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—— Abstract

Beeping Network (BN) is a popular graph-based model of wireless computation, which applies the
OR operation to one-bit messages sent simultaneously by neighbors. It admits fast (polylogarithmic
in the number of nodes n) randomized solutions to many graph problems, but all known deterministic
algorithms for non-trivial graph problems are at least polynomial in the maximum node degree A.

We improve known results for deterministic algorithms by showing that this polynomial can be as
low as O(A?). More precisely, we show how to simulate a single round of any CONGEST algorithm
in any network in O(A? polylog n) beeping rounds, each accommodating at most one beep per node,
even if the nodes intend to send different messages to different neighbors. This upper bound reduces
polynomially the time for a deterministic simulation of CONGEST in a Beeping Network, comparing
to the best known algorithms, and nearly matches the time obtained recently using randomization
(up to a poly-logarithmic factor) as well as the lower bound. Specifically, any algorithm designed for
the CONGEST networks can be run in BNs with O(A? polylog n) multiplicative overhead, e.g., we
can now deterministically compute an MIS in any BN in O(A? polylog n) beeping rounds, improving
the previous best ©(A?)-round solution. For h-hop simulations, we prove a lower bound Q(A" 1),
and we design a nearly matching algorithm that is able to “pipeline” the node-to-node information
in a faster way than beeping layer-by-layer.
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1 Introduction

The study of the Beeping Networks (BN) model [10] is simultaneously interesting, challenging,
and useful in several respects. Even some less-restrictive ad-hoc networks (e.g., wireless)
are frequently the algorithmist delight: a seemingly simple computational problem that
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becomes challenging under harsh yet realistic conditions. In terms of communication, BN
may be the harshest model: network nodes can only beep (emit a signal) or listen (detect
if a signal is emitted in its vicinity). A listening node may distinguish between silence (no
beeps) and noise (at least one beep), but it cannot distinguish between single and multiple
beeps. Theoretically, the BN model is important since it enables one to study whether
distributed tasks can be performed efficiently under minimal conditions. It is a fundamental
model to study communication complexity on channels where signals are superimposed (by
applying the OR operator), which makes it more challenging than the basic model in which
transmissions on links are independent. Moreover, in a one-hop network,! non-adaptive
communication schedules in the BN model are equivalent to superimposed codes, which
have been widely applied not only to communication problems, but also to text alignments,
bio-computing, data pooling, dimensionality reduction, and other areas.

In addition to its theoretical importance, this model is recognized as useful for studying
natural communication in biological networks [30, 2] (e.g., cells). A better understanding
of the power of biological communication processes may lead to better nature-inspired
algorithms [28]. It has been argued that the model is also a practical tool because algorithms
designed for BNs can be implemented on non-expensive devices with low energy consumption.
For example, nodes deployed (in ad-hoc topologies) for monitoring in Internet of Things
(IoT) applications such as Sensor Networks. It should be noted that a mechanism similar in
properties to beeping, called “busy tone,” has been in wide use in wireless networks but for
very limited purposes in channel access algorithms (as opposed to the Beeping model that is
intended for general-purpose distributed algorithms). See e.g., [32, 22].

A wealth of successful research on computational problems in Beeping Networks has
appeared in the literature (see, for instance [5, 15] and the references therein). Nevertheless,
fundamental distributed computing questions remain open in the context of Beeping Networks,
especially for deterministic algorithms. On the other hand, the CONGEST [31] model has
been profusely studied. A natural question that follows is how to efficiently transform
CONGEST Network algorithms into Beepping Network algorithms.

1.1 OQur Contributions

The main results are detailed and compared to previous work in Table 1. Our main
contributions are the near optimal? deterministic implementations of two simulators.

The main simulator, see Section 3 and Theorem 8, efficiently translates any CONGEST
algorithms (deterministic or randomized) to the Beeping model. Each CONGEST round is
simulated using O(A? polylog n) rounds, improving the previous result of O(A*logn) of
[5] and recent O(A3logn) of [12] 3 (for A € w( polylog n)), and matches the lower bound
Q(A%logn) in [12] (that lower bound holds even for randomized simulations, hence combined
with our algorithm they imply that the randomization can not help more than, possibly, a
polylogarithmic factor).

Our approach differs substantially from previous ones based on superimposed codes. Our
algorithm is adaptive, but using a family of codes, called avoiding selectors, that are parts
of nodes’ beeping schedules. These codes combined assure that, gradually, more and more

! For any given path of links connecting two nodes, the number of hops is the number of links in such path.

