
Testing Sumsets Is Hard
Xi Chen # Ñ

Department of Computer Science, Columbia University, New York, NY, USA

Shivam Nadimpalli # Ñ

Department of Mathematics, MIT, Cambridge, MA, USA

Tim Randolph # Ñ

Department of Computer Science, Harvey Mudd College, Claremont, CA, USA

Rocco A. Servedio #Ñ

Department of Computer Science, Columbia University, New York, NY, USA

Or Zamir #Ñ

Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract
A subset S of the Boolean hypercube Fn

2 is a sumset if S = {a + b : a, b ∈ A} for some A ⊆ Fn
2 .

Sumsets are central objects of study in additive combinatorics, where they play a role in several of
the field’s most important results. We prove a lower bound of Ω(2n/2) for the number of queries
needed to test whether a Boolean function f : Fn

2 → {0, 1} is the indicator function of a sumset,
ruling out an efficient testing algorithm for sumsets.

Our lower bound for testing sumsets follows from sharp bounds on the related problem of shift
testing, which may be of independent interest. We also give a near-optimal 2n/2 · poly(n)-query
algorithm for a smoothed analysis formulation of the sumset refutation problem. Finally, we include
a simple proof that the number of different sumsets in Fn

2 is 2(1±o(1))2n−1
.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Sumsets, additive combinatorics, property testing, Boolean functions

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.14

Related Version Full Version: https://arxiv.org/abs/2401.07242

Funding Xi Chen: Supported in part by NSF awards CCF-2106429 and CCF-2107187.
Shivam Nadimpalli: Supported in part by NSF grants CCF-2106429, CCF-2211238, CCF-1763970,
and CCF-210718.
Rocco A. Servedio: Supported in part by NSF awards CCF-2211238 and CCF-2106429.
Or Zamir : Supported in part by the Israel Science Foundation, Grant No. 1593/24, and in part by
the Blavatnik Family Foundation.

1 Introduction

In recent years, theoretical computer science has increasingly been influenced by ideas and
techniques from additive combinatorics, a field sitting at the intersection of combinatorics,
number theory, Fourier analysis, and ergodic theory. Notable examples of this connection
include communication complexity [16, 9, 14], constructions of randomness extractors [13, 7,
31, 21], and property testing [27, 32]; we also refer the reader to various surveys on additive
combinatorics from the vantage point of theoretical computer science [8, 35, 36, 10, 30].

Among the simplest objects of study in additive combinatorics are sumsets: A subset S of
an abelian group G (with group operation “+”) is said to be a sumset if S = A + A for some
A ⊆ G, where for sets A, B ⊆ G we write A + B to denote the set {a + b : a ∈ A, b ∈ B}.
Sumsets play a major role in additive combinatorics, where their study has led to many

© Xi Chen, Shivam Nadimpalli, Tim Randolph, Rocco A. Servedio, and Or Zamir;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xichen@cs.columbia.edu
http://www.cs.columbia.edu/~xichen
https://orcid.org/0000-0001-5661-515X
mailto:shivamn@mit.edu
https://math.mit.edu/~shivamn/
https://orcid.org/0000-0002-1825-6122
mailto:trandolph@g.hmc.edu
https://twrand.github.io/
https://orcid.org/0000-0003-4287-0680
mailto:rocco@cs.columbia.edu
http://www.cs.columbia.edu/~rocco
https://orcid.org/0000-0003-2407-543X
mailto:orzamir@tauex.tau.ac.il
https://zamir.prof
https://orcid.org/0000-0003-4908-878X
https://doi.org/10.4230/LIPIcs.ESA.2025.14
https://arxiv.org/abs/2401.07242
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

14:2 Testing Sumsets Is Hard

questions and insights about the additive structure of subsets of abelian groups. They are
the subject of touchstone results in the field such as Freiman’s theorem [23], which (roughly
speaking) says that if |A + A| is “not too much larger” than |A| then A must be contained in
a generalized arithmetic progression which is “not too large.”

Our main interest in this paper is in algorithmic questions related to sumsets. In [22]
Fagnot, Fertin, and Vialette considered the 2-Sumset Cover problem: given a set S of
integers, does there exist a set A of cardinality at most k such that S ⊆ A + A? They proved
APX-hardness for this problem and presented a poly(k) · 5k2(k+3)/2-time algorithm. The
latter was improved to poly(k) · 2(3 log k−1.4)k by Bulteau, Fertin, Rizzi, and Vialette [15].
2-Sumset Cover itself specializes Generating Set, in which the goal is to find a minimal
set A such that S ⊆ {

∑
i∈I i ; I ⊆ A} and which was studied in [17]. Given S and k, finding

a set A of size |A| ≥ k with A + A ⊆ S is equivalent to finding a k-Clique on the Cayley sum
graph of S; this problem remains NP-hard, but can be solved with existing algorithms for
k-clique [25]. Recently, Abboud, Fischer, Safier, and Wallheimer proved that recognizing
sumsets is NP-complete [1], settling a question raised by Granville [18].

1.1 This Work
In this paper we restrict our attention to the case in which the ambient abelian group G is
Fn

2 . We do this for several reasons: first, given that our focus is on algorithmic problems,
Fn

2 is a very natural domain to consider from a theoretical computer science perspective.
Another motivation is that Fn

2 is in some sense the simplest setting for many problems
involving sumsets; as Green stated in [27], “the reason that finite field models are nice to
work with is that one has the tools of linear algebra, including such notions as subspace and
linear independence, which are unavailable in general abelian groups.” Indeed, several of our
arguments use these linear-algebraic tools.

Since Fn
2 is an exponentially large domain, it is natural to approach the study of sumsets

over Fn
2 from the vantage point of sublinear algorithms. Thus, we will be interested in

algorithms for which either the running time or the number of calls to an oracle for the input
set S (i.e. queries of the form “does element x belong to the set S?” is less than 2n. The
recent work [19] took such a sublinear-algorithms perspective; it studied a problem which was
closely related to the problem of approximating the size of the sumset A + A, given access
to an oracle for the unknown set A ⊆ Fn

2 . The main result of [19] was that in fact Oε(1)
queries – in particular, with no dependence on the dimension parameter n – are sufficient for
a ±ε ·2n-accurate approximation of the quantity that they consider. This naturally motivates
the following broad question: What other algorithmic problems involving sumsets may be
solvable with “constant” (depending only on ε) or very low query complexity?

Motivated by this general question, in the current work we study a number of algorithmic
questions related to sumsets. The main problems we consider are described below:
1. We study (approximate) sumset recognition from a property testing perspective. In

more detail, given access to a membership oracle for an unknown set S ⊆ Fn
2 , in the

sumset testing problem the goal is to output “yes” with high probability (say, at least
9/10) if S is a sumset and “no” with high probability if S is ε-far from every sumset
(i.e. |S △ (A + A)| ≥ ε2n for every set A ⊆ Fn

2), while making as few queries to the oracle
as possible.

