
A Unified FPT Framework for Crossing Number
Problems
Éric Colin de Verdière #

LIGM, CNRS, Univ Gustave Eiffel, F-77454 Marne-la-Vallée, France

Petr Hliněný #

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract
The basic (and traditional) crossing number problem is to determine the minimum number of
crossings in a topological drawing of an input graph in the plane. We develop a unified framework
that smoothly captures many generalized crossing number problems, and that yields fixed-parameter
tractable (FPT) algorithms for them not only in the plane but also on surfaces.

Our framework takes the following form. We fix a surface S, an integer r, and a map κ from
the set of topological drawings of graphs in S to Z+ ∪ {∞}, satisfying some natural monotonicity
conditions, but essentially describing the allowed drawings and how we want to count the crossings
in them. Then deciding whether an input graph G has an allowed drawing D on S with κ(D) ≤ r

can be done in time quadratic in the size of G (and exponential in other parameters). More generally,
we may take as input an edge-colored graph, and distinguish crossings by the colors of the involved
edges; and we may allow to perform a bounded number of edge removals and vertex splits to G

before drawing it. The proof is a reduction to the embeddability of a graph on a two-dimensional
simplicial complex.

This framework implies, in a unified way, quadratic FPT algorithms for many topological crossing
number variants established in the graph drawing community. Some of these variants already had
previously published FPT algorithms, mostly relying on Courcelle’s metatheorem, but for many of
those, we obtain an algorithm with a better runtime. Moreover, our framework extends, at no cost,
to these crossing number variants in any fixed surface.
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1 Introduction

The (traditional) crossing number problem, minimizing the number of pairwise edge crossings
in topological drawings of an input graph in the plane, is a long-standing and central task in
graph drawing and visualization that comes in many established flavors; see the extensive
dynamic survey by Schaefer [45]. In this paper, we give a framework that smoothly captures
many of the variants of crossing numbers, and in a unified way provide efficient algorithms
for them when parameterized by the solution value (i.e., the respective crossing number).

Many flavors of crossing numbers. There is currently a surge of crossing number variants.
A motivation for such variations is that, in practical drawing applications, not every crossing
or crossing pattern of edges may be “equal” to other ones. One may, e.g., want to avoid
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21:2 A Unified FPT Framework for Crossing Number Problems

mutual crossings of important edges. Or, to allow crossings only within specific parts of a
graph, and not between unrelated parts. Or, to exclude crossings of edges of some type. Or,
to allow only certain “comprehensible” crossing patterns in order to help visualize the graph.
This is the main focus of the recent research direction called “beyond planarity” [15].

Paraphrasing Schaefer [45, Chapter 2], a crossing number variant minimizes, over all
allowed drawings D of an input graph G in some specified host surface, an objective function
related to the crossings in D. The allowed drawings may, e.g., restrict the crossings on one
edge or in a local pattern of crossing edges, or prescribe or forbid certain local properties of
the drawing (also depending on types or colors of edges). The host surface is usually the
plane, but can be any fixed surface, orientable or not. The objective function is often the
number of crossings between edges, but other possibilities include, e.g., the number of edges
involved in crossings, or the number of pairs of edges that cross an odd number of times.

Existing algorithms for the traditional version. One usually considers the decision version of
the (traditional) crossing number problem: Given an input graph G of size n, and an integer r,
does G have a crossing number at most r? This problem is already NP-hard in the plane,
as proved by Garey and Johnson in 1983 [18], and even in very specific cases [8, 24, 26].
Moreover, the problem is APX-hard [7], and the best known polynomial-time approximation
algorithm [10] gives an approximation factor that is subpolynomial in n only for bounded-
degree graphs.

Thus, the main current focus is on algorithms that are fixed-parameter tractable (FPT) in r

– the runtime has the form f(r) ·poly(n), where f is a computable function of the parameter r.
For fixed r, Grohe [20] has described an O(n2)-time algorithm, and Kawarabayashi and
Reed [32] have announced an O(n)-time algorithm. Both rely on Courcelle’s metatheorem [14],
which automatically entails a huge dependence in the parameter r.

Two recent approaches avoid resorting to Courcelle’s theorem. First, Colin de Verdière,
Magnard, and Mohar [13] have studied the problem of embedding a graph in a two-dimensional
simplicial complex (2-complex for short), a topological space obtained from a surface by
adding isolated edges and identifying vertices. Among other motivations for this problem,
they observe [13, Introduction] that the crossing number problem reduces to the embeddability
of the input graph in a certain 2-complex depending only on r. Then Colin de Verdière
and Magnard [12] have shown that the embeddability of a graph of size n in a 2-complex of
size C can be tested in 2poly(C) · n2 time. Hence, this results in a 2poly(r) · n2-time algorithm
for the crossing number problem, which, moreover, extends to any fixed surface.

Second, even more recently, Lokshtanov, Panolan, Saurabh, Sharma, Xue, and Ze-
havi [35] have given a 2O(r log r) · n -time algorithm for the traditional crossing number
problem in the plane, by a reduction to bounded treewidth and dynamic programming,
all in time linear in n.

Existing algorithms for other variants. For other flavors of crossing numbers, which are
(typically) also NP-hard, the literature on FPT algorithms is scarce; besides Pelsmajer,
Schaefer, and Štefankovič [41] giving FPT algorithms for the odd and pair crossing numbers,
we are only aware of two very recent papers, which bring a general approach to multiple
crossing number flavors and which we now detail. (The various flavors of crossing numbers
are defined in Section 5.)