2 Optimal up to a polylogarithmic factor.

3 The latter result was not explicitly stated in [12], but one could use its randomized O(A? logn)-round
solution designed for broadcasting O(Alogn) input bits stored in each node (this is the number of bits
in our case, as messages to individual A neighbors could be different), and then derandomize it by using
the suggested superimposed codes (with additional factor O(A), hence O(A%logn) in total).
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Table 1 Summary of our main results and related work for Beeping Networks with n nodes and
maximum degree A. All protocols are distributed. Highlighted pairs of cells show direct comparison
of our main results with previous work. B denotes the maximum number of input bits at a node.

problem protocol type beeping rounds ref
: 2
randomized O(A min(n, A%)logn) whp (3]
simulation of one O(A?logn) whp [12]
CONGEST round
O(A*logn) [5]
deterministic O(A3 logn) [12]
O(A? polylog n) Thm. 8
rand./det. Q(A?logn) [12]
- . BAh+2
B-bit h-hop simulation deterministic O(h- BA polylog n) Thm. 11
rand./det. Q(BAMT) Thm. 10
in full version of
Learning Neighborhood O(A?1og?n) this work [19]
. in full version of
Cluster Gathering deterministic O(A?log* n) this work [19]
(log n, log? n)-Network in full version of
Decomposition O(A?log® n) this work [19]
3 2
MIS O(A® + A?logn) [5]
O(A? polylog n) Cor. 9

links will “successfully beep” the information between their two end nodes, by “avoiding”
interfering beeps from other nodes. The main challenge is that each node may have some
incident links already successful and other links that are not — hence, it has to beep anyways
and may interfere with other neighbors but, thanks to our avoiding selectors, not all the
time. In this process, once a node recognizes that a neighbor is a unique beeper (so called
“announcer”), it decodes its ID and message, and then it competes with other nodes to
respond in subsequent rounds, and after that — it gets confirmation from the announcer.
Simulations of some CONGEST algorithms, relying on sending the same message to all
neighbors in a round such as Network Decomposition in [20], could be further improved by a
polylogarithmic factor by applying a deterministic version of local broadcast algorithm (i.e.,
same message to all neighbors) proposed in [12] (see the full version of this work [19]).

Our second main result is an extension of the notion of neighborhood to A > 1 hops and

pipelining of the one-hop simulation. We call this problem a B-bit h-hop simulation, and
show bounds O(h - BA"?2 polylog n) and Q(BA"1), where the lower bound holds also for
randomized solutions. See Section 4, and Theorems 11 and 10, respectively. Our algorithm
efficiently “pipelines” point-to-point messages, and achieves substantially better complexity
(for h > 3) than a straightforward application of 1-hop simulator h times (which would need
O(A?" polylog n) time). For the simpler problem when each node has to deliver the same
message to all nodes in its ~A-hop neighborhood, which we call B-bit h-hop Local Broadcast,
we show a lower bound of Q(BA") even with randomization (see the full version of this
work [19]).
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1.2 Related Work

The Beeping Network model was defined by Cornejo and Kuhn in [10] in 2010, inspired
by continuous beeping studied by Degesys et al. [13] and Motskin et al. [29], and by the
implementation of coordination by carrier sensing given by Flury and Wattenhofer in [17].
Since then, the literature has included studies on MIS and Coloring [2, 1, 27, 23, 5, 7],
Naming [8], Leader Election [21, 18, 14], Broadcast [21, 25, 26, 11, 4], and Shortest Paths [15].

Techniques to implement CONGEST algorithms in BNs were studied. In [5], the approach
is to schedule transmissions according to a 2-hop c-coloring to avoid collisions. The mul-
tiplicative overhead introduced by the simulation is O(c?logn). A constant c is enough
for the simulation, but the only coloring algorithm provided in the same paper takes time
O(a?A%log® n + a®A®logn) for a (A% + 1)-coloring. Thus, the multiplicative overhead is
O(A*logn), which our simulation improves by a factor of A2/ polylog n.

On the side of randomized protocols, in a recent work by Davies [12], a protocol that
simulates a CONGEST round in a Beeping Network with O(A?logn) overhead is presented.
The protocol works even in the presence of random noise in the communication channel.
Still, it is correct only with high probability (whp),*
of CONGEST rounds in the simulated algorithm. More relevant for comparison with our
work, in the same paper, a lower bound of Q(A?logn) on the overhead to simulate a
CONGEST round is shown. The lower bound applies even in a noiseless environment and
regardless of randomization. Thus, our simulation is optimal modulo some poly-logarithmic
factor. [12] also proposed using superimposed codes instead of randomness, resulting in ©(A)
multiplicative overhead, i.e., O(A3logn) rounds in total. Another randomized simulation
was previously presented in [3] with overhead of O(A min(n, A?)logn) whp.

Regarding the MIS problem, the closest work is the deterministic protocol in [5], which

and requires a polynomial number

runs in O(A%logn + A3). Thus, our results improve by a factor of A/ polylog n for any
A € w(logn), and match the running time (modulo poly-logarithmic factor) for A € O(logn).

On the side of randomized MIS protocols, an upper bound of O(log3 n) has been shown
in [1] for the same beeping model, and faster with some additional assumptions.

