
Constructing Long Paths in Graph Streams
Christian Konrad #

School of Computer Science, University of Bristol, UK

Chhaya Trehan #

Unaffiliated Researcher, Durham, UK

Abstract
In the graph stream model of computation, an algorithm processes the edges of an n-vertex input
graph in one or more sequential passes while using a memory that is sublinear in the input size.
The streaming model poses significant challenges for algorithmically constructing long paths. Many
known algorithms that are tasked with extending an existing path as a subroutine require an entire
pass over the input to add a single additional edge. This raises a fundamental question: Are multiple
passes inherently necessary to construct paths of non-trivial lengths, or can a single pass suffice? To
address this question, we systematically study the Longest Path problem in the one-pass streaming
model. In this problem, given a desired approximation factor α, the objective is to compute a path
of length at least lp(G)/α, where lp(G) is the length of a longest path in the input graph G.

We study the problem in the insertion-only and the insertion-deletion streaming models, and we
give algorithms as well as space lower bounds for both undirected and directed graphs. Our results
are:
1. We show that for undirected graphs, in both the insertion-only and the insertion-deletion models,

there are semi-streaming algorithms, i.e., algorithms that use space O(n poly log n), that compute
a path of length at least d/3 with high probability, where d is the average degree of the input
graph. These algorithms can also yield an α-approximation to Longest Path using space Õ(n2/α).

2. Next, we show that such a result cannot be achieved for directed graphs, even in the insertion-only
model. We show that computing a (n1−o(1))-approximation to Longest Path in directed graphs
in the insertion-only model requires space Ω(n2). This result is in line with recent results that
demonstrate that processing directed graphs is often significantly harder than undirected graphs
in the streaming model.

3. We further complement our results with two additional lower bounds. First, we show that
semi-streaming space is insufficient for small constant factor approximations to Longest Path for
undirected graphs in the insertion-only model. Last, in undirected graphs in the insertion-deletion
model, we show that computing an α-approximation requires space Ω(n2/α3).

2012 ACM Subject Classification Theory of computation → Streaming models; Mathematics of
computing → Paths and connectivity problems

Keywords and phrases Longest Path Problem, Streaming Algorithms, One-way Two-party Commu-
nication Complexity

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.22

Related Version Full Version: https://arxiv.org/abs/2508.16022

Funding Christian Konrad: Supported by EPSRC New Investigator Award EP/V010611/1.
Chhaya Trehan: Most of the work was done while C.T. was at the University of Bristol where she
was supported by EPSRC New Investigator Award EP/V010611/1.

1 Introduction

In the graph stream model of computation, an algorithm processes a stream of edge insertions
and deletions that make up an n-vertex input graph G = (V, E) via one or multiple sequential
passes. The primary objective is to design algorithms that use as little space as possible.
The most studied and best-understood setting is the one-pass insertion-only setting, where

© Christian Konrad and Chhaya Trehan;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 22; pp. 22:1–22:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.konrad@bristol.ac.uk
https://orcid.org/0000-0003-1802-4011
mailto:chhaya.dhingra@gmail.com
https://orcid.org/0000-0002-3249-3212
https://doi.org/10.4230/LIPIcs.ESA.2025.22
https://arxiv.org/abs/2508.16022
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

22:2 Constructing Long Paths in Graph Streams

only a single pass is allowed and the input stream does not contain any edge deletions. It
is known that many fundamental problems can be solved well in this setting, e.g., there
are semi-streaming algorithms, i.e., algorithms that use space Õ(n) = O(n poly log n)1, for
computing a spanning tree and a maximal matching [16], while no o(n2) space algorithms
exist for other problems such as computing a maximal independent set or a BFS/DFS tree
[14, 6]. For such problems, algorithms that make multiple passes over the input data are
typically considered [24, 13, 1, 9, 4].

