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—— Abstract

F-branchwidth is a framework for width measures of graphs, recently introduced by Eiben et
al. [ITCS 2022], that captures tree-width, co-tree-width, clique-width, and mim-width, and several
of their generalizations and interpolations. In this work, we search for algorithmic applications
of F-branchwidth measures that do not have an equivalent counterpart in the literature so far.
Our first contribution is a minimal set of eleven F-branchwidth measures such that each of the
infinitely many F-branchwidth measures is equivalent to one of the eleven. We observe that for
the FO MODEL CHECKING problem, each F-branchwidth is either equivalent to clique-width (and
therefore has an FPT-algorithm by formula length plus the width) or the problem remains as hard
as on general graphs even on graphs of constant width. Next, we study the number of equivalence
classes of the neighborhood equivalence in a decomposition, which upper bounds the run time of
the model checking algorithm for A&C DN logic recently introduced by Bergougnoux et al. [SODA
2023]. We give structural lower bounds that show that for each F-branchwidth, an efficient model
checking algorithm was already known or cannot be obtained via this method. Lastly, we classify
the complexity of INDEPENDENT SET parameterized by any JF-branchwidth except for one open case.
Also here, our contributions are lower bounds. In this context, we also prove that INDEPENDENT SET
on graphs of mim-width w cannot be solved in time n°™) unless the Exponential Time Hypothesis
fails, answering an open question in the literature.
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1 Introduction

Eiben et al. [12] recently introduced F-branchwidth, a framework of graph width measures
that allows for an infinite number of instantiations. Among them are width measures that
are asymptotically equivalent to treewidth, clique-width, and mim-width. These three have
wide algorithmic applications which immediately begs the following question:

Are there any unknown F-branchwidth measures that have interesting algorithmic
applications?
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The goal of this paper is to address this question — to which we provide negative answers in
several contexts.

For a family of bipartite graphs F, the F-branchwidth of a graph G bounds the size
of any member of F that appears as a semi-induced subgraph in a recursive partitioning
of the vertex set of G. Therefore, any family of bipartite graphs F gives rise to a new
F-branchwidth measure. To avoid chaotic definitions, some technical restrictions are imposed
on F, but there is still an infinite number of families F satisfying them. However, as already
observed in [12], there is a finite number of classes of F-branchwidth measures that are
bounded on different families of graphs. This means that we can restrict the search for
new algorithmically useful width measures to the representatives of these classes. These are
obtained as any combination of the six families shown in Figure 1.
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az e o by az ba a2 e—— by az bo az ba az ba
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Figure 1 The six canonical families usable as building blocks for F-branchwidth. From left to
right: edgeless (¢ i), complete (2), matchings (=), antimatchings (3%), chains (X), and skewed
chains ().

n n s———— by, n n

This brings down the number of cases to consider from infinite to constant, if one wants to
determine the complexity of a problem parameterized by any of the possible F-branchwidth
measures. However, a priori there are still 26 cases to consider. Our first contribution is to
provide a family of eleven F-branchwidth, called The Eleven, that captures the modeling
power of every possible F-branchwidth in the following sense. For an illustration see Figure 2.

» Theorem 1. For each F-branchwidth, one of the following holds.
(i) There is a computable function f such that for each graph G with F-bw(G) < k,
V(@) < (k).
(i) F-branchwidth is asymptotically equivalent to F*-branchwidth, where F* is one of the
FEleven branchwidths (presented in Figure 2 and formally defined in Table 1).

We provide families of obstructions to bounded width that show that the classification
in Theorem 1 is in fact minimal, in the sense that no pair of width measures can be
asymptotically equivalent to each other.

» Theorem 2. For each pair of distinct Fy, Fa € § there is some i € [2] such that there is a
graph class of bounded F;-width but unbounded F3_;-width.

Throughout the following, we refer to the F-branchwidth measures based on the families in
§ as the canonical ones. Notice that the second item of Theorem 1 says that F-branchwidth
and F*-branchwidth are bounded on the same graph classes, but the exact bounds may differ.
Theorem 1, along with the hierarchy among the eleven relevant width measures, allows us to
determine the complexity of a problem parameterized by any F-branchwidth by considering
these cases alone.

A common way to classify the algorithmic power of a width measure is to determine
for which logic L, the L-MODEL CHECKING problem can be solved efficiently whenever the
input graph is given together with a decomposition of constant width. For instance, an
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Figure 2 The Eleven canonical F-branchwidth measures, ordered according to expressive power
from top (high) to bottom (low). The five base cases show the singleton classes, and bold edges show
combinations. For instance, chim-width is (= U =)-branchwidth, clique*-width is (=U XU 2%)-
branchwidth, and tree*-width is (—U3E)-branchwidth. The remaining edges show some relationships
given by the structures of the families. As one may expect, tree*-width is asymptotically equivalent
to tree-width, clique*-width is asymptotically equivalent to clique-width, and co-tree*-width is
asymptotically equivalent to co-tree-width.

L-formula ¢ may express that a graph has an independent set of size k. Then, the evaluation
of ¢ at a graph G is true, in symbols G = ¢ (read: “G models ¢”), if and only if G has an
independent set of size k. Typically, one aims for efficient parameterized algorithms in the
parameterization formula length plus width.