Our network decomposition algorithm for BNs is based on the protocol for the CONGEST
model [20] that shows a (logn,log® n) network decomposition in O(log® n) CONGEST rounds.
We get the same network decomposition in O(A? log” n) beeping rounds. Other graph
problems and (restricted) local broadcast of same message are discussed in the full version of
this work [19].

Non-synchronized BNs pose even more challenges to graph algorithms, cf. [1, 18, 14, 24].

2 Model, Notation, and Problems

We specify first the communication network notation used throughout, and we define the
communication models studied in the section that follows. We consider a communication
network formed by n devices with communication and computation capabilities, called
nodes. Each node has a unique ID from the range [1,n°] for some constant ¢ > 1.5 Nodes
communicate by sending messages among them. A message is composed of a binary sequence
containing the source node ID, the destination node ID (if applicable), and the specific
information to be sent. If the destination node receives the message from the source node,

4 An event E occurs with high probability if Prob(E) > 1 — 1/n° for some ¢ > 0.
5 The availability of identifiers is essential in order to break symmetry in deterministic protocols, as
pointed out in previous works on deterministic protocols in the Beeping model [5, 14].
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we say that the message was delivered. Each pair of nodes that are able to communicate
directly (i.e., without relaying communication through other nodes) are said to be connected
by a communication link and are called neighbors. We assume that links are symmetric,
i.e., messages can be sent in both directions (delivery is restricted to the communication
models specified below). The network topology defined by the communication links is
modeled with an undirected graph G = (V, E) where V is the set of nodes and FE is the
set of links. If E is such that for every pair of nodes u,v € V there is a path of links
connecting v and v we say that the network is connected. For each node v € V| the set of
neighbors of v is called its neighborhood, denoted as N(v). We assume that time is slotted
in rounds of communication. All nodes start running protocols simultaneously, i.e., the
network is synchronous. We assume that computations take negligible time with respect to
communication. Thus, we measure algorithm performance in rounds.

2.1 Communication Models

Beeping Networks (BNs) [10]. In this model, in each round each node can either beep
(send a signal) or listen (do not send any signal). By doing so, nodes obtain the following
communication channel feedback. In any given round, a listening node hears either
silence (no neighbor beeps) or noise (one or more neighbors beep). A listening node that

hears noise cannot distinguish between a single beep and multiple beeps.

Network protocols may use the channel feedback (i.e. the temporal sequence of strings
from {“silence”,“noise”}) to make decisions adaptively. However, delivering messages is
not straightforward because it requires sending (and receiving) the whole binary sequence
of the message (according to some beeping schedule, possibly changing adaptively during
the communication), somehow encoded with beeps. In that sense, protocols for Beeping
Networks can be seen as radio network coding to cope with the communication restrictions

(as in [16] to cope with noise).

(a) All nodes listen. All nodes (b) Node a beeps, {b,c,d,e, f} (c) Nodes  {a,b}  beep,
hear silence. listen. {b,¢,d} hear noise. {c,d,e, f} listen. {c,d}
{e, f} hear silence. hear noise. {e, f} hear silence.

Figure 1 Beeping Network communication model example.

CONGEST Networks [31]. In this model, in each round each node can send a (possibly
different) message of O(logn) bits to each neighbor independently. All nodes receive the
messages sent by their neighbors. That is, there are no collisions. In the CONGEST
Broadcast version of this model, each node can only broadcast the same message to all its
neighbors in each round.
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2.2 Problems Studied

Our main research question in this work is how to efficiently simulate a round of communica-
tion of a CONGEST Network protocol in a Beeping Network, and how to improve MIS in BNs.

CONGEST Simulation. Given a Beeping Network with topology graph G = (V, E), where
each node v € V may hold a message m,, , of O(logn) bits that must be delivered to node
v € N(u), the CONGEST simulation problem is solved once for every v € V and v € N(u),
My, and the ID of u has been delivered to v.

Maximal Independent Set (MIS). Given a Beeping Network with topology graph G =
(V, E), The Maximal Independent Set problem is solved when, for some such set, S C V|
every node v € S, v knows that it is in S.

Our second main problem — generalized h-hop simulations — are defined and studied
in Section 4 and in the full version of this work [19]. We also study several distributed
computing problems of independent interest (see their definition in the full version of this
work [19]) in the context of Beeping Networks and applications of our simulator that improve
efficiency with respect to known solutions for BNs.