Our work is motivated by the observation that streaming algorithms that construct long
paths, often as a subroutine, require a large number of passes. For example, many streaming
algorithms for computing large matchings construct augmenting paths as a subroutine (e.g.,
[29, 28, 30]), and these algorithms typically only add a single edge or a few edges per pass to a
not-yet-completed augmenting path. Another example is streaming algorithms for computing
BFS/DFS trees that extend partial trees/paths by adding only a single edge per pass [24, 13].
This raises a fundamental question: Is the one/few-edges-per-pass strategy best possible and
multiple passes are inherently necessary to construct paths of non-trivial lengths, or can a
single pass suffice?

The Longest Path Problem. We address this question by systematically studying the
Longest Path (LP) problem in the one-pass streaming setting. In this problem, the objective
is to compute a path of length lp(G)/α, where lp(G) denotes the length of a longest path in
the input graph G, and α ≥ 1 is the approximation factor.

In the offline setting, in undirected graphs, it is known that it is NP-hard to compute
a constant factor approximation to Longest Path [23] (see the same paper for stronger
impossibility results that are based on other hardness conjectures). In directed graphs, a
much stronger hardness result is known. Björklund, Husfeldt and Khanna [11] showed that
it is NP-hard to approximate LP in directed graphs within a factor of n1−ϵ, for any ϵ > 0.
Regarding upper bounds, it is known that a path of length dmin can be constructed greedily
in polynomial time, where dmin is the min-degree of the input graph [23]. There are also
FPT algorithms with runtime polynomial in n but exponential in the length of the path
constructed (see, for example, [10] and the references therein). We note that streaming
algorithms for the LP problem have also previously received attention, however, only from a
practical perspective. Kliemann et al. [25] studied practical multi-pass algorithms without
providing any theoretical guarantees.

1.1 Our Results
In this work, we give one-pass streaming algorithms and space lower bounds for undirected
graphs as well as a strong space lower bound for directed graphs. We consider both the
insertion-only model (no deletions) and the insertion-deletion model (deletions allowed).

As our first result, we show that, in undirected graphs, if we sample O(n log n) random
edges from the input graph, then this sample contains a path of length Ω(d) with high
probability, where d is the average degree of the input graph. Since this sampling task can
be implemented in both the insertion-only and the insertion-deletion streaming models using
standard techniques, we obtain the following theorem:

1 We write Õ(.) to mean the usual Big-O notation with poly-logarithmic dependencies suppressed. Θ̃(.)
and Ω̃(.) are defined similarly.

C. Konrad and C. Trehan 22:3

▶ Theorem 1. In both the insertion-only and the insertion-deletion models, for undirected
graphs, there are O(n poly log n) space algorithms that compute a path of length at least d/3
with high probability, where d is the average degree of the input graph.

We remark that our algorithm can be used to obtain an α-approximation to LP using
Õ(n2/α) space, for any α ≥ 1. This is achieved by running our algorithm in parallel with
the trivial algorithm that stores Θ̃(n2/α) edges. Then, if the space constraint of Θ̃(n2/α)
is large enough to store the entire graph then we can find an exact solution in exponential
time. If not, then we are guaranteed that the average degree of the input graph is Ω(n/α),
which implies that the algorithm of Theorem 1 yields the desired result. We thus obtain the
following corollary:

▶ Corollary 2. In both insertion-only and insertion-deletion models, for undirected graphs,
there are Õ(n2/α)-space streaming algorithms for an α-approximation to Longest Path.

Next, we ask whether a similar algorithmic result is possible in directed graphs. As our
main and most technical result, we show that this is not the case in a strong sense:

▶ Theorem 3. Every one-pass streaming algorithm for Longest Path in the insertion-only
model in directed graphs with approximation factor n1−o(1) requires space Ω(n2).

Theorem 3 together with Corollary 2 establishes a separation in the space complexity
between algorithms for undirected and directed graphs for LP in the insertion-only model.
This lower bound is also in line with recent results for directed graphs that demonstrate that
problems on general directed graphs are often hard to solve in the streaming model [12].

