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observation setting.
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1 Introduction

In 2006, Netflix released an anonymized dataset of movie ratings for a public competition.
Although names were removed, it was later shown that users could be re-identified by
linking the data with publicly available IMDb ratings [39]. This so-called (privacy) attack
demonstrated the failure of traditional anonymization techniques, especially when different
anonymized datasets are combined. It also highlighted the need for stronger privacy definitions
that provide rigorous guarantees even when multiple analyses (or synthetic datasets) based
on the same individual’s secret data are published.

This motivated the definition of differential privacy (DP), a privacy requirement for
mechanisms introduced by Dwork, McSherry, Nissim, and Smith [17]. A differentially private
mechanism'! adds randomness to the output in such a way that, for any two “neighboring”
datasets, the resulting output distributions are “close”. Formally, the notion of neighboring
datasets is defined as a binary relation on the family of datasets, and closeness of output
distributions is defined by the following definition of indistinguishability:

» Definition 1 ((e, d)-indistinguishability). Fore >0 and 0 < § < 1, two random variables
Xo and X1 over a domain Y are (e, d)-indistinguishable if, for every subsetY C Y,

PriXoeY]|<ePrlX;eY]|+4.
Xo and X3 are e-indistinguishable if 6 = 0.

Two datasets are typically considered to be neighboring if they differ by the presence
or absence of a single data record. With this definition of neighboring, after observing
the output of a differentially private mechanism, an attacker cannot confidently determine

In theory, a common way to achieve differential privacy is by adding noise drawn from continuous
distributions, such as the Gaussian distribution, when computing data analysis. However, exact sampling
from continuous distributions is computationally infeasible. For this reason, the differential privacy
literature typically avoids the term “differentially private algorithm” and uses the term “mechanism”
instead. In practice, discrete approximations of these continuous distributions — implemented with finite
precision — are used instead.
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whether any specific data record was included in the input dataset. Let X denote the family
of data records, and MS(X') denote the set of all multisets over X'. A differentially private
mechanism is formally defined as follows:

» Definition 2 ((¢, )-Differential Privacy [17]). For e > 0 and 0 < § < 1, a randomized
mechanism M : MS(X) — Y is (e, §)-differentially private (or (e,0)-DP for short) if, for
every two neighboring datasets Doy, D1 € MS(X), the random variables M(Dgy) and M(Dy)
are (e, 9)-indistinguishable. M is e-differentially private (or e-DP for short) if 6 = 0.

Note that there exist problems that can be solved efficiently and with high accuracy in
the non-private setting, but for which no differentially private solution exists. The interior
point problem is an instance of this: Suppose the data universe X is totally ordered and
datasets are multisets of size n € N over X. An interior point mechanism takes a dataset
D as input and its goal is to return an element y € X such that y is an interior point in
D, ie., mingepz <y < maxgep x. An interior point mechanism is said to be accurate if
for every input dataset, it returns an interior point of the dataset with probability at least
3/4. Differential privacy for this mechanism is defined with respect to neighboring datasets
that differ in exactly one element. Bun, Nissim, Stemmer, and Vadhan [6] showed that for
any 0 < e < 1/4 and § < 1/(50n?), there exists no accurate interior point mechanism that
satisfies (¢, 6)-DP.

Fundamental properties of differential privacy. Differential privacy is carefully designed
to satisfy the following two crucial properties: (i) It is preserved under post-processing, and
(ii) executing multiple differentially private mechanisms on the same private dataset remains
differentially private, with the privacy parameters determined by those of the executed
mechanisms. The first property ensures that any computation applied to the output of
a differentially private mechanism does not incur additional privacy loss. For example, a
privatized statistic released by a hospital can be safely reused in multiple research studies
to derive new results, without further compromising the privacy of the patients. The
second property, known as composition, provides a bound on the total privacy loss when an
individual’s data is used in multiple differentially private analyses. The goal of this property
is to prevent attacks similar to the Netflix attack discussed before.

In post-processing, a subsequent mechanism that does not have access to the sensitive
dataset uses the output of a DP mechanism as input. The so-called post-processing lemma
states that this does not affect the differential privacy properties; informally speaking, no
more privacy is lost.