2. The above-described sumset testing problem turns out to be closely related to the problem
of shift testing, which is defined as follows: A shift testing algorithm is given black-box
access to two oracles OA, OB : Fn

2 → {0, 1}, which should be viewed as membership
oracles for two subsets A, B ⊆ Fn

2 . The algorithm must output “yes” with probability at

X. Chen, S. Nadimpalli, T. Randolph, R. A. Servedio, and O. Zamir 14:3

least 9/10 if B = A + {z} for some string z ∈ Fn
2 and must output “no” with probability

at least 9/10 if the symmetric difference B △ (A + {z}) has size at least ε2n for every
z ∈ Fn

2 .
3. For S ⊆ Fn

2 , let N ε(S) denote a random set which is an “ε-noisy” version of S, obtained
by flipping the membership / non-membership of each x ∈ Fn

2 in S with probability ε. It
can be shown that for every S ⊆ Fn

2 and every constant 0 < ε < 1, the noisy set N ε(S)
is with high probability not a sumset. We study the problem of algorithmically certifying
that N ε(S) is not a sumset; i.e. we are given access to a membership oracle for N ε(S),
where S is an arbitrary and unknown subset of Fn

2 , and the goal is to output a set C ⊆ Fn
2

of points such that there is no sumset A + A for which (A + A) ∩ C = N ε(S) ∩ C. We
refer to this problem as the smoothed sumset refutation problem, since it aligns with
the well-studied framework of smoothed analysis [34] in which an arbitrary worst-case
instance is subjected to a mild perturbation.

The latter is also of non-algorithmic interest, and for completeness we also present
(in Section 3) a short proof that the number of different sumsets in Fn

2 is between 22n−1

and 22n−1+O(n2). While an upper bound on the number of such sumsets could have been
previously deduced from Theorem 3 in [33], our proof is simpler and gives tighter bounds.
Following this work, Alon and Zamir recently further improved these bounds [6].

Our main results are as follows.

Sumset Testing Lower Bound

We give an Ω(2n/2) lower bound on the query complexity of sumset testing:

▶ Theorem 1. There is a constant ε > 0 (independent of n) such that any algorithm A for
the ε-sumset testing problem must make Ω(2n/2) oracle calls.

Theorem 1 holds even for adaptive testers which may make two-sided error. In particular,
note that Theorem 1 rules out the possibility of an efficient tester for the property of being a
sumset. Recall that in the property testing literature, “efficient” testers are often defined as
algorithms that make a number of queries that depend only on the distance parameter ϵ, or
occasionally also polylogarithmic in the problem size. For example, the seminal Blum-Luby-
Rubinfeld linearity tester [12] determines if a function f : Fn

2 → F2 is linear or ε-far from all
linear functions by making Oε(1) queries to the function. Other examples include testing for
juntas [11], low-degree functions [20], and testing monotonicity [29].

Tight Bounds for Shift Testing

We show that the query complexity of shift testing is Θ∗(2n/2).

▶ Theorem 2. (1) There is an algorithm for the shift testing problem which makes O(n2n/2/ε)
oracle calls and runs in time poly(n) · 2n/ε. Moreover, (2) For any constant 0 < c < 1/2,
any algorithm for the shift testing problem must make Ω(2n/2) oracle calls, even for ε =
(1/2 − 1/2cn). This lower bound holds even for distinguishing the following two cases: (i) A

is a uniform random subset of Fn
2 and B = A + {z} for a uniform random z ∈ Fn

2 ; versus
(ii) A and B are independent uniform random subsets of Fn

2 .

Like Theorem 1, the lower bound, i.e. Part (2), of Theorem 2 holds even for adaptive
testers which may make two-sided error.

ESA 2025

14:4 Testing Sumsets Is Hard

A Near-Optimal Algorithm for “Smoothed” Sumset Refutation

Our final result is a near-optimal algorithm which certifies that any noisy set N ε(S) is not a
sumset:

▶ Theorem 3. (1) There is an algorithm for the ε-smoothed sumset refutation problem that
makes 2n/2 · O(n1.5/ϵ1.5) oracle calls and succeeds in certifying that N ϵ(S) is not a sumset
with probability 1 − on(1). Moreover, (2) for any constant ε > 0, any algorithm that certifies
that N ϵ(S) is not a sumset must make Ω(2n/2/

√
n) many oracle calls.

1.2 Technical Overview
The Fn

2 testing setting allows us to employ algorithms that are conceptually straightforward,
even if proving correctness requires some care.

The main idea of our algorithm for shift testing (Part (1) of Theorem 2) is to query one
oracle with all shifts of a random point r by a subspace V , and query the other oracle by all
shifts of the same point r by the orthogonal complement V ⊥. This requires only O(2n/2)
queries, while providing information about the relationship between the two oracles vis-a-vis
any possible shift z ∈ Fn

2 , since every possible shift has a decomposition into z = z1 + z2 for
some z1 ∈ V, z2 ∈ V ⊥.

The optimality of this general approach is witnessed by the lower bound in Part (2) of
Theorem 2. The proof is by a “deferred decisions” argument which analyzes the knowledge
transcript of a query algorithm which may be interacting either with the “yes”-pair of oracles
or the “no”-pair of oracles. We describe a coupling of the knowledge transcripts between
these two cases, and use it to argue that if fewer than 0.1 · 2n/2 queries have been made, then
with high probability the transcripts are identically distributed across these two cases. (See
[26] for a similar high-level argument, though in an entirely different technical setting.)

The Ω(2n/2) lower bound of Theorem 1 for sumset testing is by a reduction to the
lower bound for shift testing. We give a straightforward embedding of the “A is random,
B = A + {z}”-versus-“A, B are independent random” shift testing problem over Fn

2 into the
problem of sumset testing over Fn+2

2 . The most challenging part of the argument is to prove
that in fact the “no” instances of shift testing (when A, B are independent random sets) give
rise to instances which are far from sumsets over Fn+2

2 . This requires us to argue that a
subset of Fn+2

2 which is constant on two n-dimensional cosets and is uniform random on the
other two n-dimensional cosets, is likely to be far from every sumset, which we prove using a
linear algebraic argument.

For Theorem 3, a result due to Alon establishes that every subset of the Boolean cube
of size 2n − c2n/2/

√
n is a sumset for a small constant c, which implies that any sumset

“0-certificate” has size Ω∗(2n/2) [3]. To find such a certificate, we show that few noisy sumsets
are likely to be consistent with an arbitrarily chosen subspace of dimension n/2, and then
use a small random sample to rule out these sumsets with high probability.

1.3 Discussion
Our results suggest many questions and goals for future work; we record two such directions
here.

The first direction is to obtain stronger results on sumset refutation. Is it possible
to strengthen our sumset refutation result by eliminating the “smoothed analysis” aspect,
i.e. is it the case that any S ⊆ Fn

2 that is ε-far from every sumset has a “0-certificate” of
size 2n/2 · poly

(
n, 1

ε

)
? If so, can such certificates be found efficiently given query access to S?