First, Münch and Rutter [37], extending Grohe’s approach [20], provide a framework for
quadratic FPT algorithms for the crossing number of several types of beyond-planar drawings
of graphs in the plane, characterized by forbidden combinatorial crossing patterns. This
includes the crossing number of k-planar, k-quasi-planar, min-k-planar, fan-crossing, and
fan-crossing free drawings of a graph for any constant k.
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Second, Hamm, Klute, and Parada [22], in a very recent preprint, have announced a
generalization of the previous framework [37], also handling forbidden topological crossing
patterns in drawing types in the plane and, more importantly, bringing the possibility of
handling predrawn parts of the input graph (as already known for the traditional crossing
number [21]). The dependence in the size n of the input graph is an unspecified polynomial.

The above results all rely on Courcelle’s theorem. Apart from that, we are only aware of
sporadic results for isolated variants. Kawarabayashi and Reed [32] and Jansen, Lokshtanov,
and Saurabh [30] both claim, without details, a linear FPT algorithm to compute the skewness
of a graph, and Nöllenburg et al. [39] give a non-uniform FPT algorithm for the splitting num-
ber in surfaces. All mentioned papers except Nöllenburg et al. are restricted to the plane.

Our contributions. Our general framework takes the following form. We fix a surface S

and an objective function κ from the set D of (possibly edge-colored) topological drawings of
graphs on S to the set Z+ ∪ {∞}; the allowed drawings D are those that satisfy κ(D) < ∞.
The map κ has to satisfy some natural monotonicity conditions, defined later. Given an
integer r, we prove that deciding whether an input graph G has a drawing D on S with
κ(D) ≤ r can be done in quadratic time in the size n of G, and exponential in a polynomial of
the other parameters, namely the genus of S, the maximum size of a “fully crossing” drawing
D× satisfying κ(D×) ≤ r, and the integer r. This remains true if one allows a bounded
number of (possibly color-restricted) edge removals and vertex splits to G before drawing
it; these numbers are also parameters. The proof is a reduction to the already mentioned
problem of deciding the embeddability of a graph on a 2-complex [12]; while the general
strategy is intuitive, many subtle technical details need to be overcome to make it all work.

We deduce FPT algorithms with runtime quadratic in the size n of the input graph,
and exponential in a polynomial of the other parameters, for many established crossing
number variants; we now survey some of them. First, we can restrict ourselves to many
established drawing styles, such as k-planar, k-quasi-planar, min-k-planar, fan-crossing,
weakly and strongly fan-planar, k-gap, and fixed-rotation drawings (k being an additional
fixed parameter). For the k-gap and fixed rotation cases, no FPT algorithms were known.
Second, we may assign colors to the edges of the input graph and count the crossings
differently depending on the colors of the edges involved, leading to the first FPT algorithms
on the joint crossing number on surfaces and its generalizations. Third, assuming suitable
additional properties, we can handle problems that do not count the crossings, but rather
the number of edges, or pairs of edges, involved in crossings, such as the edge, pair, and odd
crossing numbers (no FPT algorithm was known for the edge crossing number). And fourth,
since we allow for prior edge removals and vertex splits, our framework encompasses, e.g.,
the skewness, for which FPT algorithms were only sketched [30, 32] in the plane, and the
splitting number, which was only known to admit a nonuniform FPT algorithm [39].

Last but not least, all these four aspects that define flavors of crossing numbers can be
combined arbitrarily, and our main results are valid not only in the plane, but for arbitrary
surfaces. For most flavors of crossing number, the arguments are direct, though they really
differ according to the flavor; they essentially boil down to checking some technical conditions
(see Definition 3.1), and to giving an algorithm (not necessarily polynomial) to check a
given drawing of bounded size and to count its crossings (see Theorem 3.2). However, for a
couple of crossing number flavors (in particular, when fixing the rotation scheme), additional
ingredients are needed.
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21:4 A Unified FPT Framework for Crossing Number Problems

Comparison with the state of the art. Our main contribution is a convenient, versatile,
and unified framework capturing a very general class of crossing number variants while giving
FPT algorithms. In particular, as listed above, we get new FPT results for several established
variants and their generalizations (to surfaces, or by combining the features of multiple
variants). It is conceivable that some of the variants newly covered by our framework could
be proved FPT using other techniques, perhaps the (very powerful) metatheorem of Courcelle,
as already used in [20–22,37]. However, such developments are extremely delicate even in
isolated variants and lead to hard-to-describe algorithms. Indeed, first, checking a given
drawing and counting its crossings must be formalized in the MSO2 logic of graphs, which
usually needs heavy tricks tailored to the specific case; second, there remains the specific
and often highly nontrivial treewidth reduction step to be done. So far, such approaches
have been successful only in the case of the plane.

Moreover, all approaches using Courcelle’s theorem inherently come with a high computati-
onal cost. Indeed, they result in algorithms with a huge multi-level exponential dependence
in the parameter r; for instance, it is an exponential tower of height at least four in the case
of [20] and three in the case of [32], see the discussion in [35]. In contrast, our algorithms
are singly exponential in a polynomial in r. Also, while Courcelle’s theorem itself runs in
linear time in the size n of the input graph, the necessary treewidth reduction step requires
quadratic time, if not more, in the known approaches for the non-traditional crossing numbers.
Our algorithms have a quadratic dependence in n, and the only bottleneck to a linear-time
dependence is the quadratic runtime of the current best embeddability algorithm [12].