L-MODEL CHECKING parameterized by |¢| + w

Input: Graph G given together with a decomposition of width w, L-formula ¢.
Question: Does G | ¢?

Classical examples of such meta-theorems are Courcelle’s Theorem [8] which gives an
FPT-algorithm when L is MSOs logic and the width is tree-width and its extension to the more
general clique-width while restricting the logic to MSO; [9]. More recent examples include an
FPT-algorithm for FO logic and twin-width [6], and an XP-algorithm for A&C DN logic and
mim-width [3]. The following hierarchy holds for the first three logics: FO C MSO; € MSOs.

We consider the MODEL CHECKING problem for any of these logics parameterized by
any of the F-branchwidth measures. Our first result is that for MSO/FO, we cannot expect
any new tractability islands via F-branchwidth, so in fact, our current understanding of the
complexity of MSO/FO MODEL CHECKING is tight for any F-branchwidth. We illustrate
the following theorem for the canonical F-branchwidth measures in Figure 3.

» Theorem 3. For each F-branchwidth, one of the following holds.

1. There is a computable function f such that each graph of F-branchwidth k has clique-width
at most f(k), implying that FO MODEL CHECKING is FPT parameterized by formula
length plus k.

2. There is a constant ¢ such that FO MODEL CHECKING parameterized by formula length

is AW[x]-hard even when the input graph is given with one of its decompositions of
F-branchwidth c.
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Next, we move on to A&C DN logic which was recently introduced by Bergougnoux et
al. [3] as a logic to capture the problems that are solvable in XP time parameterized by the
mim-width of a given decomposition of the input graph. This logic is a good target to study
under the lens of F-branchwidth. It is the right fit for mim-width which is =-branchwidth
where — is the family of matchings — one of the base families of F-branchwidth. A&C DN
logic is essentially! based on existential MSO; and a neighborhood operator which, for a
given set variable X, returns the set (J, .y N(v), and predicates checking acyclicity and
connectivity. The runtime of the algorithm for A&C DN MoODEL CHECKING is bounded by
the index of the neighborhood equivalence relation (nec), first studied by Bui-Xuan et al. [7].To
get efficient algorithms, it therefore suffices to show, for graphs of width &, that the index of
the neighborhood equivalence grows relatively slowly in terms of n and k. For instance, a
bound of f(k)-n®® implies an f(k)-n®™® time algorithm for A&C DN MODEL CHECKING,
while a bound of n9*) implies an n®9*) time algorithm, using the meta-theorem of [3].

Several such bounds on the index of this equivalence relation are already known in the
literature. First, mim-width k& implies that there are at most n* equivalence classes [2].
Furthermore, there are bounds of the form 2©(*) when k is either the tree-width, clique-width,
or co-tree-width (see, for instance, [3]). Next, we cannot hope to obtain any meaningful
bound for any F-branchwidth that generalizes complete-width. When a cut consists of
matching with n vertices on each side, the complete-width is just 1, while the number of
neighborhoods across the cut is 2". Indeed, for each subset of vertices contained in one
side of the cut, there is a different subset across the cut whose neighborhood is exactly that
subset.

The cases that remain are the ones asymptotically equivalent to empty-width, chim-width,
and mam-width. As mim-width generalizes all of them, we immediately have XP-algorithms
parameterized by each of them. Also here, we provide a number of negative results. For
chim-width and mam-width, not much improvement can be made over the bound given by
mim-width. We show that there are graphs of chim-width (or mam-width) & such that each
of their decompositions induces a cut with at least (n/(k?logn))**) neighborhoods. By a
probabilistic argument, we show that there are graphs whose decompositions have cuts of
empty-width & that have n(®) neighborhoods. We conclude that the technology from [3]
cannot be applied directly to any F-branchwidth measure to extend the range of tractability
of A&C DN MODEL CHECKING, see Figure 3 for an illustration.

» Theorem 4. For each F-branchwidth, one of the following holds.

1. There is a computable function f such that each graph of F-branchwidth k has clique-width
at most f(k), implying that A&C DN MoDEL CHECKING is FPT parameterized by formula
length plus the width of a given decomposition of the input graph.

2. FEach graph of F-branchwidth k has mim-width at most k, implying that A&C DN MODEL
CHECKING 1is XP parameterized by formula length plus the width of a given decomposition
of the input graph. On the other hand, there are cuts of F-branchwidth k with n**)
neighborhood equivalence classes.

3. There is a computable function f such that each graph of complete-width at most k
has F-branchwidth at most f(k), implying that there are cuts on n vertices of constant
F-branchwidth with 2% neighborhood equivalence classes.