X. Chen, S. Nadimpalli, T. Randolph, R. A. Servedio, and O. Zamir 14:5

The second, and perhaps most compelling, direction is to either strengthen our Ω(2n/2)-
query lower bound, or prove an upper bound, for the sumset testing problem. We are
cautiously optimistic that the true query complexity of sumset testing may be closer to 2n/2

queries than to 2n queries, but any nontrivial (o(2n)-query) algorithm would be an interesting
result. One potentially relevant intermediate problem towards sumset testing is the problem
of k-shift testing, in which the goal is to determine whether oracles OA, OB : Fn

2 → {0, 1}
correspond to B = A + {s1, . . . , sk} for some k “shift” vectors (si)i∈[k] versus B being ε-far
from every union of k shifts of A.

2 Preliminaries

All probabilities and expectations will be with respect to the uniform distribution, unless
otherwise indicated. We use boldfaced characters such as x, f , and A to denote random
variables (which may be real-valued, vector-valued, function-valued, or set-valued; the
intended type will be clear from the context). We write x ∼ D to indicate that the random
variable x is distributed according to the probability distribution D. We write distTV(D1, D2)
to denote the total variation distance or statistical distance between the distributions D1
and D2.

For ϵ ∈ [0, 1], we write Rε to denote a random subset of Fn
2 obtained by selecting each

element with probability ϵ, so the “ε-noisy version” of a set S ⊆ Fn
2 , denoted N ε(S), is

equivalent to S△Rε, where A△B := (A \ B) ∪ (B \ A) denotes the symmetric difference of
A and B.

Given a set A ⊆ Fn
2 , we will write OA : Fn

2 → {0, 1} to denote the membership oracle for
A, i.e.

OA(x) =
{

1 x ∈ A

0 x /∈ A

for x ∈ Fn
2 . Given A, B ⊆ Fn

2 , we write dist(A, B) for the normalized Hamming distance
between the sets A and B, i.e.

dist(A, B) := |A△B|
2n

= Pr
x∼Fn

2

[OA(x) ̸= OB(x)].

We will also write A + B := {a + b : a ∈ A, b ∈ B}. If one of the sets is a singleton, e.g. if
A = {a}, we will sometimes write a + B := {a} + B instead.

We write H(x) to denote the binary entropy function −x log2 x − (1 − x) log2(1 − x).
Stirling’s approximation gives us the following helpful identity:(

n

αn

)
= Θ∗(2H(α)n); or, equivalently,

(
2n

α2n

)
= 2H(α)2n

· 2Θ(n). (1)

Given a subset D of an Abelian group G, we write ΓG(D) to denote the Cayley sum graph
of G with respect to the generator set D; that is, the graph on the vertex set G that contains
the edge (x, y) if and only if x + y ∈ D. (Since the group we consider is Fn

2 , for us this is the
same as the regular Cayley graph of G with respect to generator set D.) When D = {x} is a
singleton for some x ∈ G, we abuse notation slightly and write ΓG(x) for ΓG({x}).

3 The Number of Sumsets in Fn
2

▶ Proposition 4. The number of sumsets in Fn
2 is at most

22n−1+O(n2).

ESA 2025

14:6 Testing Sumsets Is Hard

Proof. Consider a sumset S = A + A; we consider two cases depending on the linear rank of
the set Fn

2 \ S.
Case 1: Fn

2 \ S does not have full rank. In other words, there exists a vector v ∈ Fn
2 such

that

⟨x, v⟩ = 1 implies that x ∈ S.

In particular, we have that S = S′ ∪
(
Fn

2 \ v⊥)
for some S′ ⊆ v⊥ = {x ∈ Fn

2 : ⟨x, v⟩ = 0}. As
there are at most 2n choices for v, and for each choice of v there are at most 22n−1 choices
for S′, we have that there are at most 22n−1+n many sumsets of this form.
Case 2: Fn

2 \ S has full rank. In particular, there are n linearly independent vectors not
in S. For v ∈ Fn

2 , observe that the Cayley graph ΓFn
2
(v) is a perfect matching. Next, note

that if v /∈ S = A + A, then A must be an independent set in ΓFn
2
(v). This is because, if

x, y ∈ A with x + v = y then

A + A ∋ x + y = x + x + v = v /∈ A + A,

which is a contradiction. As we have n linearly independent vectors not in S, it follows
that there exists an orthogonal transformation of Fn

2 such that A must be an independent
set in the hypercube (where edges are incident to elements of Fn

2 that differ in a single
coordinate). As the number of independent sets in the hypercube Qn is at most 22n−1+O(1)

(see for example [24]), and as the number of orthogonal transformations of the hypercube is
at most 2n2 , it follows that the total number of sumsets of this form is at most

22n−1+n2+O(1).

Both cases together complete the proof. ◀

▶ Proposition 5. The number of sumsets in Fn
2 is at least 22n−1 .

Proof. For any subset A ⊆ Fn−1
2 of the (n − 1)-th dimensional hypercube, we define a

subset A′ ⊆ Fn
2 as

A′ := {⃗0} ∪ {(1, a) | a ∈ A},

where for a (n − 1)-dimensional vector a, the concatenation (1, a) is defined as the n-
dimensional vector where the first coordinate is 1 and the other (n − 1) coordinates are
equal to a. We observe that (A′ + A′) ∩

(
Fn

2 \ e⊥
1

)
= {(1, a) | a ∈ A}. That is, in the

sumset (A′ + A′) all vectors in which the first coordinate is 1 exactly correspond to the set A.
In particular, for any A1 ̸= A2 ∈ Fn−1

2 , we have (A′
1 + A′

1) ̸= (A′
2 + A′

2). ◀

4 Optimally Testing Shifts

Given A, B ⊆ Fn
2 , we say that B is a shift of A if there exists z ∈ Fn

2 such that A + z = B.
We obtain the following upper and lower bounds for the shift testing problem:

▶ Theorem 6. Let OA, OB : Fn
2 → {0, 1} be membership oracles for A, B ⊆ Fn

2 . Then:
1. The algorithm Shift-Tester (Algorithm 1) makes O(n2n/2/ε) oracle calls, runs in time

poly(n) · 2n/ε, and guarantees that:
a. If B = A + z for some z ∈ Fn

2 , the algorithm outputs “shift” with probability 9/10;
b. If for every z ∈ Fn

2 we have dist(A + z, B) ≥ ε, the algorithm outputs “ε-far from shift”
with probability 9/10.

X. Chen, S. Nadimpalli, T. Randolph, R. A. Servedio, and O. Zamir 14:7

2. Fix c to be a constant that is less than 1/2. Any (adaptive, randomized) algorithm with
the performance guarantee in the previous item makes Ω(2n/2) oracle calls, even for
ε = 1/2 − 1/2cn.

In fact, the lower bound holds even for distinguishing the following two cases: (i) A is a
uniform random subset of Fn

2 and B = A + s for a uniform random s ∈ Fn
2 ; versus (ii) A and

B are independent uniform random subsets of Fn
2 .