» Lemma 3 (Post-Processing [20]). Let M : MS(X) — Y be an (€,0)-DP mechanism, and
f:Y — Z be a function. Then, the mechanism f(M), which applies M to the input and
then applies f to its output, is also (¢,0)-DP.

A different situation arises if the second mechanism has access to the sensitive data as
well. In this case, for every output of the first mechanism, the second mechanism must also
satisfy differentially private. The following two so-called composition theorems analyze the
total privacy loss for the combination of the output of multiple mechanisms.

» Theorem 4 (Basic Composition [20]). Let My : MS(X) — V1 and Mg : MS(X) — )s be
mechanisms that satisfy (e1,01)-DP and (ea,02)-DP, respectively. Then, the mechanism M,
defined as M(D) = (My(D), Mz(D)) for each D € MS(X), is (e1 + €2,01 + d2)-DP.
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By applying basic composition inductively, we obtain that the composition of k£ € N
mechanisms, each satisfying (eg, dp)-DP, ensures (keg, kdp)-DP. The next theorem, known
as advanced composition theorem, shows that when ¢y is small, composition also satisfies
(Vk+/log(1/8)eq, 8 4 kdy)-DP for every § € (0,1], where the first privacy parameter scales
with V% rather than k. However, unlike basic composition, advanced composition introduces

a nonzero 0 even if each individual mechanism is purely differentially private (i.e., o = 0).

This additive term can be interpreted as a small probability of privacy failure. Thus, in
applications where any such failure is unacceptable and composition must satisfy pure
differential privacy, basic composition must be applied.

» Theorem 5 (Advanced Composition [21]). Let k € N, and for each i € [k], let M, :
MS(X) — Y, be an (€;,9;)-DP mechanism. Then, for every 0 < 6 < 1, the mechanism M,
defined as M(D) = (M (D), ..., My(D)) for each D € MS(X), is (¢,0)-DP, where

e:Ze,;~(eq—l)+

i=1

The next composition theorem guarantees differential privacy when multiple differentially
private analyses are performed on disjoint subsets of a dataset. In this composition, known
as the parallel composition, the overall privacy loss is determined by the mazimum privacy
loss of the individual mechanisms, rather than the sum. For example, consider multiple
elementary schools, each with a distinct set of students. Suppose each school applies an
(e, 0)-differentially private mechanism to analyze its own student data. If the government later
aggregates the privatized outputs from all schools for policy decisions, the overall process
remains (e, §)-differentially private.

» Definition 6 (Parallel Composition [38]). Let k € N, and for eachi € [k], let M; : MS(X) — Y
be an (e;,0;)-DP mechanism with respect to a neighbor relation ~;. Define M : MS(X)* —
Vi X - X Vg as M(D) = (My(Dy),..., My(Dy)) for each D = (Dy,...,Dy) € MS(X)*.
Two sequences of datasets D = (D1, ..., Dy) € MS(X)* and D' = (D}, ..., D}) € MS(X)*
are considered to be neighboring if and only if there exists i € [k] such that D; ~; D} and
Dj = D} for all j #i. Then, the mechanism M satisfies (¢,0)-DP, where e = maxi<i<y €;
and § = maxi<i<i 6;.

The Laplace Mechanism. One of the most fundamental differentially private mechanisms
is the Laplace Mechanism. This mechanism computes a “simple” statistic f on the input
dataset, adds Laplace noise to it, and outputs the noisy result. Here, “simple” refers to
functions with low sensitivity, where the sensitivity of a function measures how much its
output can differ over neighboring datasets:

» Definition 7 ({;-Sensitivity). Let f : MS(X) — R? be a function mapping a dataset to a
real number. For each k € N, the {i-sensitivity of f, denoted Ay ¢, is defined as

_ _ /
Ak,f—ngrel%(X)llf(D) T

where |-, is the k-norm.

» Definition 8 (Laplace Distribution). The Laplace distribution with mean 0 and scale
parameter b has the probability density function

1 —|x
JLapv)(x) = 7 exp (b |) ., zeR.