! The neighborhood operator in [3] is somewhat more general, but for the sake of this introduction it
suffices to think of simple neighborhoods.
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Figure 3 Results about the complexity of model checking problems on graphs of bounded F-
branchwidth. Left: Complexity of FO MODEL CHECKING. Right: Number of neighborhoods in cuts
of bounded width.
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Figure 4 The complexity of INDEPENDENT SET parameterized by any F-branchwidth measure.
Note that the complexity of INDEPENDENT SET parameterized by empty-width is still open, but the
XP lower bound on the number of equivalence classes in the neighborhood equivalence implies that
known techniques are not applicable to show fixed-parameter tractability in this case. Moreover,
it is worth looking into the complexity of IS parameterized by solution size on graphs of constant
miam-width, cham-width, or complete-width.

For the canonical F-branchwidth measures, we also take a more fine-grained look at the
index of the neighborhood equivalence. The upper bounds on the number of equivalence
classes in terms of clique*-width and tree*-width follow from known bounds [3] together
with Ramsey-theory based arguments from [12]. This results in upper bounds that are
double-exponential in the width k, i.e., bounds of the form 22" " For tree*-width and
co-tree*-width k, we give improved, single-exponential, bounds of 20+’ 1°g) each, and a
lower bound of 24¥1°8%) for tree*-width k.

For the lower bound statements of Theorem 4, observe two things. First, for chim-width
and mam-width, the bounds in fact hold for any decomposition of graphs within a family we
construct. Second, lower bounds on the number of equivalence classes of the neighborhood
equivalence only rule out direct applications of the meta-theorem from [3], and are not
hardness results per se.

Due to that, we explicitly consider the INDEPENDENT SET and DOMINATING SET problems
as two of the most fundamental problems expressible in A&C DN logic. Here, we provide
several new hardness results. First, we show WJ[1]-hardness parameterized by chim-width
and mam-width, and we show that under the Exponential Time Hypothesis, no n°*) time
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algorithm can exist. The latter gives a negative answer to the question explicitly asked for
instance in [1, 4] whether the linear dependence on the mim-width in the exponent of the
algorithms from [7] can be lowered significantly.

» Theorem 5. Unless the Exponential Time Hypothesis fails, neither INDEPENDENT SET
nor DOMINATING SET can be solved in f(k)n°®) time for any computable function f, where
k is either the chim-width, the mam-width, or the mim-width of a given decomposition of the
n-vertex input graph. Moreover, both problems parameterized by either the chim-width or the
mam-width are W[1]-hard.

Since INDEPENDENT SET is NP-complete on cubic graphs, it is para-NP-hard when
parameterized by any width measure in whose obstructions the degree increases proportionally
to the size. This is the case for complete bipartite graphs, anti-matchings, and chains.
However, one might hope for efficient algorithms for INDEPENDENT SET parameterized by
solution size on graphs of constant width. For chain-width, we rule out this possibility by
proving that the graphs from a reduction due to Fomin, Golovach, and Raymond [13] have
bounded chain-width.

» Theorem 6. INDEPENDENT SET parameterized by solution size is W[1]-hard even when
the input graph is provided with a linear decomposition of chain-width 3.

We summarize the results for the INDEPENDENT SET problem in Figure 4.

This paper is organized as follows. In the next section, we introduce our notations and
the F-branchwidths framework, as wells as some basics facts on these parameters. Theorem 2
is proved in Section 3. Theorem 3 is proved in Section 4. Theorem 4 is proved in Section 5.
Finally, Theorem 5 is proved in Section 5. Missing proofs are in the full version.

2 Preliminaries

For an integer i, we let [i] = {1,2,...,i}.

We use standard graph terminology and notation [11], some of which we briefly recall in
the following. In every notation with a graph subscript, we may omit it if the graph is clear
from the context.

A cut of a graph G is a partition of V(G) into two sets A, B. We denote by G[A, B] the
subgraph of G with edge set {uv € E(G) |u € A,v € B}. A graph G is bipartite if it can
be written as G[A, B] for some cut A, B. In this case we also use (A, B, F) to denote G. If
|A| = |B|, then we call |V(GQ)/2|(= |A| = |B|) the half-order of G.

For a graph G, its (edge) complement G is given by (V(G),{uv | u,v € V(G) Avw ¢
E(GQ)}). Given a set A C V(G), we use A as shorthand for V(G) \ A. For a bipartite graph
G = (A, B, E), its bipartite (edge) complement is given by (A, B,{uv |u € AANv € BAuv ¢

Branch decomposition. A branch decomposition or tree layout (or simply layout) of a graph
G is a pair (T, A) where T is a ternary tree (i.e., every internal node of T has degree 3) and A
is a bijection from V(G) to the leaves of T. An edge e of T induces or defines a cut (X, Ye)
of G, where X, and Y, are the preimages by A of the leaves in the two components of T' — e.
For a symmetric function fg: 2V(¢) — Z which we refer to as a cut function of G, the f-width
of e is fg(X,), the f-width of the branch decomposition T is the maximum width over all
edges of T, and the f-branchwidth of G, denoted by f-width(G), is the minimum width of a
branch decomposition of G.
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The following lemma encapsulates a standard argument on branch decompositions that
we need to obtain some of our lower bound results.

» Lemma 7. Let G be a graph and X C V(G) such that | X| > 2. Any branch decomposition
of G has an edge that displays a bipartition (L, R) of V(G) so that |L N X| > |X|/3 and
RN X| > |X|/3.