The frameworks used in the two very recent works mentioned above [22,37], which both
use treewidth reduction and Courcelle’s theorem, can handle some of the drawing styles
that we encompass, but different counting functions, edge removals and vertex splits, and
nonplanar surfaces are out of their reach. However, it should not be difficult to extend
their framework to handle edge-colored graphs, thanks to the MSO2 logic being able to
handle arbitrary sets of edges. On the other hand, the recent breakthrough of Lokshtanov et
al. [35] for the traditional crossing number problem may fuel hope for more 2O(r log r) · n-time
algorithms, but tweaking all ingredients of that highly technical paper seems hard, even for
isolated crossing number variants, and moreover this approach is inapplicable to surfaces
other than the plane, due to the use of several inherently planar techniques (3-connectivity
arguments and dependence on [30]).

Organization of the paper. After the preliminaries (Section 2), we describe our general
framework and state our main result (Section 3), which is then proved (Section 4). We then
list the numerous applications to crossing number variants (Section 5).

2 Preliminaries

Graphs and surfaces. In this paper, graphs are finite and undirected, but not necessarily
simple unless specifically noted. The size of a graph G is the number of vertices plus the
number of edges of G. A vertex split of a graph G at vertex v creates a new vertex v′ and
replaces some of the edges incident to v by making them incident to v′ instead of v.

We follow [2,36] for surface topology. A surface S is a topological space obtained from
finitely many disjoint solid, two-dimensional triangles by identifying some of their edges in
pairs. Surfaces are not necessarily connected. The boundary of S is the closure of the union
of the unidentified edges. The (Euler) genus of a connected surface is twice its number of
“handles”, if it is orientable, and is its number of “crosscaps”, otherwise. The topological size
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of S equals s := d+b+g, where d is the number of connected components of S, g is the sum of
the (Euler) genera of its connected components, and b is the number of boundary components.
The plane is not a surface according to our definition, but in this paper it can always be
substituted with a disk, which is (homeomorphic to) a surface. A self-homeomorphism of S
is just a homeomorphism from S to S.

(Topological) drawings of graphs. A curve c in a topological space X is a continuous map
from the closed interval [0, 1] into X . The relative interior of c is the image, under c, of
the open interval (0, 1). In a drawing D of a graph G in a topological space X , vertices are
represented by points of X and edges by curves in X such that the endpoints c(0) and c(1) of
a curve c are the images of the end vertices of the corresponding edge. Moreover, we assume
that distinct vertices are mapped to distinct points and that the relative interiors of the edges
avoid the images of the vertices. Given a point x ∈ X , its multiplicity in D is the number
of pairs (c, t) such that c(t) = x, where c is a curve representing an edge of G in D, and
t ∈ (0, 1). An intersection point (shortly an intersection) of D is a point with multiplicity at
least two. We only consider drawings D with finitely many intersection points.

When considering a drawing D of a graph G on a surface S, we always implicitly assume
that G has no isolated vertex and that the image of D avoids the boundary of S; these
conditions are actually benign in a graph drawing context. In D, each edge e is subdivided
into (finitely many) pieces by the intersection points along e. A point of multiplicity two
corresponds to a crossing if no local perturbation of the curves can remove this intersection,
or to a tangency, otherwise. D is normal [44] if every intersection point has multiplicity two
and is a crossing (not a tangency). Moreover, D is simple if it is normal, no edge self-crosses,
no two adjacent edges cross, and no two edges cross more than once.1

The (traditional) crossing number of a graph G in a surface S is the least number of
crossings over all normal drawings of G in S. Many variations exist [45], see Section 5.

We need to represent drawings of graphs on a surface S combinatorially, up to self-
homeomorphisms of S. Cellular embeddings can be represented by combinatorial maps [16],
but we need to allow crossings, and moreover faces need not be disks. We can achieve this,
ultimately relying on combinatorial maps. Details can be found in the full version.

2-complexes. In this paper, a 2-complex C (or two-dimensional simplicial complex) is a
topological space obtained from a simple graph (without loops or multiple edges) by attaching
solid, two-dimensional triangles to some of its cycles of length three; see Figure 1.2 The
simplices of C are its vertices, edges, and triangles. We can easily represent 2-complexes
algorithmically, by storing the vertices, edges, and triangles, and the incidences between
them. In general, many such representations correspond to the same topological space, and
the choice of the representation only impacts the complexity analysis of our algorithms.
The class of 2-complexes is quite general; it contains all graphs, all surfaces, and any space
obtained from a surface by identifying finitely many finite subsets of points and by adding
finitely many edges between any two points.

1 Note that many authors do not consider a drawing D simple if D contains two parallel edges (even
uncrossed), as two parallel edges necessarily intersect at their two endpoints. Likewise, uncrossed loops
are usually not allowed in simple drawings. We do not make these additional restrictions here for
technical reasons connected to Definition 3.1; see also Proposition 5.2.

2 Our definition of 2-complex slightly departs from the standard one; it is the same as a geometric
simplicial complex of dimension at most two, realized in some ambient space of dimension large enough.

ESA 2025
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(a) (b)

Figure 1 (a): An example of a two-dimensional simplicial complex, or 2-complex for short. (b):
An embedding of some graph with four vertices and three edges on the same 2-complex.

An isolated edge of a 2-complex C is an edge incident to no triangle. The surface part of C
is the union of all its triangles, together with their incident vertices and edges. A singular
point of C is a point that has no open neighborhood homeomorphic to an open disk, a closed
half-disk, or an open segment.

Our above definition of drawings in topological spaces applies to drawings in 2-complexes.
In particular, vertices of G may lie anywhere on C, and edges of G as curves may traverse
several vertices, edges, and triangles of C. An embedding of G into C is a drawing without
any intersection point.