3 Simulation of a CONGEST Round in Beeping Networks

We present a deterministic distributed algorithm that efficiently simulates a round of any
algorithm designed for the CONGEST model in the Beeping Networks model, even if the
algorithm sends different messages to neighbors. It is only somewhat (polylogarithmically)
slower than the existing more restricted local broadcast algorithms, which require a node to
send the same message to all its neighbors), e.g., the local broadcast solution mentioned in [12]
(see also more details in the full version of this work [19]) and faster nearly by factor A than
the full deterministic simulation also mentioned in [12]. Unlike the superimposed-codes-based
deterministic algorithms in [12], our simulator is adaptive and uses heavier machinery. It is
built hierarchically using the known family of codes called “avoiding selectors”. The codes,
intuitively, say “when to beep”. However, it is still possible that when two neighbors of
some node v send their messages (by beeping in subsequent rounds), node v will receive a
“message” that is a logical OR of the two. Our simulator resolves such collision problems and
assures fast progress by:
coding messages (cf. extended-IDs) such that OR, of more than one message is identified;
beeping according to specific avoiding selectors, assuring that a fraction of links that have
not yet “delivered” the beeped messages will now succeed in one direction (i.e., one end
node of such link “announces” itself to the other one through successful beeping of its ID);
allowing those who received such announcements, the responders, to compete in successful
delivery of their IDs to the corresponding announcers; this competition sets up bi-
directional matching between the announcers and the corresponding responders, which
allows bi-directional message exchange via beeping (3-stage parallel handshaking); this
competition also uses avoiding selectors, but differently parameterized than the ones used
for announcing (as announcing and responding are different processes).
The announcing, followed by responders’ competition, continues until all links end up in
some of the successfully realized matchings (as described in the above bullet points).
Avoiding selectors for n nodes use two parameters, k, £, corresponding to the number of
competing neighbors/responders versus the other (potentially interrupting) neighbors:
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Algorithm 1 ¢2B algorithm for each node u. E(u) is a global variable.

E(u) + {{u,v}|{u,v} € E for some v € V'}
Algorithm C2B()
for each epoch i =1,2,...,logA do // iterating epochs
for each phase j =1,2,...,|Fa | do
if uw € Fa,(j) then
‘ announcer (u, k;)

else

- R N O

L responder (u, k;)

» Definition 1 (Avoiding selectors). A family F of subsets of [n] is called an (n, k, £)-avoiding
selector, where 1 < ¢ < k < n, if for every non-empty subset S C [n] such that |S| < k and
for any subset R C S of size at most £, there is an element a € S\ R for which there exists
a set F' € F such that |F N S| = {a}.

The following fact follows directly from Definition 1, see also [6, 9].

» Fact 1. Suppose we are given an (n, k,£)-avoiding selector F and a set S of size at most k.
Then, the number of elements in S not “selected” by selector F (i.e., for which there is no
set in the selector that intersects S on such singleton element) is smaller than k — £.

» Theorem 2 ([6, 9]). There exists an (n,k,{)-avoiding selector of size O (kk—je log n),

and moreover, an (n,k,f)-avoiding selector of size O (kk—jé polylog n) can be efficiently
deterministically constructed (in polynomial time of n) for some polylogarithmic function
polylog n, locally by each node.

3.1 The ¢2B Algorithm

The pseudocode of our main C€2B algorithm is in Algorithm 1, and its subroutines in
Algorithms 2 and 3. The algorithm proceeds in epochs ¢ = 1,...log A. In the beginning,
each node has all its links not successfully realized — here by a link {v, w} being realized we
understand that up to the current round, an input message/ID sent by v has been successfully
encoded by w (using a sequence of beeps) and vice versa (note that these are two different
messages and were sent/encoded each in different rounds); the formal definition of link
realization will be given later. The goal of the algorithm is to preserve the following invariant
for epoch i > 1:

At the end of epoch i = 1,...,log A, each vertex has less than x; = A/2? incident
links not realized.

We set an auxiliary value kg = A, which corresponds to the maximum number of adjacent
links per node at the beginning of the computation. For ease of presentation, we assume that
node IDs come from the range [1, n]. Note that in all the formulas, the number of possible IDs
appears only under logarithms, so the algorithm and analysis for range [1,n°] are the same.
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Algorithm for epoch i: Preliminaries and main concepts

Epoch i proceeds in subsequent batches of 2log n rounds, each batch is called a super-round.
In a single super-round, a node can constantly listen or keep beeping according to some 0-1
sequence of length 2logn, where 1 corresponds to beeping in the related round and 0 means
staying silent. The sequences that the nodes use during the algorithm are extended-IDs,
defined as follows: the first logn positions contain an ID of some node in {1,...,n}, while
the next logn positions contain the same ID with the bits flipped, that is, with ones swapped
to zeros and vice versa. Note that extended-IDs are pairwise different, and each of them
contains exactly logn ones and logn zeros. We say that a node v beeps an extended-ID of
node w in a super-round s if, within super-round s, node v beeps only in rounds corresponding
to positions with 1’s in the extended ID of w (w could be a different node id than v). We
say that a node w receives an extended-ID of a node v in a super-round s if:

w does not beep in super-round s,

the sequence of noise/silence heard by w in super-round s form an extended-ID of v.