4.1 Upper Bound
In this section, we prove Item 1 of Theorem 6. Note that since

dist(B, A + z) = Pr
x

[OA(x) ̸= OB(x + z)] ,

if B is a shift of A (i.e. B = A + z∗ for some z∗), we then have for that z∗ that

Pr
x

[OB(x) = OA(x + z∗)] = 1.

On the other hand, if dist(B, A + z) ≥ ε for every z, then for every z we have

Pr
x

[OB(x) = OA(x + z)] ≤ 1 − ε.

These simple observations suggest that in order to estimate Pr[OB(x) = OA(x + z)] for a
particular z, we would like to make queries OB(x), OA(x + z) for uniform random x. The
fact that we need to do this for all z motivates the following approach; before proceeding, we
introduce some notation.

▶ Notation 7. We define the subsets D1, D2 ⊂ Fn
2 , where D1 is the set of all 2⌊n/2⌋ vectors

whose last ⌊n/2⌋ coordinates are all-0 and D2 ⊂ Fn
2 is the set of 2⌈n/2⌉ vectors whose first

⌈n/2⌉ coordinates are all-0. Note that every z ∈ Fn
2 has a unique expression as

z := z(1) + z(2), for z(1) ∈ D1 and z(2) ∈ D2.

Fix a particular string z = z(1) + z(2) as above. We write x = r + z(1), and we observe
that if r is uniform random then so is x. As alluded to earlier we would like to query B on
x and A on x + z = r + z(1) + z = r + z(2). The main observation is that if we query B on
all strings in D1 + r and query A on all strings in D2 + r, then no matter what z is we will
have made the queries OB(x) = OB(r + z(1)) and OA(x + z) = OA(r + z(2)), so we will have
obtained a sample towards estimating Prx[OB(x) = OA(x + z)]. Since this is true for every
z, we can reuse the above queries towards all possibilities for z. (Of course one sample is not
enough to estimate a probability, so we will repeat the above with n/ε different choices of r.)

Proof of Item 1 of Theorem 6. Our algorithm, Shift-Tester, is presented in Algorithm 1.
Note that if B is a shift of A, i.e. if there exists a z∗ ∈ Fn

2 for which B = A + z∗ then

r + z
(1)
∗ ∈ A if and only if r + z

(1)
∗ + z∗ = r + z

(2)
∗ ∈ B,

where we used the fact that z
(1)
∗ + z∗ = z

(1)
∗ + z

(1)
∗ + z

(2)
∗ = z

(2)
∗ . In particular, we will have

pz∗ = 1 and so the algorithm will return “shift” with probability 1. On the other hand,
suppose B is ε-far from A + z for every z ∈ Fn

2 ; fix any such z. Then the probability that all
n/ε repetitions in Algorithm 1 will have OA(r + z(1)) = OB(r + z(2)) is at most

(1 − ε)n/ε ≤ e−n.

Taking a union bound over all z ∈ Fn
2 implies that the probability that Algorithm 1 will

output “ε-far from shift” is at least 1 − (2/e)n, completing the proof. ◀

ESA 2025

14:8 Testing Sumsets Is Hard

Algorithm 1 An algorithm for shift testing.
Input: Oracles OA, OB : Fn

2 → {0, 1} and ϵ > 0
Output: “Shift” or “ε-far from shift”

Shift-Tester(OA, OB , ϵ):
1. Repeat the following n/ϵ times:

a. Draw a uniformly random r ∈ Fn
2 .

b. Query OA on all x ∈ D1 + r, and query OB on all y ∈ D2 + r.
2. For each z = z(1) + z(2) ∈ Fn

2 , let pz be the fraction of the n/ε iterations for which

OA(r + z(1)) = OB(r + z(2)).

3. If pz = 1 for some z ∈ Fn
2 , output “shift”; otherwise output “ε-far from shift”.

Note that Algorithm 1 in fact guarantees 1-sided error, stronger than what is required
by Theorem 6: The algorithm never outputs “ε-far from shift” if B is a shift of A, and if B

is ε-far from every shift of A then the algorithm outputs “shift” with probability at most
(2/e)n.

4.2 Lower Bound
To prove Item 2 of Theorem 6 we define two probability distributions, Dyes and Dno, over
instances of the shift testing problem.

▶ Definition 8. A draw (A, B) from Dyes is obtained as follows:
A ⊆ Fn

2 includes each element of Fn
2 independently with probability 1/2.

B ⊆ Fn
2 equals A + s for s sampled uniformly at random from Fn

2 .

Note that for (A, B) ∼ Dyes, B is a shift of A.

▶ Definition 9. A draw (A, B) from Dno is obtained as follows:
A ⊆ Fn

2 includes each element of Fn
2 independently with probability 1/2.

B ⊆ Fn
2 also includes each element of Fn

2 with probability 1/2 (independently of A).

A straightforward application of the Chernoff bound, combined with a union bound over
the 2n possible shifts, shows that with probability at least 19/20 a draw of (A, B) ∼ Dno
is such that B is (1/2 − 1/2cn)-far from every shift of A (for any constant c < 1/2). So to
prove Item 2 of Theorem 2, it is enough to establish the following claim for deterministic
algorithms. (By Yao’s minimax principle, this is sufficient to prove a lower bound for
randomized algorithms as well.)

▷ Claim 10. Let Test be any deterministic, adaptive algorithm that makes N := 0.1 · 2n/2

oracle calls to OA and OB . Let Ttest(A, B) be the “transcript” of its queries to the oracles
and received responses, i.e. Ttest(A, B) consists of

(first query to one of the oracles, response received)
...

(N -th query to one of the oracles, response received).

Then we have

distTV (Ttest(Ayes, Byes), Ttest(Ano, Bno)) ≤ 0.02,

where (Ayes, Byes) ∼ Dyes and (Ano, Bno) ∼ Dno.

X. Chen, S. Nadimpalli, T. Randolph, R. A. Servedio, and O. Zamir 14:9

The claim follows by analyzing the behavior of the algorithm on an oracle constructed over
the course of answering the queries posed by algorithm Test, i.e., “deferring” the decision of
whether the oracle (A, B) is drawn from Dyes or Dno. See for example Section 7.1 of [26].

Proof. For simplicity, we assume that in each round, Test queries one point q and receives
both OA(q) and OB(q); this can only make Test more powerful.

Consider the following approach to answering queries posed by Test: before any queries
are made, draw a uniform random s ∼ Fn

2 . Let q1, . . . , qt−1 ∈ Fn
2 be the first t − 1 queries

made by Test (we may suppose without loss of generality that all these t − 1 query strings
are different from each other, since any algorithm that repeats a query string can easily be
modified so as not to do so). When the t-th query string qt is provided by Test, the answer
is generated as follows:
1. If s ̸= qt +qt′ for all t′ ≤ t, then two independent uniform random bits bA, bB ∈ {0, 1} are

drawn and returned as OA(qt) and OB(qt). (It may be helpful to think of this outcome
as being “recorded”, i.e. when this happens the process “decides” that bA, bB are the
values of A and B on the point qt.)