Embeddability of graphs on 2-complexes. The embeddability problem takes as input a
graph G and a 2-complex C, and the task is to decide whether G has an embedding in C.
This problem is fixed-parameter tractable in the size of the input 2-complex:

▶ Theorem 2.1 (Colin de Verdière and Magnard [12, arXiv version, Theorem 1.1]3 ). One can
solve the embeddability problem (of graphs in 2-complexes) in 2poly(C) · n2 time, where C is
the number of simplices of the input 2-complex and n is the size of the input graph.

3 The framework: description and results

We consider colored graphs, in which each edge is labeled with a positive integer. A colored
drawing in a surface S is a drawing of a colored graph G in S in which each edge of the
drawing inherits the color of the corresponding edge of G. Throughout this paper, let S be a
surface, and let D be the set of colored drawings of graphs on S.

The general formulation of our result is based on the following definition, in which the
function κ of a drawing should be thought of as a generalization of the (traditional) crossing
number – “counting the crossings”, or indicating (with value ∞) that “a drawing is invalid”.
More precisely, κ is a quality function that does not increase upon changes that add no new
crossings, and λ bounds the number of pieces into which edges are split in valid drawings:

3 The conference proceedings version of [12] gives a slightly worse bound on the running time, cubic in n.
The theorems that we state take into account the improvement in the latest arXiv version.
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▶ Definition 3.1 (Crossing-counting pair). Let κ : D → Z+ ∪ {∞} be a function, and let
λ : Z+ → Z+ be a non-decreasing function. We say that (κ, λ) is a crossing-counting pair if:
1. for any D, D′ ∈ D, we have κ(D′) ≤ κ(D) whenever D′ results from D by one of the

following operations: (a) the removal of a vertex or an edge; (b) the addition of a vertex
whose image is disjoint from the image of D (and from the boundary of S); (c) the addition
of an edge, of an arbitrary color, connecting two vertices in D, and otherwise disjoint
from the image of D (and from the boundary of S); (d) a self-homeomorphism of S;

2. for any drawing D× ∈ D such that each edge carries at least one intersection point in D×

(either a self-intersection or an intersection with another edge, but common endpoints do
not count) and κ(D×) < ∞, the number of pieces of D× is at most λ(κ(D×));

3. one can compute λ(i) in 2O(i) time.

Note that Definition 3.1, Item 1, implies that κ is not affected by any of the operations
(b), (c), and (d), since such operations can be reversed by an operation of type (a) or (d).

As an important special case, if κ(D) is the number of crossings in D, or is ∞ if D is
not a normal drawing, and λ(i) = 4i, then (κ, λ) satisfies the conditions of Definition 3.1
(indeed, note that each piece of an edge of D× is incident to at least one crossing point, and
each crossing point involves at most four pieces). This motivates the term “crossing-counting
pair”.

We now introduce the following problem (the reader may wish to focus on the simplified
case of p = q1 = . . . = qc = 0, which implies G = G′):

(κ, λ)-Crossing Number (for the class D of c-colored drawings, in sur-
face S)
Input: A colored graph G with colors in {1, . . . , c} for some integer c, with at most n

vertices and edges, a non-negative integer r, and non-negative integers p and q1, q2, . . . , qc.
Question: Is there a colored drawing D′ ∈ D in S, with κ(D′) ≤ r, of a colored graph G′,
such that G′ is obtained from G by performing at most p successive vertex splits and by
removing, for i = 1, . . . , c, at most qi edges of color i?

Our main result is that, assuming κ is computable, the (κ, λ)-Crossing Number problem
is fixed-parameter tractable in the topology of the surface, the number c of colors, the number
p +

∑
i qi of allowed vertex splits and edge removals, and the value of r:

▶ Theorem 3.2. Let S be a surface of topological size s, let D be the set of colored drawings
of graphs in S, and let (κ, λ) be a crossing-counting pair.

Let δ be a non-decreasing function such that, given a representation of size i of a (colored)
drawing D ∈ D, one can compute κ(D) in time δ(i).

Then the (κ, λ)-Crossing Number problem, on input instance (G, r, p, q1, . . . , qc), can be
solved in time 2poly(s+c+p+q+λ(r)) · δ(O(s + λ(r))) · n2, where n is the size of G and q =

∑
i qi.

In all our applications, the factor δ(·) in the runtime will be at most exponential in the
parameters, and can thus be ignored. Moreover, for positive instances, we can compute an
actual representation of the corresponding drawing; see the full version.

4 Sketch of proof of Theorem 3.2

Due to space restrictions, we only informally describe the reduction here; details are in the
full version. Recall that D denotes the set of drawings of graphs on the surface S. Let (κ, λ)
be a crossing-counting pair for drawings in D.

ESA 2025
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S

(a)

C1

(b)

C2

(c)

C3

(d)

C4

(e)
C5

(f)

Figure 2 The construction of a 2-complex C5 in our reduction. (a): The surface S and the colored
drawing D×. (b): C1 is obtained by cutting S along D×. Note that each vertex of G (in particular,
the one in the bottom of the image) on S corresponds to a single point in C1, while, in this particular
example, each intersection point in D of multiplicity i corresponds to 4i points in C1. (c) C2 is
obtained by adding isolated edges corresponding to the edges of D×; we define the color of each
isolated edge to be that of the corresponding edge in D×. (d) C3 is obtained by adding qi isolated
edges of color i for each color i. Here color 1 is represented in red, color 2 is represented in blue,
and q1 = 1, q2 = 0. (e) C4 is obtained by iteratively identifying p pairs of points of C3 (here p = 1).
(f) C5 is obtained by replacing each isolated edge of color i with a necklace (represented figuratively
here) of thickness p + 2q + 2λ(r) + i and beads of size c − i + 2.