Finally, we complement our results with two additional lower bounds. First, we give a
lower bound for insertion-only streams and undirected graphs, ruling out the existence of
semi-streaming algorithms with constant approximation factor close to 1.

▶ Theorem 4. Every one-pass insertion-only streaming algorithm for Longest Path on
undirected graphs with approximation factor 1 + 1

25 − γ, for any γ > 0, requires space
n1+Ω(1

log log n).

We note that this lower bound result is significantly weaker than our lower bound for
directed graphs, both in terms of approximation factor and space. This, however, is in line
with the status of the problem in the offline setting, where a very strong impossibility result
for directed graphs is known, but only significantly weaker impossibility results for undirected
graphs exist. While the offline setting is orthogonal to the streaming setting, one cannot
help but wonder whether similar mechanisms are at work that prevent us from obtaining
stronger NP-hardness results for LP approximation in undirected graphs and from obtaining
stronger space lower bounds in the streaming setting.

Last, we show that, in insertion-deletion streams, space Ω(n2/α3) is required for an
α-approximation of LP.

▶ Theorem 5. Every one-pass insertion-deletion streaming algorithm for Longest Path on
undirected graphs with approximation factor α ≥ 1 requires space Ω(n2/α3).

This lower bound together with our algorithm show that the optimal dependency of the
space complexity on α in insertion-deletion streams is between 1/α and 1/α3.

ESA 2025

22:4 Constructing Long Paths in Graph Streams

1.2 Our Techniques
Algorithm. We will first explain the key ideas behind our algorithm. As observed by Karger
et al. [23], a path of length dmin, where dmin is the minimum degree of the input graph G,
can be computed as follows: Start at any vertex v0 and visit an arbitrary neighbor that we
denote by v1. In a general step i, we have already constructed the path v0, . . . , vi. We then
visit a neighbor vi+1 of vi that has not previously been visited. Then, as long as i < dmin,
we can always find a yet unvisited neighbor, and, hence, we obtain a path of length dmin. We
first see that this argument can also be applied to the average degree d of the graph G. It is
well known that, by repeatedly removing vertices of degree at most d/2 from G until no such
vertex remains, we are left with a non-empty graph G′ with min-degree at least d/2. We can
now apply the same argument as above to G′ and thus find a path of length at least d/2.

The approach outlined above, however, does not yield a small space streaming algorithm
since a) we do not know which vertices are contained in G′, and b) we cannot afford to store
Θ(d) incident edges on each vertex. To overcome these obstacles, we resort to randomization.
Our algorithm solely samples O(n log n) random edges F from the input graph and outputs
a longest path among the edges F . To see that a long path in F exists, we argue that the
subset of edges F ′ ⊆ F that are also contained in G′ contains a path of length at least d/3
with high probability. Such a path can be constructed greedily. Suppose we have already
constructed a partial path of length ℓ < d/3 solely using the edges F ′, and let vℓ+1 ∈ V (G′)
denote its current endpoint. Then, since vℓ+1 has a degree of at least d/2 in G′, there are
at least d/2 − d/3 = d/6 neighbors of vℓ+1 in G′ that have not yet been visited in the path.
Since we sample Θ(n log n) edges overall, the probability that any one of these edges incident
to vℓ+1 that connect to these d/6 vertices is sampled is Ω(n·log n

n·d) = Ω(log n
d), which implies

that at least one of these edges is sampled with high probability and we can extend the path.

Space Lower Bounds. All our space lower bounds are proved in the one-way two-party
communication setting. In this setting, two parties that we denote by Alice and Bob each
hold a subset of the edges of the input graph G = (V, E = EA ∪ EB), with EA being Alice’s
edges, and EB being Bob’s edges. Alice sends a single messages Π to Bob, and Bob computes
the output of the protocol. Then, it is well-known that a lower bound on the size of the
message Π also constitutes a lower bound on the space of any one-pass streaming algorithm.