2. If s = qt + qt′ for some t′ ≤ t, then the process halts and outputs “failure.”

The key observation is that conditioned on the above process proceeding through t queries
without an output of “failure”, the length-t transcript is distributed exactly according to
the pair of oracles (A, B) being (Ayes, Byes) ∼ Dyes, and also exactly according to the pair
of oracles being (Ano, Bno) ∼ Dno. This is because in either case, as long as no pair of
queries qt, qt′ sum to the “hidden” random string s ∈ Fn

2 , every response to every oracle call
is distributed as an independent uniform random bit.

We finish the proof by showing that the probability that the process above outputs
“failure” is at most 0.02. We emphasize that the probability here is taken over the entire
random process which includes the initial uniform random draw of s ∼ Fn

2 .

To this end, we note that conditioning on no “failure” during the first t − 1 rounds
q1, . . . , qt−1, s is distributed uniformly among all points in Fn

2 that are not equal to qi + qj

for some i, j ∈ [t − 1]. The number of such points is at least 2n − N2/2 > 0.99 · 2n. On
the other hand, the process outputs “failure” in round t if one of q1 + qt, . . . , qt−1 + qt is s,
which happens with probability at most N/(0.99 · 2n) < 0.2 · 2−n/2. It follows from a union
bound on the N rounds that the process outputs “failure” with probability at most 0.02.
This finishes the proof of the claim. ◁

5 Lower Bound for Testing Sumsets

In this section, we show that the lower bound for shift testing established in Section 4.2
implies a lower bound for the problem of testing sumsets. More formally, we prove the
following:

▶ Theorem 11. Let OS : Fn
2 → {0, 1} be a membership oracle for S ⊆ Fn

2 . There is
an absolute constant ε > 0.0125 such that the following holds: Let A be any (adaptive,
randomized) algorithm with the following performance guarantee:
1. If S = A + A for some A ⊆ Fn

2 , A outputs “sumset” with probability 9/10; and
2. If dist(S, A + A) ≥ ϵ for all A ⊆ Fn

2 , A outputs “ε-far from sumset” with probability 9/10.
Then A must make Ω(2n/2) calls to OS.

ESA 2025

14:10 Testing Sumsets Is Hard

B

A

0

1

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 1 The set S(A, B) ⊆ Fn+2
2 . By Proposition 12, for a typical (Ayes, Byes) drawn from

Dyes, adding a single point (1, 1, s) in the top right cell makes S(Ayes, Byes) into a sumset.

The distributions we use to prove Theorem 11 are based on the distributions Dyes and Dno
defined in Definitions 8 and 9 for shift testing. Given A, B ⊆ Fn

2 , we define S(A, B) ⊆ Fn+2
2

as

S(A, B) := {x : x1 = x2 = 0} ⊔ {(1, 0, a) : a ∈ A} ⊔ {(0, 1, b) : b ∈ B}, (2)

where the notation (b1, b2, v) indicates that the bits b1 and b2 are concatenated with v ∈ Fn
2

to create an element in Fn+2
2 . Figure 1 illustrates the set S(A, B).

We use Dno to define Sno, a distribution over subsets of Fn+2
2 as follows: To draw Sno ∼

Sno, we draw (Ano, Bno) ∼ Dno and set Sno = S(Ano, Bno). On the other hand, we use
Dyes to define Syes as follows: To draw Syes ∼ Syes, we draw (Ayes, Byes = Ayes + s) ∼ Dyes
but add one “extra” point to Syes, defining it as: Syes = S(Ayes, Byes) ⊔ {(1, 1, s)}. This
will ensure that Syes ∼ Syes is likely to be a sumset (see Proposition 12 below).

At a high level, the proof of Theorem 11 contains three steps: we show (1) that Syes ∼ Syes
is a sumset with high probability (Proposition 12), (2) that Sno ∼ Sno is ϵ-far from being
a sumset with high probability (Proposition 13), and (3) that oracles to Syes ∼ Syes and
Sno ∼ Sno are too similar for an algorithm that makes few queries to tell the difference,
where “similarity” is measured in terms of the total variation distance between distributions
over transcripts (proof of Theorem 11). The theorem then follows quickly from these three
facts.

▶ Proposition 12. With probability at least 1 − 2−Ω(2n), Syes ∼ Syes is a sumset over Fn+2
2 .

Proof. Let (Ayes, Byes) be a pair of sets in the support of Dyes with Byes = Ayes + s. It is
easy to verify that S(Ayes, Byes) ⊔ {(1, 1, s)} is equal to C + C with

C := {0n} ⊔ {(1, 0, a) : a ∈ Ayes} ⊔ {(1, 1, s)} .

as long as Ayes + Ayes covers all of Fn
2 . So it suffices to show that this holds with extremely

high probability with a uniformly random set Ayes.
To see this, consider any fixed, nonzero element z ∈ Fn

2 . Without loss of generality,
suppose that the first coordinate of z is 1. We have

Pr [z /∈ Ayes + Ayes] = Pr
[
for all y ∈ Fn

2 , either y /∈ Ayes or z + y /∈ Ayes
]

= (3/4)2n−1
,

where the second equality holds because Ayes is a uniform random subset of Fn
2 and y, z + y

are distinct elements (observe that the first coordinate of y is 0 while the first coordinate
of z + y is 1). Since Pr[0n /∈ Ayes + Ayes] = Pr[Ayes is empty] = (1/2)2n

< (3/4)2n−1 , we
get that each fixed element z ∈ Fn

2 is missing from Ayes + Ayes with probability at most
(3/4)2n−1 . The claim follows from a union bound over the 2n elements of Fn

2 . ◀

X. Chen, S. Nadimpalli, T. Randolph, R. A. Servedio, and O. Zamir 14:11

▶ Proposition 13. With probability at least 1 − on(1), Sno ∼ Sno is 0.0125-far from every
sumset.

We now complete the proof of Theorem 11 using Propositions 12 and 13. The proof of
Proposition 13 is deferred to Section 5.1.

Proof of Theorem 11. Let A be an algorithm for sumset testing on Fn+2
2 that makes at

most N = 0.1 ·2n/2 queries. As in the proof of Theorem 6, we let TA(S) denote the N -element
transcript of A given the oracle OS and take a “deferred decision” approach to prove that A
cannot distinguish between Syes and Sno with high probability.

By Propositions 12 and 13, the probability that Syes ∼ Syes is not a sumset is on(1), and
the probability that S ∼ Sno is 0.0125-close to any sumset is on(1). As a result, to prove
Theorem 11 it suffices to show that

distTV
(
TA

(
Syes), TA(Sno)

)
< 0.1 − on(1),

where Syes ∼ Syes and Sno ∼ Sno.
Consider the sham oracle Osham that samples a point s ∈ Fn

2 uniformly at random, then
responds to queries as follows:
1. If the query is a point qt for which qt,1 = qt,2 = 0, the oracle returns 1.
2. If the query is (1, 1, s), the oracle outputs “failure”. Otherwise, if qt,1 = qt,2 = 1, it

returns 0.
3. If the query is a point qt such that qt + qt′ = (1, 1, s) for some previously queried point

qt′ , the oracle outputs “failure”. Otherwise, it returns a random bit.