Corresponding linear branchwidth constrains T to be a path with a pendant for each
internal node. The linear f-branchwidth of G is denoted by lin-f-width(G). It is equivalent
to view the layout given by such a tree as a permutation of V(G) where the considered
cuts for linear branchwidth are between vertices before and vertices after each point in the
permutation.

Besides F-branchwidth, we will also use the cut function necq (and its associated branch-
width) defined as follows. Given A C V(G), two subsets X and Y of A are neighborhood-
equivalent over A if N(X)\ A= N(Y)\ A, we define necg(A) as the number of equivalence
relation over A.

We focus on the branchwidths proposed in [12] that arise as follows. Let F be an infinite
family of bipartite graphs where each graph in F has bipartition (A = (ai,...,a,),B =
(b1,...,bs)) such that for each 2n-vertex graph in F and each subset L of [n], the graph
induced on {a;,b;|i € L} is isomorphic to a graph in F. Given a graph G, we define the
F-cut function fe of G such that fs(X) is the the largest k such that a 2k-vertex graph
in F is isomorphic to an induced subgraph of G[X,V(G) \ X]. It is known that for any
such choice of F, F-branchwidth is asymptotically equivalent to F’-branchwidth where F’
is a union of any of the following six graph classes which are called si ph (short for size
identifiable partner hereditary): = the class of all bipartite induced matchings, == the class of
all bipartite complements of induced matchings, also called antimatchings (or co-matchings),
= the class of all complete bipartite graphs with an equal number of vertices on each side of
the bipartition, { : the class of all bipartite edgeless graphs with an equal number of vertices
on each side of the bipartition, which we simply refer to as bipartite edgeless graphs, = the
class of all bipartite graphs with an equal number of vertices on each side of the bipartition
such that the vertices on each side permit an indexing under which each vertex u on one side
has an edge to a vertex v other the index of u is at most the index of v, which we refer to as
chains, and X the class of all bipartite graphs with an equal number of vertices on each side
of the bipartition such that the vertices on each side permit an indexing under which each
vertex u on one side has an edge to a vertex v other the index of w is less than the index of
v, which we refer to as skewed chains.

It will be useful to introduce the following notation for some bipartite graphs:

i = (a1, -, ak), (b1, ..., bg), E), where E = ().

=, = ((a1,...,0ak),

(( ), ( ), E)
((a1, ..., ak), (br, ..., bg), E)

=, = ((a1,...,ax), (b1,...,bg), E), where E = {a;b; | i,j € [k],i # j}.
(( ), ( ), E), where E = {a;b; | 1 <i<j <k}
(( ), ( ), E), where E = {a;b; | 1 <i<j <k}

2.1 Co-/degeneracy, empty-width/complete-width, and subdivisions

In this subsection, we explore the relations between degeneracy [16], subdivisions, complete-
width and empty-width. All the corollary of this subsection follows from the fact that the
(linear) complete-width of a graph is exactly the (linear) empty-width of its complement.
This will be useful to establish relationships between F-branchwidths in the next section.
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» Proposition 8. Let G be a graph with degeneracy at most k. Then, G has linear
complete-width at most k.

» Corollary 9. Let G be a graph with co-degeneracy at most k. Then, G has linear empty-width
at most k.

On the other hand, hypercubes have unbounded degeneracy but complete-width at most 2.

» Proposition 10. For each d € N, the hypercube of dimension d has minimum degree d and
linear complete-width at most two.

» Corollary 11. For each d € N, the hypercube of dimension d has minimum co-degree d and
linear empty-width at most two.

For a graph G and a positive integer g, the g-subdivision of G is the graph obtained from
G by subdividing each edge ¢ times.

» Observation 12. Let G be a simple graph, and let G' be obtained from G by subdividing
each edge at least once. Then, any linear ordering of G' has complete-width at most one.

» Corollary 13. Let G be a simple graph and let G' be the complement of a graph obtained from
G by subdividing each edge at least once. Then, any linear ordering of G' has empty-width at
most one.

3 The Eleven

In this section we show that we can restrict ourselves further to eleven different F-branchwidth
measures, called the Eleven (shown in Figure 2) and still obtain complete classifications. We
begin by restating a lemma from [12] to justify that we do not need to consider the family of
skewed chains.

» Lemma 14 (Lemma 4.9 in [12]). Let F be a union of si ph classes. If < C F, then for
every graph G it holds that |F-bw(G) — F'-bw(G)| < 1, where F' = (F\ N)U=.

The remaining five singleton-classes that we restrict our attention to from now on are each
interesting in their own right. The following observation will come in useful.

» Observation 15. Let H = ((a1,...,ax),(b1,...,bx), E) be an ordered bipartite graph.

1. If H ==, then H contains an edgeless bipartite graph of half-order |k/2].

2. If H ==y or H =X, then H contains an edgeless bipartite graph of half-order |k/2].

3. If H =35, or H=Xy, or H= X, then H contains a complete bipartite graph of
half-order | k/2].

We move on to pairs, first observing that we can restrict ourselves to the case when at most

one of ! ior 2 is contained in F.