We work with induced matchings in all our lower bound constructions. In a graph
G = (V, E), a matching M ⊆ E is induced if the edges of the vertex-induced subgraph
G[V (M)] are precisely the edges of M . Suppose now that G is bipartite, and we denote it by
G = (A, B, E = EA ∪ EB). Furthermore, we suppose that Alice’s subgraph, i.e., the graph
spanned by the edges EA, contains a matching M that is induced in the final graph. We say
that M is the special matching. We complete our lower bound constructions so that:
1. Every long path in the graph must contain many edges of the special matching M ;
2. The special matching M is hidden among the edge set EA so that Alice cannot identify

M , and, given a limited communication budget, Alice therefore cannot forward many of
M ’s edges to Bob.

The two properties then imply a lower bound since, if Bob knows only few edges of M , but
every long path contains many such edges, then Bob cannot output a long path.

To achieve property 2, in our insertion-deletion lower bound, we make use of edge deletions
as part of Bob’s input to turn a large matching in EA into an induced matching, and in our
insertion-only lower bounds, we work with Rusza-Szemerédi graphs (RS-graphs in short),
which have been extensively used for proving lower bounds for matching problems in the
streaming setting (e.g., [18, 8, 26, 27]). An (r, t)-RS-graph is a balanced bipartite graph on 2n

C. Konrad and C. Trehan 22:5

vertices such that its edge set can be partitioned into t induced matchings M1, . . . , Mt, each
of size r. Our insertion-only constructions are such that each of these t matchings can take
the role of the special matching M , which will allow us to argue that Alice essentially has to
send many edges of each induced matching to Bob if Bob is to report a long path. We note
that the framework of working with RS-graphs and a special hidden matching among Alice’s
edges is well-established and has previously been used, for example, in [18, 7, 3, 27, 5, 4].

Regarding establishing property 1, we pursue different strategies that depend on the
specific streaming setting, and on whether we work with directed or undirected graphs. These
strategies are described below and illustrated in Figure 1.

Directed Graphs Undirected Graphs Insertion-deletion

MJ ∪ N MJ ∪ N M ∪ N

v O(n
α)

{
A B

P

Directed Graphs: Since N constitutes the only edges directed from right to left, and MJ

is an induced matching, up to potentially the first and last edge, every long path alternates
between edges of MJ and N and thus contains many edges of MJ .
Undirected Graphs: (Insertion-Only) The path P is connected to a longest path in
V (MJ). Our argument is based on the fact that it is detrimental to the length of the
output path to include many edges between V \ V (MJ) and V (MJ). Indeed, suppose
that the output path contains the two red edges incident on vertex v. Then, the vertices
highlighted in red cannot be visited by the output path. This allows us to argue that, for
each edge going across the cut (V \ V (MJ), V (MJ)), multiple vertices on the path P are
not visited. This in turn implies that every long path must contain many edges of MJ in
order to visit the vertices in V (MJ).
Insertion-Deletion Streams: (Undirected Graphs) Our construction is such that there
are only O(n

α) vertices outside V (M). Hence, if Bob does not know many edges of M then
there are at most O(n

α) vertices of V \ V (M) available to connect to vertices within V (M).
Since this number is small, Bob is required to learn many edges of M in order to output a
long path.

Figure 1 Illustrations of our three lower bound constructions.

ESA 2025

22:6 Constructing Long Paths in Graph Streams

Directed Graphs in the Insertion-only Model. The cleanest case is our lower bound for
directed graphs. In this setting, Alice holds the edges of an RS-graph G′ = (A, B, E), and we
assume that all edges are directed from A to B. We then pick a matching MJ , for a uniform
random J ∈ [t], and Bob inserts a random matching N that matches B(MJ) to A(MJ) so
that all edges in N are directed from B to A. We then leverage the well-known result that
the expected length of a longest cycle in a random permutation of the set [r] is of length
Θ(r) [20, 19] in order to argue that MJ ∪ N contains a path of expected length Θ(|MJ |). It
then remains to argue that every path of length ℓ, for any ℓ, in the input graph G = G′ ∪ N

must contain Ω(ℓ) edges of MJ , which uses the fact that the matching MJ is induced. Since,
however, Alice did not know that MJ is the special matching, Alice is required to send a
large number of edges of each induced matching to Bob so that Bob can output a long path.