We proceed to consider the behavior of A given Osham, OSyes , and OSno . Conditioned
on the event that Osham does not output “failure”, A always receives the answer ‘1’ when
querying a point with initial coordinates (0, 0), always receives the answer ‘0’ when querying
a point with initial coordinates (1, 1), and receives a random bit when querying a point with
the initial coordinates (0, 1) or (1, 0). If, after the point of “failure”, our oracle subsequently
responds to queries consistently with the distribution S(Ayes, Ayes+s), randomly determining
membership in Ayes via deferred decision as necessary, the resulting distribution over
transcripts is identical to that given oracle access to Syes. Likewise, if the oracle responds ‘0’
on (1, 1, s) and continues to return random bits on queries whose initial coordinates begin
with (0, 1) or (1, 0), the resulting distribution over transcripts is identical to that given oracle
access to Sno. We conclude that the distribution of TA(sham), the transcript of A given
Osham, is identical to the distribution of transcripts given OSyes and OSno unless failure
occurs.

Failure is unlikely for any algorithm A that makes at most N queries: With N queries,
the algorithm can rule out at most N = O(2n/2) candidates for s by querying points with the
initial coordinates (1, 1), and at most N2 = 0.01 · 2n candidates for s by querying points with
the initial coordinates (0, 1) and (1, 0). Conditioned on no failure, the posterior distribution
of s is thus uniform over at least (0.99 − on(1))2n points. Thus subsequently querying a
point discovers s with probability at most

N

(0.99 − on(1))2n
≤ 0.2

2n/2 .

Union-bounding over all N rounds gives a failure probability of at most 0.02.
We conclude that

distTV(TA(Syes), TA(Sno)) ≤ 0.02 + on(1),

and thus any algorithm that makes at most N = 0.1 · 2n/2 queries cannot answer correctly
with probability 9/10. ◀

ESA 2025

14:12 Testing Sumsets Is Hard

5.1 Proof of Proposition 13
We prove Proposition 13 via a counting argument. The distribution Sno produces subsets of
Fn+2

2 of a specific form: these subsets contain every point in the subspace {x : x1 = x2 = 0},
no points in the coset {x : x1 = x2 = 1}, and have density roughly 0.5 on the cosets
{x : x1 = 0, x2 = 1} and {x : x1 = 1, x2 = 0}. We first bound the number of sumsets that
are ϵ-eligible (roughly, “close”) to any subset of this form (Proposition 16). Since there are
relatively few subsets of Fn+2

2 near any ϵ-eligible sumset, we conclude that most subsets
drawn from Sno are far from any sumset (Proposition 13).
▶ Remark 14. It can be shown that the number of sumsets in Fn+2

2 is at most 22n+1+O(n2)

(this bound is implicit in the work [33], and for completeness we give a proof in Section 3).
However, this upper bound is not enough for us per se since the support of Sno is also of size
22n+1 ; hence we need to use the more refined notion of “ε-eligible” sumsets mentioned above.

In the remainder of this section, we make frequent reference to the volume of sets within
the subspace {x : x1 = x2 = 0} of Fn+2

2 and its three cosets. Given a set S ⊆ Fn+2
2 and a

pair of bits (b1, b2) ∈ {0, 1}2, we define

Volb1b2(S) := |S ∩ {x ∈ Fn+2
2 : x1 = b1, x2 = b2}|

2n
.

in order to simplify notation.

▶ Definition 15. Given ε > 0, we say that a set S ⊆ Fn+2
2 is an ε-eligible sumset if S = A+A

for some A ⊆ Fn+2
2 and if the following holds:

Vol00(S) ≥ 1 − ε and Vol11(S) ≤ ε.

Roughly, the ϵ-eligible sumsets are all those that might be close to Sno ∼ Sno.

▶ Proposition 16. For any ε, the number of ε-eligible sumsets in Fn+2
2 is at most

max
{

24H(ϵ)·2n

, 2(1+2H(ϵ))2n
}

· 2O(n).

We defer the proof of Proposition 16 to Appendix A. We conclude with the proof of
Proposition 13.

Proof of Proposition 13. By Proposition 16, the number of ϵ-eligible sumsets is 2(1+2H(ϵ))2n ·
2O(n) when ϵ < 0.1. By Equation (1), the number of subsets of Fn+2

2 that are γ-close to a
given sumset is(

2n+2

γ2n+2

)
= 2H(γ)2n+2

· 2O(n).

Thus, by union-bounding over all ϵ-eligible sumsets, we conclude that the number of subsets
of Fn+2

2 that are γ-close to any ϵ-eligible sumset is at most

2(1+2H(ϵ))2n+H(γ)2n+2
· 2O(n).

Choosing ϵ = 0.05 and γ = ϵ/4 gives an upper bound of 21.96·2n subsets of Fn+2
2 that are

ϵ/4-close to any ϵ-eligible sumset. Since Sno is distributed uniformly over 22n+1 subsets, the
probability that Sno ∼ Sno is (ϵ/4)-close to any ϵ-eligible sumset is 2−Ω(2n).

We further claim that Sno ∼ Sno is always (ε/4)-far from any sumset that is not ε-
eligible. This is just because that we always have Vol11(Sno) = 0 and Vol00(Sno) = 1. On
the other hand, any non-ϵ-eligible sumset S has either Vol00(S) < 1 − ϵ or Vol11(S) > ϵ by
definition and thus, must be at least (ϵ/4)-far from Sno.

Thus with probability at least 1 − on(1), Sno ∼ Sno is ϵ/4 = 0.0125-far from any
sumset. ◀

X. Chen, S. Nadimpalli, T. Randolph, R. A. Servedio, and O. Zamir 14:13

6 Refuting Sumsets in the Smoothed Analysis Setting

In this section we study the smallest size of a certificate that a set is not a sumset. Informally,
for a set S ⊆ Fn

2 a sumset 0-certificate is a set D ⊆ Fn
2 of points such that querying the

oracle OS on every point in D suffices to prove that S is not a sumset. More formally:

▶ Definition 17. A set D ⊆ Fn
2 is a sumset 0-certificate for S ⊆ Fn

2 if there is no sumset S′ =
A + A ⊆ Fn

2 for which S ∩ D = S′ ∩ D.