From the perspective of receiving information in a super-round, all other cases not falling
under the above definition of receiving an extended-ID, i.e., when a node is not silent in the
super-round or receives a sequence of beeps that does not form any extended-ID, are ignored
by the algorithm, in the sense that it could be treated as meaningless information noise.

Analogously to extended-ID’s, nodes create an extended-message by taking the binary
representation of the message of logarithmic length and transforming it to a 2logn binary
sequence in the same way as an extended-ID is created from the binary ID of a node. An
extended-message, as well as an extended-ID, is easily decodable after being received without
interruptions from other neighbors.

A specification of the conditions to achieve one-to-one communication, which is given
“for free” in the CONGEST model, is crucial. An illustration of the following handshake
communication procedure is shown in the full version of this work [19]. We say that our
algorithm realizes link {v,w} if the following are satisfied:

(a) there are three consecutive super-rounds (called “responding”) in which v beeps an
extended-ID of itself followed by an extended-ID of w and then by extended-message
of v addressed to w, and w receives them in these super-rounds; intuitively, it corres-
ponds to the situation when v “tells” w that it dedicates these three super-rounds for
communication from itself to w, and w receives this information;

(b) there are three consecutive super-rounds (called “confirming”) in which w beeps an
extended-ID of itself followed by an extended-ID of v and by its extended-message
addressed to v, and v receives them in these super-rounds; intuitively, it corresponds to the
situation when w “tells” v that it dedicates these three super-rounds for communication
from itself to v, and v receives this information;

(c) there is a super-round, not earlier than the one specified in point (a), at the end of which
node w locally marks link {v,w} as realized, and analogously, there is a super-round,
not earlier than the one specified in point (b), at the end of which node v locally marks
link {v, w} as realized.

It is straightforward to see that in super-rounds specified in points (a) and (b), a multi-
directional communication between v and w takes place — by sending and receiving both
“directed pairs” of extended-IDs of these two nodes, each of them commits that the super-
rounds specified in points (a) and (b) are dedicated for sending a message dedicated to the
other node, and vice versa. Additionally, in some super-round(s) both nodes commit that it
has happened (c.f., point (¢) above).
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Algorithm 2 ¢2B algorithm for announcer node v.

Procedure announcer (v, k;)

// announcing super-round
1 for each round r =1,2,...,2logn do
2 L if (v)(r) =1 then beep else listen
for each sub-phase a =1,2,... logk; do
4 for b= 1,2,...,|fki/2a—2’ki/2a—l| do
// responding 3 super-rounds
5 for 6logn rounds do listen // announcer only listens
6 if some (w)(v)(My ) was heard and {w,v} € E(v) then
// confirming 3 super-rounds
7 for each round r =1,2,...,2logn do
8 L if (v)(r) =1 then beep else listen
9 for each round r =1,2,...,2logn do
10 L if (w)(r) =1 then beep else listen
11 for each round r =1,2,...,2logn do
12 L if (my ) (r) =1 then beep else listen
13 E(v) + E(v)\ {w,v} // link realized
14 if F(v) =0 then v stops executing
15 else
16 L for 6logn rounds do listen // wait to synchronize

Algorithm for epoch i: Structure

An epoch i is split into |Fa | phases, for a given (n, A, A — k;)-avoiding selector Fa y,
and parameter k; = A/2!, parameterized by a variable j. Each phase starts with one
announcing super-round, in which nodes in set Fa x,(j) beep in pursuit to be received by
some of their neighbors. This super-round is followed by log k; sub-phases, parameterized
by a=1,...,logk;. A sub-phase a uses sets from an (n, k; /2% 2, k; /2%~ 1)-avoiding selector
F, /202 1, j20a-1 to determine who beeps in which super-round (together with additional rules
to decide what extended-ID and extended-message to beep and how to confirm receiving
them), and consists of |Fj, joa—2 i, 2a—1| 6-tuples of super-rounds (3 responding super-rounds
and 3 confirming super-rounds). The goal of a phase is to realize links that were successfully
received (“announced”) in the first (announcing) super-round of this phase. This is particularly
challenging in a distributed setting since many neighbors could receive such an announcement,
but the links between them and the announcing node must be confirmed so that one-to-
one communication between the announcer and responders could take place in different
super-rounds (in one super-round, a node can receive only logarithmic-size information).

Definitions and notation. Fa j, is a locally computed (n,A, A — k;)-avoiding selector,
and for any a = 1,...,log ks, F, j2a-2 i, j20—1 is a (locally computed) (n, ki /2072 k;/2071)-
avoiding selector, as in Theorem 2. We denote the extended-ID of node = as (x), and the
extended-message of node z for node y as (my ), both given as a sequence of bits. For any
sequence of bits s, s(i) is the i* bit of s.
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Algorithm 3 2B algorithm for responder node w.