The proof of Theorem 3.2 is a parameterized Turing reduction to the embeddability
problem on 2-complexes. Consider an instance (G, r, p, q1, . . . , qc) of the (κ, λ)-Crossing
Number problem. We define an uncolored graph G2 = G2(G, r, p, q1, . . . , qc) and a set
of 2-complexes Γ = Γ(r, p, q1, . . . , qc) such that our (κ, λ)-Crossing Number instance is
positive if and only if G2 embeds in at least one of the 2-complexes in Γ (see a sketch in
Figure 2). The set Γ is built by branching over a (small enough) set of properties for the
hypothetical drawing of a graph G′ (obtained from G by edge removals and vertex splits as
in the problem definition) or, equivalently, by guessing some properties of that drawing.

Assume that G′ has a colored drawing D′ in S with κ(D′) ≤ r. Let D× be the subdrawing
of the subgraph of G′ made of the edges that are involved in at least one intersection in D′;
the definition of a crossing-counting pair implies that κ(D×) ≤ r, so D× is made of at most
λ(κ(D×)) ≤ λ(r) pieces. Viewing D× as an abstract drawing, without its correspondence
with the vertices and edges of G′, this implies that we can enumerate all such colored drawings
up to self-homeomorphism of S in time (s + c + λ(r))O(s+λ(r)). In other words, we can guess
the appropriate colored drawing D×.
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Subsequently, we cut S along the relative interior of the edges of D× (Figure 2(b); details
are in the full version) and add isolated edges connecting the endpoints of the edges in D×

(Figure 2(c)), obtaining a 2-complex C2 in which G′ embeds. If G′ is allowed to result from G

by edge removals and vertex splits, we modify the 2-complex appropriately, by guessing
where the endpoints of the additional isolated edges must be inserted (Figure 2(d)) and
which points of the 2-complex must be identified back (doing an inverse of the vertex split,
Figure 2(e)). Note that these guessed points may be picked from the surface part of C2, as
well as among the vertices of the edges of D× in C2. We obtain a 2-complex C4 in which
G embeds. Each isolated edge of C4 naturally bears the color of the edge of G it carries.

It remains to ensure that, conversely, the embeddability of G into one of the resulting
2-complexes implies a positive (κ, λ)-Crossing Number instance. For this purpose, we do
the following. First (Figure 3(b)), as a minor technical detail, we apply a preprocessing step
– attaching a 4-clique to each vertex of G, to ensure that all vertices of G have degree at least
three. Let G1 be this new graph. Second, and more importantly (Figure 2(f) and Figure 3),
we need to encode the colors of the edges. We turn each edge of G1 and each isolated edge of
the 2-complex C4 (in which G1 embeds, see above) into a necklace encoding the color, such
that a necklace of a certain encoding type in the resulting graph can only use a necklace of
the same type in the resulting 2-complex. This results in an (uncolored) graph G2 embedded
in a 2-complex C5. Finally, the set Γ of 2-complexes in which we try to embed G2 is made of
all 2-complexes C5, over all possible choices (guesses) described above.

In more detail, we define a necklace of thickness h and beads of size k to be the graph
obtained from a path of length three by (1) replacing each edge with h parallel edges, and
(2) attaching k loops to each of the two internal vertices of the path (Figure 3(c)). The
intuition is that, by the minimum-degree condition on G1, the internal vertices of necklaces
of our 2-complex can essentially only be used by internal vertices of the necklaces of G2. So,
if edges of color i are encoded with necklaces of, say, thickness i and beads of size c − i, we
effectively prevent graph necklaces from using 2-complex necklaces of different types. (We
will actually use slightly refined formulas for the thickness and the size of the beads.)

5 Applications: FPT algorithms for diverse crossing number variants

In this section, we demonstrate the wide applicability of our framework to crossing number
problems. First, as a toy example, we reprove that we can compute the traditional crossing
number in quadratic FPT time on surfaces [12]:

▶ Proposition 5.1. Let r ≥ 0 be an integer, and S a surface with topological size s. Deciding
whether an input graph G of size n has crossing number at most r in S can be solved in time
2poly(s+r) · n2.

Proof. We apply our framework with a single color (c = 1), no vertex splits or edge removals
(p = q1 = 0), and in the case where D is the set of drawings of graphs on S. For any
drawing D, let κ(D) be the number of crossings in D, or ∞ if D is not a normal drawing.
Moreover, let λ(i) = 4i. Since κ(D) < ∞ only if D is normal, (κ, λ) is a crossing-counting
pair. Theorem 3.2 implies the result. ◀

We now turn to the promised applications. We survey, in order, specific drawing styles,
colored crossing number problems, various counting methods, and problems where prior edge
removals and vertex splits are allowed. Throughout this section, again, let S be a surface
and D the set of colored drawings of graphs on S. In our reductions to the (κ, λ)-Crossing
Number problem, we always set p = q1 = . . . = qc = 0 except in Section 5.4. In nearly all
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(c)

G2

G

G1

(b)

(a)

Figure 3 The construction of the graph G2. (a): The graph G; the red edges have color 1 and
the blue edge has color 2. (b): The graph G1. The new edges, in black, have color 3. (c): The
graph G2 in the case c = 2, λ(r) = p = q = 1. Each edge of color i is replaced with a necklace of
thickness p + 2q + 2λ(r) + i = 5 + i and beads of size c − i + 2 = 4 − i. On the right, a close-up on
the replacement for a black edge in G1, which is a necklace of thickness eight and beads of size one.

cases, only normal drawings of graphs are considered. Note that in all cases, for positive
instances, we can compute a corresponding drawing; see the full version. Statements marked
with * are proved in the full version.