For technical reasons, our graph construction is slightly more involved than described
above since we need to turn Alice’s RS-graph into an input distribution, see Section 4 for
details. While it is easy to argue that if Alice sends k edges of MJ to Bob then Bob can
compute a path of length at most O(k) in MJ ∪ N , we need to argue a much stronger bound.
We show that, even if Alice sends as many as r/100 MJ edges to Bob then Bob can still only
find a path of size O(log r) in MJ ∪ N . We implement our approach using the information
complexity paradigm, including direct sum and message compression arguments.

Undirected Graphs in the Insertion-only Model. In our construction for undirected graphs,
Alice holds an RS-graph G′ = (A, B, E), and, given a random index J ∈ [t], Bob holds a
random matching N matching A(MJ) to B(MJ). Similar as above, the matchings MJ ∪ N

contain a path of length Ω(|MJ |). However, it is no longer true that any long path in G′ ∪ N

must contain many edges of MJ as, for example, the vertices in V \ V (MJ) can now be used
to visit the vertices within V (MJ) as their incident edges are undirected.

Our aim is to ensure that it is detrimental for constructing long paths to include many
edges across the cut (V \ V (MJ), V (MJ)) in the path. Once this property is established, we
will argue that, if Bob only knows few of the MJ edges then many vertices of V (MJ) will
remain unvisited in the output path, which implies that the path is bounded in length as
not all vertices are visited. To argue that only few edges across the cut (V \ V (MJ), V (MJ))
are included in the output path, we ensure that all the vertices v ∈ V \ V (MJ) serve as
gateways to other parts of the graph that are introduced by Bob. The construction is so that
these other parts cannot be visited if v connects to a vertex in V (MJ) in the output path,
which will then be detrimental for the construction of a long path. To achieve this, Bob
introduces additional edges as follows. First, let P ′ be a path consisting of novel edges that
visits every vertex in V \ V (MJ), and let P be the path obtained from P ′ by subdividing
every edge in P ′, ℓ times, for some integer ℓ. Furthermore, this path is connected to the
longest path within MJ ∪ N . Then, the path P significantly contributes to the longest path
in the input graph. Observe, however, if a vertex v ∈ V \ V (MJ) connects to a vertex in
V (MJ) then the vertices on the subdivision on one of the edges of P incident on v cannot be
visited anymore. By setting ℓ large enough, we show that it is detrimental for the algorithm
to use such vertices to connect to V (MJ), which renders the edges of MJ indispensable for a
long path. As above, the actual lower bound construction is more involved since we need to
turn Alice’s RS-graph into an input distribution. On a technical level, we give a reduction to
the two-party communication problem Index using ideas similar to those introduced by Dark
and Konrad [15].

Undirected Graphs in the Insertion-deletion Model. The key advantage that allows us
to prove a much stronger lower bound for insertion-deletion streams than for insertion-only
streams is that Bob can insert edge deletions that turn a large matching contained in Alice’s
edges EA into an induced matching. We see that it is possible to achieve this so that:

C. Konrad and C. Trehan 22:7

1. The special (induced) matching M is of size n − O(n/α); and
2. The special matching M is hidden among Alice’s edges.
Furthermore, we make sure that there exists a second matching N such that N ∪ M forms
a path of length Ω(n). Property 1 significantly helps in proving our lower bound since,
as opposed to our lower bound for undirected graphs in insertion-only streams, there are
only O(n/α) vertices outside the set V (M), and, hence, these vertices only allow us to visit
O(n/α) vertices of V (M). We can then argue that, for the remaining n − O(n/α) vertices
of V (M), Bob is required to know the edges of M for those to be visited. This however
requires Alice to send these edges to Bob. Then, Property 2 ensures that Alice cannot
identify these edges and would therefore have to send most edges of the input graph to Bob,
which exceeds the allowed communication budget. On a technical level, we give a reduction
to the Augmented-Index two-party communication problem, again, reusing many of the ideas
given in the lower bound by Dark and Konrad [15].