Procedure responder (w, k;)
1 status(u) < nil
// announcing super-round
for 2logn rounds do listen // responder only listens
if some (v) was heard and {v,w} € E(w) then
4 L status(w) < v-responsive

for each sub-phase a =1,2,..., logk; do

6 for b = 1’2,...,|fki/2a727ki/2a71‘ do

if status(w) = v-responsive and w € Fy, joa—2 i, 20-1(b) then
// responding 3 super-rounds

for each round r =1,2,...,2logn do
9 L if (w)(r) =1 then beep else listen
10 for each round r =1,2,...,2logn do
11 L if (v)(r) =1 then beep else listen
12 for each round r =1,2,...,2logn do
13 L if (my)(r) =1 then beep else listen
// confirming 3 super-rounds
14 for 6logn rounds do listen // responder only listens
15 if some (v)(w)(myw) was heard then
16 status(w) < nil
17 E(w) + E(w) \ {v,w} // link realized
18 if E(w) =0 then w stops executing
19 else
20 L for 12logn rounds do listen // wait to synchronize

3.2 Analysis of the ¢2B Algorithm

Recall that the algorithm proceeds in synchronized super-rounds, each containing a subsequent
2logn rounds. Therefore, our analysis assumes that the computation is partitioned into
consecutive super-rounds and, unless stated otherwise, it focuses on correctness and progress
in super-rounds. Recall also that each node either stays silent (no beeping at all) or beeps
an extended ID of some node or an extended message of one node addressed to one of
its neighbors in a super-round. The missing proofs are deferred to the full version of this
work [19].

In the next two technical results, we state and prove the facts that receiving an extended-
ID by a node w in a super-round can happen if and only if there is exactly one neighbor of w
has been beeping the same extended-ID during the considered super-round.

» Fact 2 (Single beeping). If during a super-round, ezactly one neighbor of a node w beeps
an extended-ID of some z, then w receives this extended-ID in this super-round.

Proof. Directly from the definition of receiving an extended-ID. <
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» Lemma 3 (Correct receiving). During the algorithm, if a node w receives some extended-ID
of z in a super-round, then some unique neighbor v of w has been beeping an extended-ID of
z in this super-round while all other neighbors of w have been silent. The above holds except,
possibly, some second responding super-rounds, in which a node can receive an extended-ID
of z that has been beeped by more than one neighbor.

We now prove that link realization implemented by our algorithm is consistent with the
definition — it allocates in a distributed way super-rounds for bi-directional communication
of distinct messages.

» Lemma 4 (Correct realization). If a node v (locally) marks some link {v,w} as realized,
which may happen only at the end of a second confirming super-round, the link has been
realized by then.

As mentioned earlier in the description of the phase, the goal of a phase j (of epoch i)
is to assure that any node v that was received by some other nodes w in the announcing
super-round, gets all such links {v,w} realized by the end of the phase (and vice versa,
because the condition on the realization by this algorithm is symmetric). The next step is
conditional progress in a sub-phase a of a phase j.

» Lemma 5 (Sub-phase progress). Consider any node v and suppose that in the beginning of
sub-phase a of phase j, there are at most A/2°7%2 nodes w such that w is (j,v)-responsive
and it does not mark link {v,w} as realized. Then, by the end of the sub-phase, the number
of such nodes is reduced to less than A/2iT2~1,

» Lemma 6 (Phase progress). Consider a phase j of epoch i and assume that in the beginning,
there are at most 2k; non-realized incident links to any node. Every node w that becomes
(4, v)-responsive in the first (announcing) super-round of the phase, for some v, mark locally
the link {v,w} as realized during this phase. And vice versa, also node v marks locally that
link as realized.

The next lemma proves the invariant for epoch ¢, assuming that it holds in the previ-
ous epochs.

» Lemma 7 (Epoch invariant). The invariant for epoch i > 1 holds.

» Theorem 8. The C2B algorithm deterministically and distributedly simulates any round
of any algorithm designed for the CONGEST networks in O(A? polylog nlog A) beeping
rounds, where the polylog n is the square of the (poly-)logarithm in the construction of
avoiding-selectors in Theorem 2 multiplied by logn.

Proof. By Lemma 7, each epoch ¢ reduces by at least half the number of non-realized
incident links. We next count the number of rounds in each epoch by counting the number of
super-rounds and multiplying the result by the O(logn) length of each super-round. Recall
that link realization means that some triples of responding and confirming super rounds were
not interrupted by other neighbors of both end nodes of that link; therefore, the attached
extended messages (in the third super-rounds in a row) were correctly received. Thus, the
local exchange of messages addressed to specific neighbors took place successfully.