» Lemma 16. Let F be a union of si ph classes such that: :UZ C F. There is a computable
function f such that for each graph G with F-bw(G) < k, |V(G)| < f(k).

When i : C F, the presence or absence of — or = in F does not matter asymptotically
either.

» Lemma 17. Let F be a union of si ph classes such that: i C F. Let F* be any (possibly
empty) combination of {=,=X}, and let F' = FUF*. Then, for any graph G, F-bw(G) <
F'-bw(G) < 2- F-bw(G) + 1.
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Similarly, we have the following.

» Lemma 18. Let F be a union of si ph classes such that 2 C F. Let F* be any (possibly
empty) combination of {35, =X}, and let F' = FUF*. Then, for any graph G, F-bw(G) <
F'-bw(G) < 2- F-bw(G) + 1.

We are now ready to define the Eleven— see Table 1 — and prove Theorem 1.

Table 1 Definitions of the Eleven F-branchwidth and introduction of the notations for their
associated F-cut functions.

F Name F-cut function F Name F-cut function

= | complete-width | complete EU= tree*-width t* g

i empty-width empty o P iU | co-tree*-width | co-t*¢

— mim-width mimg —Ux mam-width mamg

= miam-width miamg EUX chim-width chimg

= chain-width chaing =—Ux cham-width chamg
=UxUX | clique*-width | c*¢

Observe that tree*-width is asymptotically equivalent to tree-width and clique*-width is
asymptotically equivalent [12, Section 4].

» Theorem 1. For each F-branchwidth, one of the following holds.
(i) There is a computable function f such that for each graph G with F-bw(G) < k,
V(G| < f(k).
(ii) F-branchwidth is asymptotically equivalent to F*-branchwidth, where F* is one of the
FEleven branchwidths (presented in Figure 2 and formally defined in Table 1).

Next, we argue that the relationships between the Eleven as shown in Figure 2 indeed
faithfully represent their hierarchy. That is, whenever two width measures are connected, then
the one on top strictly generalizes the one the bottom, and whenever there is no connection
(in terms of paths) between two, then they are incomparable. The fact that the depicted

generalizations hold up follows directly from the definition and in some cases Observation 15.

For the lower bounds on width measures, we need the following canonical classes of graphs

of unbounded width. For each n € N, we consider the following graphs on vertex set [n] x [n].

The n x n grid, denoted by H,,, has edges {(7,7), (i',j')} where |i — 4| +|j — j'| = 1.
The complement of the n x n grid is denoted by H,,.
The n x n comparability grid, denoted by W,,, has edges {(¢,7), (¢',j')} where i <4’ and
j < j’. For an illustration see Figure 5. Note that comparability grids appear in the
study of rank-width naturally [15].
Grids have unbounded mim-width [17], which in the language of F-branchwidth can be
expressed in a more general form as follows.

» Proposition 19. Let F be a union of si ph families. If (= U:
n €N, F-bw(H,) € Q(n).

HNF £, then for each

By complementation, we have the following consequence.

» Corollary 20. Let F be a union of si ph families. If (32UZE)NF # 0, then for each n € N,

F-bw(H,,) € Q(n).

Lastly, we show that comparability grids are a family of unbounded chain-width, while
their mam-width is bounded by a constant.
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.

Figure 5 Illustration of comparability grids by the example of 5. On the left, the grid structure
plus the additional edges incident with one highlighted vertex. In the middle and on the right, some
chains that appear in cuts of a branch decomposition.

Table 2 Each cell shows families of graphs whose width is bounded by a constant by the width
measure whose cut-function indexes the row and unbounded by the width measure whose cut-function
indexes the column. Here, HH stands for the family of grids, H for the complements of grids, and H
for the comparability grids. For instance, the entry H in row “chain” and column “mim” indicates
that the family of grids has constant chain-width but unbounded mim-width. Furthermore, K,
denotes the family of complete graphs, and @, the family of edgeless graphs.

chain | mim | miam | chim | mam | cham | empty | complete | c*/t*/co-t*
chain tH 2] B |BE| B SY == NE
mim SN 23] SN H NH SN H HE
miam H S| HE | N H R H H HH
chim H Sy Ry 0 Ry N
mam SN SY (H (& (H (H
cham & & & & K, &
empty == &3] £ £ 5]
complete tH tH tH SN B
c* 0r, K, / Kn [ 0n
t* On / / On
co-t* K, / Kn /

» Proposition 21. For each n € N, lin-mam-width(8,,) = 1 and chain-width(&,,) > n/4.

Next, we observe upper bounds on F-branchwidth of grids, their complements, and
comparability grids.

» Proposition 22. Let F be a union of si ph families. If F C EUX U=, then, for each
n eN, F-bw(H,) € O(1).

By complementation and Corollary 9, we get the following.

» Corollary 23. Let F be a union of si ph families. If F C: :U=UZ, then, for eachn € N,
F-bw(H,,) € O(1).