5.1 Variations on the traditional crossing number
k-planar drawings. Introduced by Pach and Tóth [40], k-planar drawings (for k ≥ 0) are
normal drawings in the plane such that every edge is involved in at most k crossings. For any
drawing D, let κ(D) be the number of crossings in D, if D is a normal k-planar drawing, and
κ(D) = ∞ otherwise. The k-planar crossing number is then the smallest value of κ(D) over
all normal drawings D of G (which may equal ∞). Already for k = 1, deciding the existence
of a 1-planar drawing is NP-hard even for very restricted inputs [8, 19]. This definition
naturally extends to an arbitrary surface S, which we call the k-surface crossing number in S.

k-quasi-planar and min-k-planar drawings. There are similar concepts of k-quasi-planar [1]
(no k edges pairwise cross) and of min-k-planar [6] (for every two edges with a common
crossing, one carries at most k crossings) normal drawings in the plane, which give rise to
the corresponding crossing number flavors in the plane, and we may likewise generalize them
to the k-quasi-surface and min-k-surface crossing numbers in a surface S.
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Figure 4 A drawing of some graph that is a 1-gap drawing, as certified by the casing.

Many authors restrict the problems to simple graphs and require the admissible drawings
to be simple; this restriction defines the simple-drawing k-surface (k-quasi-surface, min-k-
surface) crossing number(s). These simple-drawing variants can be very different from the
non-simple ones, see, e.g., [44, Chapter 7] and [27], but we will show that they also smoothly
fit into our framework.

k-gap drawings. Another known concept is that of k-gap crossing number [3,46], minimizing
the number of crossings over k-gap drawings in the plane (Figure 4), namely, normal drawings
D of a graph G admitting a mapping from each crossing in D to one of the two involved
edges such that at most k crossings are mapped to each edge of G. This problem is NP-hard
for k = 1 [3]. Again, the k-gap crossing number is naturally generalized to any surface S.

Applying our framework. Given r ≥ 0, deciding whether a graph G has k-planar (k-quasi-
planar, or min-k-planar) crossing number at most r can be done in quadratic FPT-time [37]
using Courcelle’s theorem. The parameterized complexity of these three problems in other
surfaces, and of the k-gap crossing problem altogether, has not been studied prior to us.
Even in the known planar cases, we largely improve the dependence in r in the runtime:

▶ Proposition 5.2. Let k ≥ 1 and r ≥ 0 be integers, S a surface with topological size s,
and let Π ∈ {“k-surface”, “k-quasi-surface”, “min-k-surface”, “k-gap”}. Deciding whether
an input graph G of size n has Π-crossing number at most r in S can be solved in time
2poly(s+r) · n2. The same conclusion holds for the simple-drawing Π-crossing number of a
simple input graph G.

Proof. The proof relies on Theorem 3.2 with a single color (c = 1) and no splits or removals
(p = q1 = 0). For each Π, we must give an appropriate crossing-counting pair (κ, λ) such
that κ is efficiently computable. Let κ = κΠ map a drawing D to ∞ if it is not a normal
drawing or if it violates the property Π, and to the number of crossings of D otherwise. In
particular, if k is greater than the number of crossings in D, then D always satisfies Π.

Given a drawing D, one may in time polynomial in the size of a representation of D verify
that D is a normal drawing satisfying Π, and so compute κΠ(D). This is an easy routine in
all cases of Π except when Π = ‘k-gap’; in the latter case we additionally employ a standard
maximum flow algorithm to decide the existence of a mapping from the crossings to their
incident edges respecting “capacities” of edges to accept at most k crossings each.

Since we only consider normal drawings, λ(i) = 4i satisfies the assumption of Definition 3.1.
Likewise, it is easy to see that κΠ is non-increasing under the operations listed in Definition 3.1.
Hence, our conclusion follows by an application of Theorem 3.2 to (κΠ, λ) and the graph G.
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(c)(b)(a)

Figure 5 (a) A strongly fan-planar drawing. (b) A weakly fan-planar drawing that is not strongly
fan-planar. (c) A fan-crossing drawing that is not weakly fan-planar.

Next, we consider the simple-drawing Π-crossing number, assuming G is simple. We now,
additionally, set κΠ(D) = ∞ if D is a non-simple drawing. For this case, it is important
that our definition of a simple drawing does not immediately exclude drawings of non-simple
graphs; while this is irrelevant for our simple graph G, fulfillment of Definition 3.1, Item 1(c),
depends on this technical twist. The rest of the argument is identical. ◀

Fan-crossing and fan-planar drawings. A normal drawing is fan-crossing [31] if all edges
crossing the same edge are incident to a common vertex. One can restrict this notion to
strongly or weakly fan-planar drawings, which not necessarily lead to the same crossing
number problems, see Figure 5 and [9]. The fan-crossing, strongly fan-planar, and weakly
fan-planar crossing numbers are the minimum number of crossings over all strongly fan-planar,
weakly fan-planar, and fan-crossing drawings in the plane, respectively.