A random variable following this distribution is denoted by Y ~ Lap(b) or simply Lap(b).
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The following Lemma formally defines the Laplace mechanism and states a trade-off
between its privacy and accuracy guarantees:

» Lemma 9 (Laplace Mechanism [17]). Let f : MS(X) — R be a function with ¢1-sensitivity
Ay . For e >0, the Laplace mechanism M{’;p takes a dataset D € MS(X) as input and
outputs f(D) + Lap(Aq,5/€). The mechanism M{’;p satisfies e-DP. Furthermore, for every
D e MSU) and t > 0,

Pr[|ME5,(D) = F(D)| = ¢+ Ag g /e] <™.

We note that the definition of accuracy depends on the application and may be different in
each context. Therefore, we do not provide a general definition and instead define accuracy
for each concrete application in the subsequent sections.

Differential privacy in the continual and interactive setting. The mechanisms discussed
so far are referred to as non-interactive mechanisms (NIMs) or batch mechanisms, as they
take a single input dataset and produce a single output. In the rest of this paper, we define
settings where either multiple different queries are asked to the mechanism, resulting in an
interactive mechanism (IM), or the dataset is changed through update operation, resulting
in a continual mechanism (CM).

Note that these mechanisms are differential privacy analogues of randomized algorithms
and data structures in the non-private setting: A non-interactive mechanism corresponds
to a static (or batch) algorithm, while an interactive mechanism corresponds to static data
structure. A continual mechanism allows both queries and updates and corresponds to
dynamic data structures. While the adaptivity of the sequence of operations is a common
concern for the correctness and running time of randomized data structures, in differential
privacy, adaptivity is additionally a concern for privacy. Concretely, note that the above
definitions and composition theorems only hold for non-interactive mechanisms. In the
following sections, we will discuss how to define and analyze the privacy properties of
interactive and continual mechanisms.

2 The Continual Setting

In many real-world applications, data is not available in a single static batch but is collected
incrementally over time or the dataset is changing over time. In such settings, it is often
necessary to update the output continually in order to provide timely and relevant analysis of
the dataset. For example, an online movie platform may collect user interactions, such as who
watches which movie, and update its recommendation model accordingly. In this scenario,
the platform must ensure that the sequence of recommendations over time does not reveal
sensitive information, such as whether a user has watched a specific movie. The problem of
dynamically receiving data and updating the output while protecting the privacy of each
data point is studied in the continual observation model of differential privacy [18, 10], which
has recently become a popular research topic (see e.g. [8, 9, 26, 32, 33, 2, 1, 16, 31, 4, 23] for
CMs for various problems on sequences of numbers, [34, 29, 46] for CMs for set cardinality,
[11, 40, 14] for CMs for problems in databases, [7, 30] for CMs for various histogram
queries, [42, 25, 26, 41, 22] for CMs for various graph problems, [15] for CMs for clustering
problems in the Euclidean space, and [45, 5] for CMs for releasing synthetic data).

In the non-private setting, the goal is to design dynamic algorithms that are accurate,
memory-efficient, and time-efficient. In the private setting, however, one must additionally
ensure the privacy of the input data, which is always in conflict with accuracy. Nonethe-
less, with the emergence of new algorithmic techniques, several continual mechanisms have
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been developed that provide meaningful trade-offs between privacy and accuracy. These
mechanisms have been shown to be practical and are already deployed in real-world sys-
tems [24, 3, 12, 13, 47, 48].

Formally, a mechanism M in the continual observation model is defined by a randomized
function fa that maps a current state and an incoming update to a new state and an output.
The state represents the internal memory of the mechanism and may, for example, include
the current dataset or relevant summary statistics. For simplicity, we assume the mechanism
starts from an initial state corresponding to an empty dataset, though this assumption can
be relaxed.

The mechanism M processes a sequence of update instructions ¢ = (z1,22,...) as
follows?: Starting from the (empty) initial state, at each step ¢, the mechanism applies faq
to its current state and the incoming update x;, yielding a new internal state and an output
value y;. M then returns y;. We denote the sequence of outputs (y1,ys,...) generated in
response to the update sequence o by the random variable M (o). We also refer to such a
mechanism as a continual mechanism.

Depending on the problem definition, each update z; can be a data record in X to be
inserted into the dataset or an instruction that arbitrarily modifies the current dataset (e.g.,
it deletes certain records). For simplicity, in the remainder of this section, we assume that
each update x; is a data record in X to be inserted in the dataset. We note that all the
definitions can naturally be extended to non-empty initial datasets and to general update
operations.