Using Propositions 19, 21, and 22 and Corollaries 20 and 23, we can argue almost all of
the desired relationships, see Table 2. The remainder is discussed in the full version which
concludes the proof of Theorem 2.
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4 FO logic

It is known that FO MODEL CHECKING is AW[#]-hard on interval graphs [14]. Furthermore,
interval graphs are known to have linear mim-width 1, witnessed by a linear order that can be
computed in polynomial time [2]. Next, we can observe that for any graph G and A C V(G),

mimg(A) < 1 < miamg(4) < 1.

This is because a matching of half-order 2 and an anti-matching of half-order 2 are isomorphic.
Therefore, we have the following consequence.

» Corollary 24 (of [2, 14]). FO-MODEL CHECKING parameterized by the length of the formula
is AW[x]-hard on graphs of linear mam-width one, even if a width-1 linear order of the input
graph is given.

Due to Corollary 24, the only remaining cases where we could hope for FPT-algorithms
for FO-MODEL CHECKING are complete-width and empty-width. However, we show by two
trivial reductions that the problem remains W[1]-hard parameterized by formula length on
graphs of width 1 as well. Note that the following reduction is folklore, but we state it here
for completeness.

» Proposition 25. FO-MoDEL CHECKING parameterized by the length of the formula is
AWI[x|-hard on graphs of linear complete-width one, even if a width-1 linear order of the input
graph is given.

Let (G, ¢) be an instance of FO-MODEL CHECKING such that G has linear complete-width
one. Observe that G has linear empty-width one. We replace each occurrence of x; ~ x; in
¢ with —z; ~ x; to obtain a formula ¢’. Then, G |= ¢’ if and only if G |= ¢ and we obtain
the following.

» Corollary 26. FO-MoDEL CHECKING parameterized by the length of the formula is AW[x]-
hard on graphs of linear empty-width one, even if a width-1 linear order of the input graph is
given.

5 Bounds on nec in terms of F-branchwidth

The run time of the algorithm for A&C DN MODEL CHECKING from [3] is polynomial in
the number of equivalence classes of the neighborhood equivalence relation. Therefore, any
bound on this quantity immediately translates to an efficient algorithm for A&C DN MODEL
CHECKING.

5.1 Upper Bounds

We first give some upper bounds. For tree-width, co-tree-width, and clique-width, single-
exponential upper bounds on nec are known (e.g., [3]). Pipelined through the arguments
from [12], this gives bounds for the equivalent F-branchwidth parameters, but they might end
up double-exponential due to the Ramsey arguments in [12]. Here, we give single-exponential
upper bounds in terms of these width parameters by giving more direct arguments.

» Lemma 27. Let G be a graph and A C V(G) such that t*¢(A) < k. Let M be a matching
in G[A, A]. Then, |M| < (k+ 1)+2.
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» Lemma 28. Let G be a graph, A C V(G) with t*q(A) < k. There is a set Q C A of size
at most 200 106k) such that {N(v)NA |ve A} = {N(w)N4A|veQ}

» Proposition 29. Let G be a graph and A C V(G) with t*¢(A) < k. Then, necg(A) €
9O(k* logk)

» Proposition 30. Let G be a graph and A C V(QG) with co-t*(A) < k. Then, necg(A4) <
9O(k* log k)

5.2 Lower bounds

We first exhibit some cuts with high nec in terms of the respective width parameters. Later,
we then prove that there are families of graphs where each of their branch decompositions
has to have a cut with large nec.

» Observation 31. Let G be obtained by taking the disjoint union of an antimatching with
2n wertices and a matching with 2k vertices and completely connecting the sides A and A of
the resulting bipartite graph. It holds that empty-width(G) < k, and necg(A) > 2F - n.

For the following observation, take the disjoint union of k chains of half-order k.

» Observation 32. There is a bipartite graph G = (A, B, E) with t*¢(A) = k and necg(A) €
ZQ(k log k) .

» Observation 33. Let H = H™ with bipartition (A, B). Then, necy(A) = 2".

» Observation 34. For each n € N there is a graph G on 2n vertices and A C V(G) such
that complete;(A) =1 and necg(A) = 2".

» Proposition 35. There is an infinite family of graphs G with complete-width(G) =1 and
such that each branch decomposition of G induces a cut (A, A) with necg(A) € 22V,

» Proposition 36. For each n,k € N with n > k there is a bipartite graph G = (A, B, E) on
2n vertices such that mamg(A) = k and necg(A) = |n/k|*.

By taking a disjoint union of k& antimatchings of half-order n/k in the previous proof, we
get the following corollary.

» Corollary 37. For each n,k € N with n > k there is a bipartite graph G = (A, B, E) on
2n vertices such that chimg(A) =k and necg(A) = [n/k|*.

In the following, we provide several lower bounds on the nec-width of graphs of low
chim-width, mam-width, tree*-width, or co-tree*-width. The proofs strategy are based on
the proof of [5, Theorem 1.3] stating that there exists arbitrary large graphs of rank-width &
with Boolean-width Q(k?).

We start by proving a lower bound on nec-width in terms of chim-width. The following
construction is based on the reduction used to prove Theorem 5 for chim-width.

» Lemma 38. For each k € N with k > 0, there exist arbitrary large graphs G of linear
chim-width at most 2k and with nec-width(G) € (n/(k?logn))**).