FPT algorithms, all using Courcelle’s theorem, exist for the fan-crossing crossing number,
by Münch and Rutter [37], and for the weakly fan-planar crossing number, by Hamm, Klute,
and Parada [22], and it seems that with further adjustments they ([22]) could also handle
the strongly fan-planar version. We solve all three variants, again with a better runtime.
For the strongly fan-planar version, we use the fact that our framework allows for surfaces
with boundary, and thus can easily capture the “infinite face” of the drawing; indeed, strong
fan-planarity is invariant under self-homeomorphisms of the plane, but not of the sphere
(e.g., the drawings in Figure 5(a) and (b) are homeomorphic when seen on the sphere).

▶ Proposition 5.3. * Let r ≥ 0 be an integer. The problem to decide whether an input graph
G of size n has strongly fan-planar, weakly fan-planar, or fan-crossing crossing number at
most r in the plane can be solved in time 2poly(r) · n2.

The proof is very similar to that of Proposition 5.2 and extends to arbitrary surfaces.

Drawings that may not be normal. To illustrate the applicability of our framework to
non-normal drawings, we introduce the following example. For an integer k ≥ 2, we define the
k-intersecting crossing number of a graph G to be the minimum value r such that there is a
drawing of G with at most r intersection points in which the multiplicity of every intersection
point is at most k. For every graph G, the traditional crossing number of G is at most

(
k
2
)

times its k-intersecting crossing number, and this bound can be tight. We prove:

▶ Proposition 5.4. * Let k ≥ 2 and r ≥ 0 be integers, S a surface with topological size s.
The problem to decide whether an input graph G of size n has k-intersecting crossing number
at most r in S can be solved in time 2poly(s+k+r) · n2.

We refer to Section 5.3 for more examples of different methods for counting crossings.
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5.2 Crossing problems with colored edges
We now turn our attention to problems in which the colors of intersecting edges play a role.

Joint crossing number and generalizations. In the joint crossing number problem [38],
the goal is to embed two input graphs simultaneously on the same surface while minimizing
the number of crossings between them. It is NP-hard for any fixed Euler genus g ≥ 6 [25,28],
and the complexity parameterized by the solution value has not been studied prior to our
work. We actually solve the following new problem generalizing the joint crossing number:

Color-Constrained Crossing Problem (in surface S)
Input: A colored graph G with colors in {1, . . . , c}, and a symmetric matrix M of size
c × c with nonnegative integer values.
Question: Is there a normal colored drawing D of G in S such that, for each i, j ∈{1, . . . , c},
the number of crossings involving two edges, one colored i and the other j, is at most Mi,j?

▶ Proposition 5.5.* Let S be a surface of with topological size s. The Color-Constrained
Crossing Problem in S of the input graph G of size n and matrix M can be solved in time
2poly(s+r) · n2, where r =

∑
1≤i≤j≤c Mi,j.

Proposition 5.5 solves the joint crossing number in S simply by giving the edges of one
graph color red and the edges of the other color blue, and allowing only red–blue crossings.

Our approach can also be applied (see the full version) to the homeomorphic joint crossing
number [28] of two graphs G1 and G2, in which G1 and G2 are given as cellularly embedded
in S, and the task is to minimize the number of crossings of G1 ∪ G2 under an additional
condition that the subdrawings of G1 and G2 are homeomorphic to the given embeddings.

Fixing the rotation system. More generally, a natural restriction on crossing number
problems is to fix the clockwise cyclic order of edges around each vertex (the rotation
system). The traditional crossing number with a fixed rotation system remains NP-hard [43],
and its parameterized complexity has not been considered so far. We solve the variant of
the Color-Constrained Crossing Problem where the input also prescribes the cyclic
permutation of the edges around each vertex of G, and give a solution in the plane. (We
remark that the problem naturally generalizes to orientable surfaces, but the proof is more
complicated then, so in this version we only formulate it in the plane.)

▶ Theorem 5.6.* The Color-Constrained Crossing Problem with Rotation System
(in the plane) of the input connected graph G of size n, matrix M , and rotation system(

πv : v ∈ V (G)
)

can be solved in time 2poly(r) · n2, where r =
∑

1≤i≤j≤c Mi,j.

The proof reduces to the Color-Constrained Crossing Problem. The main delicate
task in it is to “transfer the sense of orientation” from one vertex to another, which is
achieved with suitably crafted tri-colored rigid “chains” as sketched in Figure 6.

5.3 Non-traditional methods of counting crossings
We now look at different problems which do not count the crossings simply “one by one”.

Edge crossing number. The edge crossing number of a graph G is the smallest r such
that G has a normal drawing having at most r edges with at least one crossing. Computing
the edge crossing number is NP-hard [4], and according to Schaefer [45, Section 3.2: Edge
crossing number], no FPT algorithm parameterized by the solution size r is known even in
the plane.
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(a) (c)(b)

Figure 6 The construction of the graph G1 for the proof of Theorem 5.6.(a) The graph G, with
the spanning tree T in thick lines, shown with the desired rotation system. (b) The graph G1; its
original edges are black, and the new colors red, blue, and green are as pictured. Red edges cannot
carry any crossing, and blue-blue and green-green crossings are forbidden. (c) A valid drawing of
the graph G1 with crossings. In general, we must allow crossings between the chains, and these are
made possible with the alternating green-blue paths; forbidding blue-blue and green-green crossings
forces the consistency of the rotation systems of the wheels.

▶ Proposition 5.7. Let r ≥ 0 be an integer and S be a surface with topological size s. The
problem to decide whether an input graph G of size n has edge crossing number at most r

in S can be solved in time 2poly(s+r) · n2.