Recall that in the non-interactive model, the differential privacy guarantee is defined over
pairs of neighboring datasets. In the continual setting, on the other hand, the notion of
neighboring is defined over sequences of data records. For example, if X = {0, 1}, we can
define two sequences of data records o = (21,...,27) and o’ = (2f,...,2%) of equal length
T € N to be neighboring if they differ at exactly one position, i.e., there exists i € [T] such
that x; = x; for all j # 4. Using this definition of neighboring in the definition of DP leads
to so-called event-level privacy.

» Definition 10 ((e, §)-Differential Privacy for Continual Mechanisms [18, 10]). Let M be a
continual mechanism, and let Y denote the output space of M at each step. For e >0 and
0<4d<1, M is said to be (e,0)-differentially private (or (e,0)-DP for short) until time
step T € N if, for every pair of neighboring sequences 0,0’ € XT and every set of output
sequences V C yT, we have

PriM(o) e V] <e‘PriM(c’) e V] +56.
M is e-differentially private (or e-DP for short) if 6 = 0.

In the above definition, the continual mechanism is differentially private against an
oblivious adversary. In the adaptive setting, however, an adversary generates neighboring
sequences over time, adaptively, based on the previous outputs of the mechanism. Specifically,
given a continual mechanism M, an adversary A interacts with an oracle holding a secret
bit b € {0,1}. An oracle is a very limited algorithm that behaves as follows: At each time
step, A issues a pair of updates (ug,u1), and the oracle forwards u, to M. Observing the
corresponding output of M, the adversary then adaptively generates the next pair of updates.
If, at any time step, the sequences of ugs and uis does not satisfy the required neighboring
relation, the oracle halts the interaction.

2 More generally, M can be an interleaved sequence of updates and (parametrized) queries, but for
simplicity we just assume that one unparametrized query is fixed, and M answers that query after
receiving each update.
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We say that the mechanism M is (¢, §)-differentially private against adaptive adversaries
if, for every adversary A, the distributions of output sequences induced by oracle bits b =0
and b =1 are (e, §)-indistinguishable.

3 Example: Continual Binary Counting

The first and most foundational problem studied in the continual observation model is the
continual binary counting problem. In this problem, the continual mechanism M receives a
bit x; at each step t € N and returns an estimate y; of the cumulative sum s; = Zle . If
x; is an arbitrary real number, the problem is called continual counting problem. Two input
sequences of the same length are considered to be neighboring if they are identical except for
a single time step. The goal is to guarantee differential privacy while providing accuracy,
where accuracy is measured as follows:

» Definition 11 ((«, 8)-Accuracy for Continual Counter). For T e N, 0 <a and0< <1, a
continual counting mechanism M is said to be (a, §)-accurate for T steps if, for every input
sequence o = (x1,...,27) € XT,

Primax |y, — 5| < a] > 1 -8,
te[T]

where s; = 25:1 ¢ and y; s the output of M at step t. We say that M has additive error
« over the first T steps with high probability if it is («, 8)-accurate for T steps, where
B =1/T¢ for some constant ¢ > 0.

First simple mechanism (Laplace mechanism on each output): A trivial design of a
continual counting mechanism M is to run 7' € N instances of the static Laplace mechanism
to privatize the sums s; for ¢ € [T]. Specifically, at each step ¢ € [T], the mechanism M
computes s; and outputs y; = s¢ + Lap(1/€’), where Lap(1/€’) is a fresh sample of Laplace
noise with scale 1/¢’. Since changing a single input bit affects each s; by at most 1, by
Lemma 9, the output at each individual step is ¢’-DP. Thus, applying basic composition
(Lemma 4), the sequence of the first T' outputs is T' - €-DP. To guarantee M is e-DP, we must
therefore set ¢ = ¢/T. This implies that for each step ¢ € [T], with a constant probability,
e — sil = [Lap(T/e)| is Q(T/e).

Second simple mechanism (Laplace mechanism on each input) Another trivial approach
is to run T instances of Laplace mechanism on the input bits x; instead of s;. That is, at
each step ¢ € [T, the continual counting mechanism M sets &; = z; + Lap(1/¢). Since two
neighboring input sequences (of length 7' € N) differ on at most one coordinate, all but
one Laplace mechanism receive the same input for both sequences. Thus, by Lemma 9 and
Lemma 4, the sequence (21, ..., %) is e-DP. Since the output sequence of M is computed as
a post-processing of (21, ...,47), by Lemma 3, it is distinguishable for two neighboring input
sequences. Thus, M is e-DP. At step T, |yr — st| equals the sum of T i.i.d. samples from
Lap(1/e). By a standard Chernoff bound, this implies that with high probability, |yr — sr|
is Q(\/T ).