It is easy to obtain the same result as Lemma 38 for mam-width by replacing anti-
matchings by chains in the construction of the graph G.

» Lemma 39. For each k € N with k > 0, there exist arbitrary large graphs G of linear
mam-width at most k + 1 and with nec-width(G) € (n/(k?logn))?®).
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» Lemma 40. For each k € N with k > 0, there exist arbitrary large graphs G of linear
tree* -width at most 2k and with nec-width(G) € k%),

» Lemma 41. For each n,k € N with n sufficiently large, there is a graph G = (A, B, E) on
2n wvertices such that empty-width(G) < k and with nec-width(G) € |V (G)|?®*),

6 Independent Set parameterized by F-Branchwidth

In this section, we discuss the complexity of INDEPENDENT SET parameterized by any JF-
branchwidth measure. On top of that, we strengthen known hardness results for INDEPENDENT
SET and DOMINATING SET (full version) on graphs of bounded mim-width under the ETH.
Concretely, we show the following.

» Theorem 5. Unless the Exponential Time Hypothesis fails, neither INDEPENDENT SET
nor DOMINATING SET can be solved in f(k)n°®) time for any computable function f, where
k is either the chim-width, the mam-width, or the mim-width of a given decomposition of the
n-vertex input graph. Moreover, both problems parameterized by either the chim-width or the
mam-width are W[1]-hard.

These lower bounds are tight because the algorithm — based on the d-neighbor equivalence
— from [7] solves INDEPENDENT SET and DOMINATING SET in time n°(*) where w is the
mim-width of a given decomposition which is always smaller than its chim-width and
mam-width.

It is well-known that INDEPENDENT SET is FPT parameterized by clique-width, and
therefore clique*-width, so for all F-branchwidth measures that are at most as general as
clique*-width, INDEPENDENT SET is FPT.

6.1 Independent Set on graphs of bounded complete-width and
chain-width

Since INDEPENDENT SET is NP-complete on cubic graphs, it is paraNP-hard when paramet-
erized by any width measure in whose obstructions the degree increases proportionally to
the size. This is the case for complete bipartite graphs, anti-matchings, and chains.

» Observation 42. INDEPENDENT SET is NP-hard on graphs with complete-width at most 3.

Nevertheless, the previous result does not rule out efficient parameterized algorithms for
INDEPENDENT SET when the solution size is an additional part of the parameter. Note that
here, the bounded-degree argument does not apply, since INDEPENDENT SET parameterized
by solution size plus maximum degree can easily be shown to be FPT [10]. However, we
show that INDEPENDENT SET remains W[1]-hard parameterized by solution size on graphs of
(the more general) chain-width at most 3. (The same reduction in fact shows W[1]-hardness
parameterized by solution size plus chim-width.)

This can be shown by observing that the graphs obtained in the reduction that proved
W][1]-hardness for INDEPENDENT SET parameterized by mim-width plus solution size [13] in
fact have a linear order whose mim-width is bounded by a function of the parameter and
whose chim-width is at most three.

» Corollary 43. INDEPENDENT SET is W[1]-hard parameterized by
the solution size (plus the linear mim-width) on graphs of linear chain-width 3, or
the solution size plus the linear chim-width

of the input graph, even if a linear order of bounded width is provided with the input.
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6.2 Independent Set on graphs of bounded chim-width

To prove Theorem 5 for chim-width and INDEPENDENT SET, we provide a reduction from
MULTICOLORED INDEPENDENT SET in general graphs to Independent Set in graphs of
low chim-width. Briefly, an instance of MULTICOLORED INDEPENDENT SET consists of a
graph whose vertex set is the disjoint union of k sets Vi,..., V4 and the problem asks for a
multicolored independent set which is an independent set with exactly one vertex in each V;.
Let H a graph with V(H) =V, W--- WV} be an instance of MULTICOLORED INDEPENDENT
SET. We denote by N the number of vertices of H and by M the number of edges of H. In
the following, we show how to construct in polynomial time a graph G with at most n = NM
vertices and a linear order of chim-width at most 2k such that H admits a multicolored
independent set iff G admits an independent set of size at least kM. This is sufficient to prove
Theorem 5 for chim-width. Indeed, with a f(w)n°™) time algorithm for INDEPENDENT SET
for some computable function f, we would be able to solve MULTICOLORED INDEPENDENT
SET in time f(k)N°*) which is not possible under the ETH [10]. Futhermore, the W[1]-
hardness of INDEPENDENT SET parameterized by chim-width follows from the W[1]-hardness
of MULTICOLORED INDEPENDENT SET parameterized by &k [10].

Intuitively, we start by creating a selection gadget S,, for each edge uv of H such that
the maximum independent sets of G[S,,,] are bijectively mapped to the potential solution of
H — set of vertices with exactly one vertex in each V; — which do not contains both u and v.
Then we glue the selection gadgets together in such a way that the maximum independent
sets in two glued gadgets are non-adjacent if and only if they are associated with the same
potential solution of H. See Figure 6 for an illustration of the following construction.

