s. Then s is relevant.

Furthermore, if |Bi(x)| + 2 - |Ba(z)| < k 4+ O(1) holds, then the number of pairs (s, M)
such that s: B, — {0,1,2} is relevant and M € X (s~ (1)) is upper-bounded by O((1++/2)%).
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Sketch. Let P be a partial cycle cover of G, and let s: B, — {0,1,2} be such that P has
footprint s. By definition of a footprint, all end-vertices of P belong to B,. Furthermore,
every vertex of degree 1 resp. 2 in P has the degree of at least 1 resp. 2 in G, so the first
claim holds. Now let ¢; = |Bi(z)| and ¢2 = |Ba(z)|. The number of pairs (s, M) such
that s: B, — {0,1,2} is relevant and M € X(s~1(1)) is at most

22, (e

- . . 11
0<iz <ty 0<i1 <(€2—iz)+L1
A careful analysis upper-bounds this by O((1 + v/2)%) if £, +2 - 5 < k 4+ O(1) holds. <

» Lemma 15. From the linear arrangement vy, ..., v, of the graph G, in polynomial time
we can construct a very nice path decomposition of G in which each node x satisfies |Bi(x)| +
2 |By(x)] < k+0O(1).

Sketch. The desired path decomposition is obtained by starting with the nodes x1,...,x,
corresponding to the bags X1, ... X,, respectively, and making the decomposition very nice
by a careful choice of the ordering of introduce-vertex-, introduce-edge-, and forget-vertex-
operations. This ordering, in particular, ensures that the graph G, contains no edges with
both end-points in X; \ {vn+1-:}. We recall that for every i € [n], all vertices in the bag X;
(apart from v,,11_;) are left end-points of edges in the cut F,_; (whose size is bounded by k).
So every vertex in By(z;) \ {vnt1-i} resp. Ba(x;) \ {vnt1-:} contributes 1 resp. at least 2 to
the size of E,_;. And therefore |B;(x;)| 4+ 2 - |Bz2(x;)| is upper-bounded by k + 2. We also
show that the intermediate bags added to make the decomposition very nice also have this
property as they can be upper-bounded using x; for some ¢ € [n]. <

We can then run the dynamic-programming algorithm from Theorem 12 restricted to relevant
footprints only to compute the values T,.[0, #, w] for every “reasonable” integer w where r
denotes the root of a path decomposition satisfying the above lemma. Cygan et al. [16] show
that this information suffices to find out, with high probability, if the graph G admits a
Hamiltonian cycle. We refer to the full version for all details.

» Theorem 16. There exists a one-sided error Monte-Carlo algorithm that takes a graph G
together with a linear arrangement of G of cutwidth at most ctw, runs in time O*((14+/2)°™"),
and solves the HAMILTONIAN CYCLE problem. The algorithm cannot give false positives and
may give false negatives with probability at most 1/2.

Cygan et al. [16] showed that unless SETH fails, no algorithm working on path decom-
positions of pathwidth pw can solve the problem in time O*((2 + v/2 — £)P%) for any € > 0.
We show that their ideas are also useful to exclude the O*((1 + v/2 — €)°*V) algorithms for
any £ > 0. To ensure that the construction has bounded cutwidth (and not only pathwidth),
we modify the connections between path gadgets and employ new clause gadgets:

» Theorem 17. Assuming SETH, there is no algorithm that solves HAMILTONIAN CYCLE on

graphs given with linear arrangements of cutwidth k in time O*((14 /2 —&)*) for any € > 0.

5 Max Cut and Induced Matching

In INDUCED MATCHING, given a graph G and an integer b, we are asked whether G contains
a matching M of cardinality b such that (V (M), M) is an induced subgraph of G, i.e., there
are no edges other than M with both endpoints in V(M). We prove the following result:



N. Bojikian, V. Chekan, and S. Kratsch

» Theorem 18. Assuming SETH, there is no algorithm that solves INDUCED MATCHING on
graphs given with linear arrangements of cutwidth k in time (’)*((3 — E)k) for any e > 0.

We recall that the treewidth of a graph is upper-bounded by its cutwidth. This shows
that the O* (3k) algorithm by Chaudhary and Zehavi [13] working on graphs provided with
tree decompositions of treewidth at most k is optimal for both treewidth and cutwidth and
thus answers their open question. In MAX CUT we are given a graph and asked to partition
its vertex set into two sets to maximize the number of edges between these sets. We prove
that the folklore O* (2’“) algorithm working on graphs provided with tree decompositions of
treewidth at most k is optimal for both treewidth and cutwidth:

» Theorem 19. Assuming SETH, there is no algorithm that solves MAX CUT on graphs
given with linear arrangements of cutwidth k in time (’)*((2 — s)k) for any e > 0.

6 Conclusion and Future Work

Our results together with previous work [7, 30] show an interesting variety of behaviors for
the complexity of problems relative to treewidth/pathwidth vs. relative to cutwidth: We
may get the same tight bound, a small decrease in complexity, or a substantial decrease.
We also discovered two more rare examples of tight exponential bounds with non-integral
bases, especially TRIANGLE PACKING, which has an integral base relative to treewidth. In
our opinion, this makes parameterization by cutwidth a very good test bed for deepening
the understanding of dynamic programming and width parameters.

There are several avenues for future work: (i) Some edge-disjoint packing problems are
intractable for treewidth but we may be able to dertermine tight bounds for cutwidth. (ii)
Going beyond classical problems, it would be interesting to determine the tight complexity
of (o, p)-domination problems for cutwidth which is known for treewidth [21]. (iii) Closing
the gap for H-HOMOMORPHISM left by Groenland et al. [25] is a challenging open question.
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