The two naive designs for continual counting illustrate a fundamental trade-off between
privacy and accuracy. In the first approach, independent Laplace noise is added to each
cumulative sum s; = Zle x;. Since each input bit z; contributes to up to 7' such sums,
satisfying e-differential privacy requires the Laplace scale to be T'/e. This, however, results in
an additive error that grows linearly with 7. In contrast, the second approach adds Laplace
noise to each input bit x; individually and then sums the noisy inputs in a post-processing
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step. Here, each input only affects the output of a single Laplace mechanism, allowing
for a smaller Laplace scale of 1/e. However, because the output at step ¢t € [T] includes ¢
independent noise, the additive error grows polynomially in .

To overcome this, Dwork, Naor, Pitassi and Rothblum [19] and Chan, Li, Shi, and
Xu [10] proposed a new approach, the so-called binary (tree) mechanism, where each input
bit is used in the input of O(logT') Laplace mechanisms, and each output is computed by
summing O(log T') noisy values: Instead of adding noise to each individual bit or to every
prefix sum, they add noise to sums of subsequences of the form (z(,_1y.2i 41, .., %p.0i) for
every 0 <4 <log(T) and 1 < k < T/2'. More precisely, at time step k- 2* (i.e., when the
complete subsequence is available), they calculate and store the noisy sum Z?fgk—l)-Qi 1Tt

Lap(%). Then, to output the noisy cumulative sum at step ¢ € [T, they partition the
input sequence (x1,...,2:) into at most log(7T) disjoint subsequences of the above form and
return the sum of their noisy values.

Another way to view this dynamic data structure is through a binary tree over time steps
1 to T, where each node stores the noisy sum of the corresponding bits in its subtree, i.e.,
runs the Laplace mechanism on this partial sum. At each level of the tree, the input bits are
partitioned between the nodes. Thus, the (parallel) composition of Laplace mechanisms at
each level is W—DR Composing the log(T") + 1 levels and applying the basic composition
theorem, we conclude that the joint output of all Laplace mechanisms is e-DP. Since the
noisy cumulative sum at every step is a post-processing of these noisy partial sums, this
implies that the continual counter is e-DP.

For the accuracy analysis, note that each output equals the true cumulative sum plus at
most log(7T) i.i.d. noise drawn from Lap (%) Chan et al. [10] showed that the sum

of these log(T") Laplace random variables is O(«/log(T)log(#«/log(l /B)) with probability
at least 1 — 8. Applying a union bound over all T time steps, the maximum additive error

across all steps is O(log(T)3/?\/log(T/j)/€) with probability at least 1 — §.

4 Interactive Setting

Consider a hospital that collected patient records during the Covid-19 pandemic, i.e., it has a
static dataset. Over time, researchers may issue a sequence of statistical queries to investigate
long-term effects of Covid and its potential correlation with current medical conditions.
These queries are parametrized, meaning that they are given one or multiple parameters
determining which query is asked, and these parameters are often chosen adaptively, meaning
that the parameters for each new query may be chosen based on the responses to previous
ones. To protect each patient record, queries must satisfy certain properties, e.g., an analyst
cannot ask whether Mr. X had Covid or not.

In the DP literature, a mechanism that holds a static dataset and answers multiple
adaptive queries is usually referred to as an interactive mechanism. To formally define
differential privacy for the interactive setting, we need to define a view random variable: Let
M be an interactive mechanism, and let .4 be an analyst (or adversary) that adaptively
asks queries from M. We denote the mechanism M holding dataset D by M(D). The
view of the analyst A interacting with M(D), denoted View(A, M(D)), is the sequence
(ra,q1,a1,q2,a9,...) consisting of the analyst’s internal randomness r 4 and the sequence of
queries ¢; and corresponding answers a; returned by M.