Small 0-certificates are important objects of study for many property testing problems;
for example, consider the classic problem of linearity testing. Since a function f : Fn

2 → F2
is linear if and only if f(x + y) = f(x) + f(y) for all x, y ∈ Fn

2 , the property of linearity is
characterized by the non-existence of a “linearity 0-certificate” of size three. As is well known,
in the seminal work [12] Blum et al. showed that this is a robust characterization, in the
sense that a simple sampling procedure which queries random triples x, y, x + y and checks
whether they constitute a linearity 0-certificate suffices to distinguish linear functions from
functions which are far from being linear. A similar framework of sampling 0-certificates
is at the heart of many other important property testing results such as low degree testing
(see e.g. [5, 28] and many other works) and testing triangle-freeness (see e.g. [4, 2] and many
other works). Of course, testing results of this sort rely on, and motivate the discovery of,
structural results showing that functions which are far from having the property in question
must have “many” “small” 0-certificates.

With this motivation, it is natural to study the size of sumset 0-certificates. Our sumset
testing lower bound from Section 5 suggests that there are sets which are far from being
sumsets but which do not have “many” “small” sumset 0-certificates. In fact, known results
imply that for every non-sumset the smallest 0-certificate is of size Ω(2n/2/

√
n):

▶ Lemma 18. Let S ⊆ Fn
2 be any non-sumset. Then any sumset 0-certificate D for S must

have |D| ≥ Ω(2n/2/
√

n).

Proof. This is an immediate corollary of a result due to Alon (Section 4 of [3]), which
shows that any subset T ⊆ Fn

2 of size |T | ≥ 2n − 1
4000

2n/2
√

n
is a sumset. It follows that if

|D| < 1
4000

2n/2
√

n
, then any 0/1 labeling of the points in D is consistent with a sumset (by

labeling all points in Fn
2 \ D as belonging to the set). ◀

The previous lemma, which establishes that any 0-certificate for sumset testing must
have size Ω(2n/2/

√
n), establishes Part (2) of Theorem 3. In the full version of our paper,

we prove a matching upper bound (up to a factor of poly(n, 1/ϵ)) for any set perturbed by a
small amount of random noise, thereby establishing Part (1) of Theorem 3:

▶ Theorem 19. For any set S ⊆ Fn
2 and any ε ∈ (0, 1

2], there exists a sumset 0-certificate
for N ε(S) = S△Rε of size 2n/2 · O(n1.5/ϵ1.5), with probability 1 − on(1) over the random
draw of Rε. Moreover, such a 0-certificate can be found efficiently and non-adaptively (by
querying 2n/2 · O(n1.5/ϵ1.5) points) given oracle access to N ε(S).

References
1 Amir Abboud, Nick Fischer, Ron Safier, and Nathan Wallheimer. Recognizing Sumsets

is NP-Complete. In Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 4484–4506, 2025. doi:10.1137/1.9781611978322.153.

2 N. Alon. Testing subgraphs in large graphs. Random Structures Algorithms, 21:359–370, 2002.
doi:10.1002/RSA.10056.

ESA 2025

https://doi.org/10.1137/1.9781611978322.153
https://doi.org/10.1002/RSA.10056

14:14 Testing Sumsets Is Hard

3 N. Alon. Large sets in finite fields are sumsets. Journal of Number Theory, 126(1):110–118,
2007.

4 N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs.
Combinatorica, 20:451–476, 2000. doi:10.1007/S004930070001.

5 N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing low-degree polynomials
over GF(2). In Proc. RANDOM, pages 188–199, 2003.

6 Noga Alon and Or Zamir. Sumsets in the hypercube. SIAM Journal on Discrete Mathematics,
39(1):314–326, 2025. doi:10.1137/24M165569X.

7 Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using few
independent sources. SIAM Journal on Computing, 36(4):1095–1118, 2006. doi:10.1137/
S0097539705447141.

8 Boaz Barak, Luca Trevisan, and Avi Wigderson. A mini-course on additive combinatorics,
2007. Available at https://www.math.cmu.edu/~af1p/Teaching/AdditiveCombinatorics/
allnotes.pdf.

9 Eli Ben-Sasson, Shachar Lovett, and Noga Ron-Zewi. An Additive Combinatorics Approach
Relating Rank to Communication Complexity. J. ACM, 61(4), July 2014. doi:10.1145/
2629598.

10 Khodakhast Bibak. Additive combinatorics: With a view towards computer science and
cryptography—an exposition. In Jonathan M. Borwein, Igor Shparlinski, and Wadim Zudilin,
editors, Number Theory and Related Fields, pages 99–128, New York, NY, 2013. Springer New
York. doi:10.1007/978-1-4614-6642-0_4.

11 Eric Blais. Testing juntas nearly optimally. In Proc. 41st Annual ACM Symposium on Theory
of Computing (STOC), pages 151–158, 2009. doi:10.1145/1536414.1536437.

12 M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47:549–595, 1993. Earlier version in
STOC’90. doi:10.1016/0022-0000(93)90044-W.

13 Jean Bourgain. More on the sum-product phenomenon in prime fields and its applications.
Internat. J. Number Theory, 1(1):1–32, 2005. doi:10.1142/S1793042105000108.

14 Mark Braverman, Subhash Khot, and Dor Minzer. Parallel repetition for the GHZ game:
Exponential decay. In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1337–1341. IEEE, 2023.
doi:10.1109/FOCS57990.2023.00080.

15 Laurent Bulteau, Guillaume Fertin, Romeo Rizzi, and Stéphane Vialette. Some algorithmic
results for [2]-sumset covers. Information Processing Letters, 115(1):1–5, 2015. doi:10.1016/
J.IPL.2014.07.008.

16 Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party protocols. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83,
pages 94–99, New York, NY, USA, 1983. Association for Computing Machinery. doi:10.1145/
800061.808737.

17 Michael J Collins, David Kempe, Jared Saia, and Maxwell Young. Nonnegative integral
subset representations of integer sets. Information Processing Letters, 101(3):129–133, 2007.
doi:10.1016/J.IPL.2006.08.007.

18 Ernie Croot and Seva Lev. Open problems in additive combinatorics. In Additive Combinatorics,
volume 43 of CRM Proceedings and Lecture Notes, page 207. American Mathematical Society,
2007.

19 Anindya De, Shivam Nadimpalli, and Rocco A. Servedio. Approximating sumset size. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2339–2357. SIAM, 2022. doi:10.1137/1.9781611977073.94.

20 I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. Servedio, and A. Wan. Testing
for concise representations. In Proc. 48th Ann. Symposium on Computer Science (FOCS),
pages 549–558, 2007.

https://doi.org/10.1007/S004930070001
https://doi.org/10.1137/24M165569X
https://doi.org/10.1137/S0097539705447141
https://doi.org/10.1137/S0097539705447141
https://www.math.cmu.edu/~af1p/Teaching/AdditiveCombinatorics/allnotes.pdf
https://www.math.cmu.edu/~af1p/Teaching/AdditiveCombinatorics/allnotes.pdf
https://doi.org/10.1145/2629598
https://doi.org/10.1145/2629598
https://doi.org/10.1007/978-1-4614-6642-0_4
https://doi.org/10.1145/1536414.1536437
https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1142/S1793042105000108
https://doi.org/10.1109/FOCS57990.2023.00080
https://doi.org/10.1016/J.IPL.2014.07.008
https://doi.org/10.1016/J.IPL.2014.07.008
https://doi.org/10.1145/800061.808737
https://doi.org/10.1145/800061.808737
https://doi.org/10.1016/J.IPL.2006.08.007
https://doi.org/10.1137/1.9781611977073.94

X. Chen, S. Nadimpalli, T. Randolph, R. A. Servedio, and O. Zamir 14:15

21 Zeev Dvir and Amir Shpilka. An improved analysis of linear mergers. Comput. Complex.,
16(1):34–59, May 2007. doi:10.1007/s00037-007-0223-z.