Proof. For a drawing D in S, let κ(D) be equal to the number ℓ of edges of D carrying
an intersection point if the total number of intersection points in D is at most

(
ℓ
2
)
, and let

κ(D) = ∞ otherwise. We also set λ(i) = 4
(

i
2
)
. It is again routine to check that (κ, λ) is a

crossing-counting pair and that κ(D) is computable in polynomial time.
It is well known, see, e.g., Schaefer [44], that any drawing D with ℓ edges carrying an

intersection point can be turned into a normal drawing D in which no two edges cross twice,
without introducing new crossed edges, and thus having at most

(
ℓ
2
)

crossings. Thus, the
edge crossing number of G indeed equals the minimum value of κ(D) over all drawings D

of G. Hence, Theorem 3.2 implies an algorithm running in time 2poly(s+r) · n2. ◀

A natural edge-colored generalization can be solved by a straightforward combination of the
ideas in the proof of Proposition 5.5 and of the previous proof.

Odd and pair crossing numbers. The pair (resp. odd) crossing number of a graph G is the
minimum r such that there exists a normal drawing of G in which at most r pairs of edges
mutually cross (resp. cross an odd number of times). While the question whether the pair
crossing number coincides with the traditional crossing number is one of the biggest open
problems in crossing numbers, Pelsmajer, Schaefer, and Štefankovič [42] proved that the
odd crossing number can be lower than the traditional crossing number. FPT algorithms for
the pair and odd crossing numbers were given by Pelsmajer, Schaefer, and Štefankovič [41],
with an unspecified dependence on r; however, because these algorithms are based on an
adaptation of Grohe’s algorithm [20], they are quadratic in the size n of the input and the
dependence on r is at least an exponential tower of height four. We improve over their
algorithms by providing algorithms also quadratic in n but with a better dependence in the
parameter r:

▶ Proposition 5.8. * Let r ≥ 0 be an integer, and let Π ∈ {‘pair’, ‘odd’}. The problems to
decide whether an input graph G of size n has Π-crossing number at most r in the plane can
be solved in time 22O(r)· n2.
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5.4 Allowing edge removals and vertex splits before drawing

Finally, we consider crossing number variants that allow graph simplifications before drawing.

Skewness. The skewness of a graph G is the smallest number of edges whose removal from G

leaves a planar graph. Deciding whether the skewness of G is at most q is NP-complete [34],
and linear-time FPT algorithms are claimed, without details, by Kawarabayashi and Reed [32]
and Jansen, Lokshtanov, and Saurabh [30]. We generalize the problem as follows.

Color-Constrained S-Skewness with Crossings
Input: A colored graph G with colors in {1, . . . , c}, non-negative integers q1, . . . , qc and r.
Question: Can we remove, for each i = 1, . . . , c, at most qi edges of color i from G, such
that the resulting graph has crossing number at most r in S?

▶ Proposition 5.9. * Let S be a surface with topological size s. The Color-Constrained
S-Skewness with Crossings problem for an input graph G of size n and parameter r can
be solved in time 2poly(s+q+r) · n2, where q =

∑
i qi.

Splitting number. The smallest integer p such that a graph obtained from the given graph G

by p successive vertex splits is embeddable in S is called the splitting number of G in S [23,29].
This problem is NP-hard [17], already in the plane. Nöllenburg et al. [39] proved that the
S-splitting number has a nonuniform FPT algorithm parameterized by p using the theory of
graph minors. We generalize and improve the latter result to a uniform FPT algorithm:

▶ Proposition 5.10. * Let p, r ≥ 0 be integers and S be a surface with topological size s. The
problem to decide whether an input graph G of size n has, after at most p vertex splits, a
crossing number at most r in S can be solved in time 2poly(s+p+r) · n2.

6 Conclusions

More applications. Theorem 3.2 allows for almost endless combinations for crossing number
variants, in terms of drawing styles, ways to count crossings, allowed vertex splits and edge
removals, all possibly taking edge colors into account, all on an arbitrary surface.

Limitations. Nonetheless, in our definition of crossing-counting pair, κ(D) must functionally
bound the total number of intersection points in the drawing D, and the value of κ cannot
grow upon deletion of vertices and edges. The first requirement immediately excludes, e.g.,
the local crossing number (the minimum r such that a given graph has an r-planar drawing,
which is NP-complete to compute already for r = 1 [8, 19]), and the second requirement
excludes some recently introduced drawing styles such as, for instance, 1+ and 2+-real face
drawings [5]. It is conceivable that Courcelle-based approaches would be able to handle 1+

and 2+-real face drawings, albeit not easily.
Another weakness, in particular compared to the very recent preprint by Hamm, Klute,

and Parada [22], is our quite restricted ability to handle predrawn parts of the input graph,
essentially limited to fixing uncrossable parts of the graph via rigid subembeddings, and to
special restrictions like the fixed rotation system in Theorem 5.6. In contrast, [21] and [22]
are very general in this respect and, in particular, allow crossings of fixed parts with the
unfixed rest of the graph.
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Remarks and possible extensions. Beyond their use for strongly fan-planar drawings,
surfaces with boundaries can be useful for other problems, because they allow to pinpoint
specific regions of the surface. One could actually consider a version with colored boundaries,
restricting Item 1(d) of the definition of a crossing-counting pair to color-preserving self-
homeomorphisms; all our arguments carry through. Finally, a possible extension of the
(κ, λ)-Crossing Number problem would be to replace the surface S with an arbitrary 2-
complex. We leave open whether such an extension is possible, and also potential applications.
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