2:7
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» Definition 12. An interactive mechanism M is said to be (e, §)-differentially private (or
(e,8)-DP for short) if for every adversary A and every pair of neighboring datasets Dy and
Dy, the random variables View(A, M(Dy)) and View(A, M(D1)) are (e, d)-indistinguishable.
We say that M is e-differentially private (or e-DP for short) if § = 0.

A fundamental problem in the interactive setting is threshold testing, where the mechanism
holds a static dataset D € MS({0,1}) consisting of binary values, and receives a sequence
of integer thresholds over time. Specifically, at each time step ¢t € N, the analyst sends a
threshold query thresh; € N, asking whether the sum ) __, 2 exceeds the given threshold
thresh;. The mechanism responds with either T (yes) or L (no). Once the mechanism
returns T, it is required to halt. For simplicity, we assume the mechanism continues to return
T indefinitely after it outputs T for the first time.

Two datasets Do, D1 € MS({0, 1}) are considered neighboring if they differ in the presence
or absence of one element. The goal is to provide accurate answers to threshold queries while
preserving privacy, where accuracy is defined as follows:

» Definition 13. A threshold testing mechanism M s said to be («, 8)-accurate until step
T € N if, for every input dataset D € MS({0,1}), with probability at least 1 — 3, the following
conditions hold for every t € [T):

1. (Above threshold). If ) ., x > thresh; + a, then M(D) returns T at step t.

2. (Below threshold). If for everyi <t, >  .p,x < thresh; —a, then M(D) returns L
at all steps i < t.

A well-known continual threshold-testing mechanism is the sparse vector technique (SVT)
mechanism [19, 36]. The SVT mechanism allows an analyst to issue adaptive threshold
queries on a static dataset while preserving differential privacy. This mechanism is described
in Algorithms 1 and 2.

In Algorithm 1, the mechanism is initialized with a dataset D and a privacy parameter e.
It first computes the true count s = >, x and then draws a sample Z from Lap(2/e).
This sample will be repeatedly used in all future comparisons. Upon receiving a threshold
query thresh;, the mechanism proceeds as follows (see Algorithm 2): If it has already
returned T in any prior step, it returns T. Otherwise, using the old noise Zy and a fresh
noise Z; ~ Lap(4/e), it compares s + Zy > thresh; + Z;. If the inequality holds, then the
mechanism returns T and sets a flag to indicate that it has exceeded a threshold; otherwise,
it returns L.

» Lemma 14 (Privacy [19] and Accuracy [35] of SVT). For every € > 0, the SVT mechanism

described in Algorithms 1 and 2 satisfies e-DP. Moreover, for every 0 < 8 <1 and T € N,
this mechanism is (o« = O(log(T/B)/e), B)-accurate until step T.

Algorithm 1 svt. (initialization).

Input: privacy parameter ¢ > 0; dataset D € MS({0,1}).
€1 = €3 =¢/2

§=24en®

varflag =0

Draw Zy ~ Lap(1/e1)
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Algorithm 2 svt. (update).

Input: threshold thresh,
Output: an element of {T, L}
if varflag = 1 then
return T
end if
Draw Z; ~ Lap(2/e3)
if s+ Zy > thresh; + Z; then
varflag =1
return T
else

return |
end if

—_
e

5 Designing New Continual Mechanisms

In this section, we introduce new composition tools that enable a modular construction of
complex continual mechanisms executing not only non-interactive mechanisms (NIMs) but
also continual and interactive mechanisms as sub-mechanisms. As we mentioned before, the
composition theorems presented in Section 1 only apply to NIMs. This raises a question:
can interactive or continual sub-mechanisms always be decomposed into NIMs followed
by post-processing, thereby enabling privacy analysis of the complex mechanism using
composition theorems for NIMs and the post-processing lemma? We will first show that such
a decomposition is not always possible and then present composition tools that simplify the
privacy analysis of the mechanism with modular design. Due to complicated dependencies
between the outputs and inputs of the sub-mechanisms and their potential influence on each
other, analyzing the privacy of these mechanisms from scratch can be challenging.

Roughly speaking, interactive mechanisms can be viewed as a special case of continual
mechanisms, where the first input update is a dataset and all subsequent updates are
adaptively chosen queries with no effect on the dataset. When modeling an interactive
mechanism as a continual mechanism, two input sequences are considered neighboring if their
first element (i.e., the dataset) are neighboring, and all subsequent elements (i.e., the queries)
are identical. This perspective allows us to unify continual and interactive mechanisms and
refer to both of them as continual mechanisms (CMs).