22 Isabelle Fagnot, Guillaume Fertin, and Stéphane Vialette. On finding small 2-generating sets.
In Computing and Combinatorics: 15th Annual International Conference, COCOON 2009
Niagara Falls, NY, USA, July 13-15, 2009 Proceedings 15, pages 378–387. Springer, 2009.
doi:10.1007/978-3-642-02882-3_38.

23 G.A. Freiman. Foundations of a Structural Theory of Set Addition. Translations of mathemat-
ical monographs. American Mathematical Society, 1973. URL: https://books.google.com/
books?id=8zc14FDkWlAC.

24 David Galvin. Independent sets in the discrete hypercube. arXiv preprint 1901.01991, 2019.
25 Chris Godsil and Brendan Rooney. Hardness of computing clique number and chromatic

number for cayley graphs. European Journal of Combinatorics, 62:147–166, 2017. doi:
10.1016/J.EJC.2016.12.005.

26 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002. doi:10.1007/s00453-001-0078-7.

27 Ben J. Green. Finite field models in additive combinatorics. In Bridget S. Webb, editor,
Surveys in combinatorics, pages 1–27. Cambridge Univ. Press, 2005.

28 Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing low-degree
polynomials over prime fields. In Proc. 45th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 423–432. IEEE Computer Society Press, 2004. doi:10.1109/FOCS.
2004.64.

29 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean
isoperimetric-type theorems. SIAM Journal on Computing, 47(6):2238–2276, 2018. doi:
10.1137/16M1065872.

30 Shachar Lovett. Additive Combinatorics and its Applications in Theoretical Computer Science.
Number 8 in Graduate Surveys. Theory of Computing Library, 2017. doi:10.4086/toc.gs.
2017.008.

31 Anup Rao. An exposition of Bourgain’s 2-source extractor. Electronic Colloquium on Compu-
tational Complexity (ECCC), 14(34), 2007. ECCC.

32 Alex Samorodnitsky. Low-degree tests at large distances. In Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, STOC ’07, pages 506–515, New York, NY, USA,
2007. Association for Computing Machinery. doi:10.1145/1250790.1250864.

33 V. G. Sargsyan. Counting Sumsets and Differences in an Abelian Group. Journal of Applied
and Industrial Mathematics, 9(2):275–282, 2015.

34 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. In Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, pages 296–305, 2001. doi:10.1145/380752.380813.

35 Luca Trevisan. Additive combinatorics and theoretical computer science. ACM SIGACT News,
40(2):50–66, 2009.

36 Emanuele Viola. Selected Results in Additive Combinatorics: An Exposition. Number 3 in
Graduate Surveys. Theory of Computing Library, 2011. doi:10.4086/toc.gs.2011.003.

A Proof of Proposition 16

Proof. Let S be any ϵ-eligible sumset, and let A satisfying A + A = S be an additive root of
S. We bound the number of ϵ-eligible sumsets by considering possibilities for A.

We begin with the observation that if Vol00(A), Vol11(A) > 0, then it must be true that
Vol00(A), Vol11(A) ≤ ϵ. Otherwise, we would have Vol11(A+A) = Vol11(S) > ϵ, contradicting
our assumption that S is ϵ-eligible. Likewise, we have that if Vol01(A), Vol10(A) > 0, then
Vol01(A), Vol10(A) ≤ ϵ. We split into cases accordingly.

ESA 2025

https://doi.org/10.1007/s00037-007-0223-z
https://doi.org/10.1007/978-3-642-02882-3_38
https://books.google.com/books?id=8zc14FDkWlAC
https://books.google.com/books?id=8zc14FDkWlAC
https://doi.org/10.1016/J.EJC.2016.12.005
https://doi.org/10.1016/J.EJC.2016.12.005
https://doi.org/10.1007/s00453-001-0078-7
https://doi.org/10.1109/FOCS.2004.64
https://doi.org/10.1109/FOCS.2004.64
https://doi.org/10.1137/16M1065872
https://doi.org/10.1137/16M1065872
https://doi.org/10.4086/toc.gs.2017.008
https://doi.org/10.4086/toc.gs.2017.008
http://eccc.hpi-web.de/report/2007/034/
https://doi.org/10.1145/1250790.1250864
https://doi.org/10.1145/380752.380813
https://doi.org/10.4086/toc.gs.2011.003

14:16 Testing Sumsets Is Hard

1. All four cosets of {x : x1 = x2 = 0} are nonempty:
Vol00(A), Vol11(A), Vol01(A), Vol10(A) > 0.
In this case, we have that Vol00(A), Vol11(A), Vol01(A), Vol01(A) ≤ ϵ. Using Equation (1),
we can then bound the number of possibilities for A (and S) by(

2n

ε2n

)4
≤ 24H(ε)·2n

· 2O(n).

2. Either Vol00(A) and Vol11(A) > 0, or Vol01(A) and Vol10(A) > 0, but not both.
Here the volume of A on two of the four cosets is at most ϵ, in one other coset it is 0,
and in the final coset it may be as large as 1. In this case, again using Equation (1), the
number of possibilities for A (and S) is bounded by

22n

·
(

2n

ε2n

)2
≤ 2(1+2H(ε))·2n

· 2O(n).

3. Either Vol00(A) or Vol11(A) = 0, and either Vol01(A) or Vol10(A) = 0, hence at least two
of the four cosets contain no points in A.
Assume without loss of generality that Vol11(A) = Vol01(A) = 0. This immediately
implies that Vol01(S) = Vol11(S) = 0, as A + A cannot contain points in either coset.
(Note that, whichever pair of cosets we choose to zero out, this implies that Vol11(S) = 0
and either that Vol01(S) = 0 or Vol10(S) = 0.) Using the fact that Vol00(S) ≥ 1 − ϵ, the
number of possibilities for S is bounded by

22n

·
(

2n

ε2n

)
≤ 2(1+H(ε))·2n

· 2O(n).

Summing the number of ϵ-eligible sumsets covered by each case completes the proof. ◀

	1 Introduction
	1.1 This Work
	1.2 Technical Overview
	1.3 Discussion

	2 Preliminaries
	3 The Number of Sumsets in F_2^n
	4 Optimally Testing Shifts
	4.1 Upper Bound
	4.2 Lower Bound

	5 Lower Bound for Testing Sumsets
	5.1 Proof of Proposition 13

	6 Refuting Sumsets in the Smoothed Analysis Setting
	A Proof of Proposition 16