1.3 Outline
We provide notation, state RS-graph constructions, introduce the information complexity
framework, state important inequalities involving mutual information, and give a message
compression theorem in our preliminaries section, Section 2. Then, we present our algorithm
in Section 3, and our lower bound for directed graphs in insertion-only streams is given in
Section 4. Due to space restrictions, our lower bound for undirected graphs in insertion-only
streams and our lower bound for undirected graphs in insertion-deletion streams are deferred
to the full version of this paper. We conclude in Section 5 with open problems.

2 Preliminaries

Given a graph G = (V, E), for vertices u, v ∈ V , we denote an undirected edge between u

and v by {u, v}, and a directed edge with tail u and head v by (u, v).

2.1 Rusza-Szemerédi Graphs
In our lower bounds, we make use of Rusza-Szemerédi graphs.

▶ Definition 6 (Rusza-Szemerédi Graph). A bipartite graph G = (A, B, E) is an (r, t)-Ruzsa-
Szemerédi graph, (r, t)-RS graph for short, if its edge set can be partitioned into t induced
matchings, each of size r.

We will use the RS-graph constructions of Alon et al. [2] and Goel et al. [18], the latter is
based on the construction by Fischer et al. [17].

▶ Theorem 7 (Ruzsa-Szemerédi Graph Constructions). There are bipartite RS-graphs G =
(A, B, E) with |A| = |B| = n with the following parameters:
1. r = n1−o(1), and t · r = Ω(n2) [2]; and
2. r = (1

2 − ϵ)n, for any constant ϵ > 0, and t = nΩ(1
log log n) [18].

2.2 Streaming Models
Given an input graph G = (V, E), an insertion-only stream describing G is an arbitrarily
ordered sequence of the edge set E. An insertion-deletion stream is a sequence of edge
insertions and deletions so that, at the end of the stream, the surviving edges constitute
the edge set E. Furthermore, the stream is such that only edges that have previously been

ESA 2025

22:8 Constructing Long Paths in Graph Streams

inserted are deleted, i.e., the multiplicity of an edge is never negative. We also assume that at
any moment the multiplicity of any edge is polynomially bounded. This standard assumption
ensures that sampling methods such as ℓ0-sampling require only poly log(n) space.

2.3 Communication Complexity
We consider the one-way two-party model of communication for proving our space lower
bounds. In this setting, two parties, denoted Alice and Bob, share the input data X =
(XA, XB) so that Alice holds XA and Bob holds XB . They operate as specified in a protocol
Π in order to solve a problem P. Alice and Bob can make use of both private and public
randomness. Randomness is provided via infinite sequences of uniform random bits. Private
randomness can only be accessed by one party. The sequence of public randomness can be
accessed by both Alice and Bob, and we denote this sequence by R.

The protocol Π instructs the parties to operate as follows. First, Alice computes a message
that we (ambiguously) also denote by Π as a function of XA, R, and her private randomness,
sends the message Π to Bob, who then computes the output of the protocol as a function
of XB , Π, R and his private randomness. The communication cost of a protocol Π is the
maximum length of the message sent by Alice in any execution of Π. The communication
complexity of a problem P is the minimum communication cost of any protocol that solves P .

2.4 Information Complexity and Message Compression
We prove lower bounds using the information complexity paradigm, which is a framework that
is based on information theory. Let (A, B, C) ∼ D be jointly distributed random variables
according to distribution D. We denote the Shannon entropy of A by HD(A), the entropy of
A conditioned on B by HD(A | B), the mutual information of A and B by ID(A : B), and
the conditional mutual information between A and B conditioned on C by ID(A : B | C).
We may drop the subscript D in HD(.) and ID(.) if it is clear from the context.