Continual mechanisms are not necessarily compositions of non-interactive mechanisms.

We begin by demonstrating that an (¢,d)-DP continual mechanism cannot, in general, be
expressed as the post-processing of a composition of NIMs, each using independent random
coins, such that the composition satisfies (e, §)-DP. To illustrate this, we compare the privacy
analysis of the binary-tree mechanism (Section 3) and of the Sparse Vector Technique (SVT)
mechanism (Section 4).

Let T € N and € > 0. The binary-tree mechanism draws 27 — 1 independent Laplace
noises from Lap((log T'+ 1)/¢), one for each node of the binary tree. Each noise is then used
individually to privatize a partial sum of the input sequence, and the output at each time
step is computed by combining a subset of these privatized values. This structure enables a
clean decomposition of the mechanism into NIMs with independent randomness, followed by
a post-processing.

2:9
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In contrast, the privacy analysis of the SVT mechanism is different: given a dataset D, this
mechanism samples T+ 1 independent Laplace noises: Zy ~ Lap(2/¢) and Z; ~ Lap(4/e) for
each i € [T]. At time step ¢t € [T, given a threshold thresh;, the mechanism determines the
output based on the comparison erD r+ Zy > thresh; + Zy. Each noisy sum erD T+ 2
can be considered as an instance of the Laplace mechanism with the privacy parameter
€/4, and the comparison can be interpreted as a post-processing of this e€/4-DP mechanism.
However, since each data record in D contributes to the input of all T" Laplace mechanisms,
the composition of these mechanisms would be %—DP.

To avoid this undesirable polynomial privacy parameter, the SVT mechanism is analyzed
directly by comparing the view of any adversary interacting with this mechanism for any two
neighboring datasets. This analysis yields an e-DP guarantee. Notably, this proof crucially
exploits a shared source of randomness, i.e., the random variable Zj, to get a better privacy
guarantee, something that the privacy analysis by composition cannot capture as it requires
the composed mechanisms to use independent random coins.

Composition theorems for continual mechanisms. This limitation implies that, in general,
when analyzing a mechanisms executing multiple continual sub-mechanisms, we cannot simply
decompose each continual sub-mechanism into NIMs and then apply standard composition
theorems for NIMs to derive overall privacy guarantees. This challenge has led to a line
of research on extending the composition theorems for NIMs to concurrent composition
theorems for CMs [43, 37, 44, 27, 28]. Here, the term concurrent captures the fact that
the inputs to the composed CMs are generated concurrently: Specifically, the input to one
mechanism may depend on the outputs of all other mechanisms up to that point.

Although we do not formally define concurrent composition in this paper, we highlight
a recent work by Henzinger, Safavi, and Vadhan [28] showing that composition theorems
for NIMs, such as Theorem 4 and Theorem 5, still hold in the more general setting of the
concurrent composition of CMs, provided that the composed mechanisms are differentially
private against adaptive adversaries.

Moreover, they show a separation between parallel composition in the non-interactive
model (Theorem 6) and the concurrent parallel composition of CMs, where an adversary
adaptively selects which mechanism receives non-identical input sequences. To address this,
they develop new concurrent parallel composition theorems.

Assume a mechanism M uses multiple CMs as subroutines. Henzinger et al. [28] also
formalize which types of post-processing on the outputs of these sub-mechanisms are per-
missible in order to preserve the privacy guarantee of the concurrent composition of the
sub-mechanisms: They present a general framework for combining the given inputs and
the previous outputs of sub-mechanisms to generate new inputs for the sub-mechanisms
and then generate the final output based on the outcomes of the sub-mechanisms. This
formalism results in a simple privacy analysis for complex mechanisms executing continual
sub-mechanisms.

6 Conclusions

Continual mechanisms are the analogue of dynamic data structures in the differentially
private setting. Apart from analyzing their accuracy, time, and space requirements, their
privacy properties need to be proven, which can be challenging. New composition theorems
for continual mechanisms simplify this task and will hopefully support the design of continual
mechanisms for various applications with improved tradeoffs between privacy and accuracy.
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