Each sub-phase a has O(A? polylog n) super-rounds, because for each set in of the
(n, k; /2971, k; /2%)-avoiding selector Fleij20-1 k,; 20, there are four super-rounds and the se-
lector itself has O((k;/2%) polylog n) set, by Theorem 2.
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Therefore, the total number of super-rounds in all sub-phases executed within the loops
in Line 3 of Algorithm 2 and Line 5 of Algorithm 3 is

log k;
O( > (ki/2%) polylog n) < O(k; polylog n) .

a=1

Within one phase, they are executed as many times as the number of announcing super-
rounds. The number of such super-rounds in a phase is |Fa g, |, which is O((A?/k;) polylog n)
by Thm. 2. Thus, the total number of super-rounds in a phase is O((A?/k;) polylog n -
k; polylog n) < O(A? polylog n), where the final polylog n is a square of the (poly-)log in
Thm. 2.

Since there are log A epochs, the total number of super-rounds is O(A? polylog nlog A),
which is additionally multiplied by O(logn) — the length of each super-round — if we want to
refer the total number of beeping rounds. |

Maximal Independent Set (MIS). To demonstrate that the above efficient simulator can
yield efficient results for many graph problems, we apply it to the O(log® n) MIS algorithm
in [20] to improve polynomially (with respect to A) the best-known solutions for MIS (c.f. [5]):

» Corollary 9. MIS can be solved deterministically on any network of maximum node-degree
A in O(A? polylog n) beeping rounds.

4  Multi-hop Simulation

We generalize the simulation at distance 1 to the following B-bit h-hop simulation problem:
each node has messages, potentially different, of size at most B bits addressed to any other
node, and it needs to deliver them to all destination nodes within distance at most h hops. If
each node has only a single message of size at most B bits to be delivered to all nodes within
distance at most h hops, then we call this restricted version B-bit h-hop Local Broadcast.
Note also that we do not require messages addressed to nodes of distance larger than h to be
delivered. Below we generalize the lower bound for single-hop simulation in [12] to multi-hop
simulation and multi-hop local broadcast.

» Theorem 10. There is an adversarial network of size ©(A") such that any B-bit h-hop

simulation algorithm requires Q(BAM 1) beeping rounds to succeed with probability more than
9—3-B(A-1)""2(a/2)° _ 9-©(BAMT)

Proof. Problem instance. We describe the construction of the adversarial network and input
set of messages used to prove our lower bound as follows (refer to Figures 2 and 3). Consider
a full bipartite graph Ka /2 A/2, with one part called T' and the other R. We focus on
transmissions going towards nodes in R, hence nodes in R will be called receivers, while
nodes in T' = T3 will be called the first of A layers of transmitters.

Each node in T} will be a root of an (h —1)-depth tree of transmitters. We create a second
layer of transmitters T, composed of (A/2)? nodes. Each node in T} (already connected to
each node in R) will also be connected to different A/2 nodes in T5. For subsequent layers
of transmitters, that is each layer T}, for 3 <4 < h, will be composed of (A/2)2(A —1)=2
nodes. Each node in layer T;_1, for 3 <14 < h, will be connected to different A — 1 nodes in
layer T;. Note that each node in the defined network has at most A neighbors.
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T, Th ... T} Ts T, T\ R

Figure 2 An illustration of the structure of the graph. The graph is partitioned into vertical
layers Tp,, ..., Th, R. The graph is branching out heavily, so we show only a path from an arbitrary
node in 7} layer to an arbitrary node in 7} layer, with all the edges incident to the path. The
numbers between the layers denote the number of edges between the layers that are incident to the
path or on the path. Recall that layers T} and R have A/2 nodes each, while the other layers have
significantly more nodes, but we only show nodes that are adjacent to the considered path.

K2,2 .
LT o | R
o T ——— o) T2
NAAA AN AADAA AR AAAARA A AAARALEL] -

Figure 3 Illustration for Theorem 10. Example of adversarial graph for A =4 and h = 5.

We define now the input set of messages as follows. Let each node v € T}, have a B-bit
message My, to each node u € R. We choose those messages uniformly at random. We
will show that just these messages cannot be relayed efficiently and we do not need any other

messages in our problem instance.’

Multihop Simulation. Here we analyze the multihop simulation algorithms.

There are (A/2)%(A — 1)"=2 nodes in T}, and each of them has A/2 (possibly different)
messages, one for each node in R. Therefore, there are (A/2)3(A — 1)"=2 = O(AlM1)
messages to nodes in R that are passing through nodes in 77.

Let R be the concatenated string of local randomness in all the nodes in R. The output
of any receiver u € R must depend only on R, node IDs and the pattern of beeps and silences
of nodes in T3.