S; lej @ 2e1( 3e1 @ 4ey
1
|

Figure 6 Illustration of the reduction for chim-width with & = 3, V4 = {1,2,3,4}, Vo = {5,6,7}
and V3 = {8,9}. Here M = 3 and the edges of H consists of e; = 45, e2 = 48 and e = 68. Dashed
lines represent the non-edges of the anti-matchings between the selection gadgets. To improve the
legibility, we omit the edges of the cliques S7.: i,j € [3]. The independent set I consisting of the
white filled vertices have size kM and Iz = {2,7,8} is a multicolored independent set of H.

Selection gadgets. For each edge e € E(H ), we create the selection gadget S, which consists
of the disjoint union of k cliques S!,..., S* such that for each j € [k], S := {z. | z € V;}.
We finish the construction of S, by adding the edge between u. and v, where u and v are
the endpoints of e. Given a set X C S,, we denote by Xy the set {x € V(H) | z. € X }.
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» Observation 44. For every edge e of H, X is a mazimum independent set I of G[S.] if
and only if Xy has exactly one vertex in each V; and does not contain both endpoints of e.

Propagation. The final step of this construction is to add edges between the selection gadgets
such that if H admits a multicolored independent sets then every maximum independent set
I of G intersects the selections gadgets in the same way, i.e. for every pair of edges (eq, e2)
of H, we have (INS., )y = (I NSe,)n. We achieve this without blowing up the chim-width
of G as follows. We fix an edge e; of H and for every edge e # e; of H and i € [k], we first
add all the edges between S and S? and then for each vertex = € V;, we remove the edge
Te, 7. Consequently, the bipartite graph G[S; S¢] is an anti-matching of half-order [V;[. As
S;, and S; are cliques in G, the maximum independent sets of G[S;, U S;] are exactly the
pairs {Z.,,z.} with z € V;. This leads to the following observation.

» Observation 45. For every edge e # ey of H and subsets X,Y of size k of respectively Se,
and Se, there is no edge between X and Y in G if and only if we have Xg = Yp.

We deduce from Observations 44 and 45 the correctness of our reduction.

» Lemma 46. The graph G admits an independent set of size at least kM if and only if H
admits a multicolored independent set.

Finally, we prove that we can construct in polynomial time a linear order of G of
chim-width at most 2k + 2. The following proof relies on the fact that induced matchings
and chains in anti-matchings have size at most 2, which implies that the chim-width of the
cut (Se,, V(G)\ Se,) is at most 2k.

» Lemma 47. We can compute in polynomial time a linear order of G of chim-width at
most 2k + 2.

6.3 Independent Set on graphs of bounded mam-width

The proof of Theorem 5 for mam-width is similar to the one for chim-width, we start from the
same instance of MULTICOLORED INDEPENDENT SET and construct a graph G. Compared to
chim-width, the following construction is a bit more involved and uses skewed chains instead
of anti-matchings to glue the selection gadgets together. See Figure 7 for an illustration of
the following construction.

Selection gadgets. We reuse the selection gadget Se,, Se, ..., S¢,, from the reduction for
chim-width where eq, ..., ey are the edges of H.

Propagation. First, we add anti-matchings between S, and S, just as we did in the
reduction of chim-width. That is for every i € [k], we do the following. We add all the edges
between Sél and ,5'22. Finally, for every vertex v € V;, we remove the edge v, ve,. Note that
GI[SL ,Si,] is big anti-matching, but this does not blow-up the mam-width. Indeed, we can

insert in the permutation of Lemma 47 each vertex of S?, next to its non-neighbor in S ,

this way every cut of the resulting permutation contains at most one non-edge of G[S? , S ]
and the mam-width stays low. Note that Observation 45 holds for e = es.

Finally, we add skewed chains between S., U S, and the other selection gadgets, by doing
the following. We take a arbitrary strict linear order <y on the vertices of H such that for
each i,j € [k] with ¢ < j, we have u <py v for each u € V; and v € V;. For every i € [M]
with ¢ > 2, j € [k], and z,y € V; such that z <y y, we make x., adjacent to y., and ¥,

adjacent to x,.
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Figure 7 Illustration of the reduction for mam-width with k = 3, Vi = {1,2,3,4}, Vo = {5,6,7}
and V3 = {8,9}. Here M = 3 and the edges of H consists of e; = 45, e2 = 48 and e3 = 68. To
improve the legibility, we omit the edges of the cliques ngi: i,7 € [3]. Moreover, we represent only
the non-edges (with dashed lines) of the anti-matchings between Se, and Se,. The independent set [
consisting of the white filled vertices have size kM and Iy = {2,7,8} is a multicolored independent
set of H.

Observe that, for every i € [M], j € [t] and X € {R, S}, the graphs G[S? ,SJ ] and

e1?r™~e;

G[Si,, 51 | are skewed chain graphs of half-order |V;|. Moreover, the maximum independent

sets of G[S7 U SI, U SI ] are exactly the sets {ve,, ve,, Ve, } wWith v € V.

» Observation 48. For every i € [M] and subsets X,Y and Z of respectively Se,,Se, and
Se,;, each of size k, there is no edge between any two of these subsets in G if and only if
Xy=Yyg=127y.
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