There are 2! possible patterns of beeps and silences in ¢ rounds. Therefore, the output
of nodes in R must be one of the 2¢ possible distributions, where a distribution is over the
randomness of R. The correct output of nodes in R is a string {0, 1}B(A_1)h72(A/2)3 =
{0, 1}®(BAH1) chosen uniformly at random (since the input messages of nodes in T}, were
chosen uniformly at random). Therefore, the probability of picking the correct result is at
most 2t~ BA-1""?(2/2 and any algorithm that finishes within ¢ < 3 B(A-1)"2(A/2)3

3 B(A-1)""2(a/2)°

rounds has at most 27 probability of outputting the correct answer. |

6 Alternatively we can make all other messages known to the optimal algorithm, e.g., by setting them to 0B.
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Algorithm

A simple algorithm would repeatedly use a 1-hop Local Broadcast routine to flood the
network with the messages until nodes at a distance h received the messages. This, however,
can take Q(A2") rounds. Instead, we limit the flooding by only sending messages along the
shortest paths to their destinations using a 1-hop simulation algorithm. The details of the
algorithm as well as its analysis are presented next.

In the beginning, nodes use a standard protocol to disseminate their IDs up to distance
h. They do it in h subsequent epochs, each epoch i of ¢; rounds sufficient to run our Local
Broadcast (see full version of this work [19]) for messages of size A’logn. These messages
contain different IDs learned by the node at the beginning of the current epoch. A direct
inductive argument, also using the property that there are at most A’ nodes at a distance
at most 4, shows that at the end of epoch i, each node knows the IDs of all nodes at a
distance at most ¢ from it. Additionally, each node records in which epoch i it learned
each known ID v for the first time and from which of its neighbors w — and stores this
information as a triple (v, w, ). The invariant for i = h proves that at the end of epoch h,
each node knows IDs of all nodes of distance at most h from it. The round complexity is
Z?Zl Atlogn - A?logn = O(A"*21og® n), and as will be seen later, it is subsumed by the
round complexity of the second part of our algorithm (as the polylog n function in Theorem 8
is asymptotically bigger than log® n).

Note that a sequence of triples (v,w; = wv,1),...,(v,we,¥), stored at nodes
wWwa, W3, . . ., Wy, Wes1 = u respectively, represents a shortest path to node v starting from the
node u; the length of that path is /.

In the second part, nodes also proceed in epochs, but this time each epoch ¢ takes ¢}
rounds sufficient to execute 1-hop simulation algorithm from Section 3 (see Theorem 8) for
point-to-point messages of size (B + logn)A”". Here B denotes the known upper bound
on the size of any input message. In epoch 4, every node u transmits a (possibly different)
message of size (B + logn)A” to each neighbor w. Such a message contains all the input
messages of nodes within ¢ — 1 distance and the recipients of these messages such that w
is the next node on the saved shortest path to the recipient. The messages have already
traveled ¢ — 1 hops, so their destination is at most h — (i — 1) hops away. More specifically,
the message from node u addressed to a neighbor w in epoch i contains pairs (v, m,_,),
where v is such that (v,w, ') is stored at the node for some i’ <h — (i — 1) and m,_,, is a
message received by the node u in epoch i — 1 (in case of ¢ — 1 = 0, it is the original message
of the node addressed to v). A direct inductive argument shows that at the end of each
epoch i a node knows at most A’ messages addressed to any node v of distance £ < h —3
from the node. This invariant is based on the following arguments:

Because there is a unique neighbor w of the node u such that a triple (v, w, ¥) is stored

at the node, the number of such nodes v of distance at most h — i 4+ 1 from the node u is

at most APt

by the end of epoch i — 1, node u could receive messages to be relayed to v from A*~!

different nodes at distance ¢ — 1,

each message contains up to B-bit long original message and an ID of length logn,

hence, messages of size at most (B + logn)A*~1 - A"~ 1 = (B 4 logn)A" are being sent

to each neighbor in epoch i, and by definition — epoch ¢ has sufficient number of rounds
to deliver them.
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The invariant for i = h proves the desired property of B-bit h-hop simulation. The total
number of rounds is O(h - (B + logn)A" - A2 polylog n) € O(h - BA"2 polylog n), where
factor h comes from the number of epochs, each sending at most A point-to-point messages
of size at most (B + logn)A" to neighbors (by the invariant) using the 1-hop simulation
protocol with overhead O(A? polylog n) (by Theorem 8). Hence we proved the following.

» Theorem 11. There is a distributed deterministic algorithm solving the B-bit h-hop
simulation problem in a beeping network in O(h - BA"2 polylog n) rounds.

5 Conclusions

We provided deterministic distributed algorithms to efficiently simulate a round of algorithms
designed for the CONGEST model on the Beeping Networks. This allowed us to improve
polynomially the time complexity of several (also graph) problems on Beeping Networks.
The first simulation by the Local Broadcast algorithm is shorter by a polylogarithmic factor
than the other, more general one — yet still powerful enough to implement some algorithms,
including the prominent solution to Network Decomposition [20]. The more general one
could be used for solving problems such as MIS. We also considered efficient pipelining of
messages via several layers of BN. Two important lines of research arise from our work. First,
whether some (graph) problems do not need local broadcast to be solved deterministically,
and whether their time complexity could be asymptotically below AZ. Second, could a lower
bound on any deterministic local broadcast algorithm, better than Q(Alogn), be proved?
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