We will use the following standard facts about entropy and mutual information: (let
(A, B, C, D) ∼ D be jointly distributed random variables.)

P1: If A and C are independent conditioned on D then: I(A : B | D) ≤ I(A : B | C, D)
P2: I(A : B | C, D) = Ed←D I(A : B | C, D = d)
P3: Let E be an event independent of A, B, C. Then: I(A : B | C, E) = I(A : B | C)
P4: I(A, B : C | D) = I(A : C | D) + I(B : C | D, A)

Given a one-way two-party communication protocol Π and an input distribution
(XA, XB) ∼ D, we will measure the amount of information that the message Π reveals
about Alice’s input under distribution D. The following quantity is denoted the external
information cost of Π:

▶ Definition 8. The (external) information cost ICostD(Π) of the one-way two-party com-
munication protocol Π under input distribution D is defined as:

ICostD(Π) = ID(XA : Π | R) .

Then, for a given problem P, we denote the information complexity ICD(P) of P under
distribution D as the minimum information cost of a protocol that solves P.

It is well-known that information cost of a protocol lower bounds its communication cost.
We will also use a message compression result, which is due to Harsha et al. [21]. We

follow the presentation of this result given in [31].

C. Konrad and C. Trehan 22:9

▶ Theorem 9 (Message Compression). Let Π be a protocol in the one-way two-party commu-
nication setting. Then, the protocol can be simulated with a different protocol that sends a
message of expected size at most

ID(XA : Π) + 2 · log (1 + ID(XA : Π)) + O(1) .

3 Algorithm

We will first describe and analyze our sampling-based algorithm in Subsection 3.1, and then
discuss implementations of this algorithm in streaming models in Subsection 3.2.

3.1 Sampling-based Algorithm
Let G = (V, E) be the input graph with n = |V |, m = |E|, and average degree d = 2m

n .
Consider the following algorithm:

Algorithm 1 Sampling-based algorithm for constructing a path of length Ω(d).
Require: G = (V, E)

Sample 10 · n · ln n random edges from E and denote this set by F

return Longest path in G[F]

We show that Algorithm 1 constructs a path of length at least d/3 with high probability.

▶ Theorem 10. Algorithm 1 constructs a path of length d/3 with probability at least 1 − 1
n2 .

It can also be regarded as an O(n
d)-approximation algorithm for Longest Path.

Proof. Given the input graph G = (V, E), let U ⊆ V denote a subset of vertices of V such
that G[U] has minimum degree at least d/2. It is well-known that such a subset of vertices
exists (see Lemma 19 for completeness).

Let u0 ∈ U be any vertex, and let P0 = {u0} be the path of length 0 with start and end
point u0. We will extend P0 using the edges in F that are also contained in G[U], as follows:

In step i = 1, 2, . . . , d/3, we add the edge (ui−1, ui) to Pi−1 and obtain the path Pi. The
edge (ui−1, ui) is an arbitrary edge in F incident on ui−1 that connects to a vertex ui ∈ U

that has not yet been visited on the path Pi−1. We will now prove that such a vertex exists.
First, recall that, by definition of U , the vertex ui−1 has at least d/2 neighbors in G[U].

Since i ≤ d/3, at least d/2 − d/3 = d/6 of these neighbors are not visited by the path Pi−1.
Denote by E(ui−1) this set of at least d/6 edges connecting ui−1 to not yet visited neighbors
in G[U]. We now claim that at least one of the edges of E(ui−1) is contained in F with
high probability. Observe that at stage i − 1, we have only learnt so far that the sample F

contains the i − 1 edges of the path Pi−1. Hence,

Pr [F ∩ E(ui−1) = ∅ | Pi−1 ⊆ F] =

(m−(i−1)−|E(ui−1)|
|F |−(i−1)

)(
m−(i−1)
|F |−(i−1)

)
≤ exp

(
−|E(ui−1)|(|F | − (i − 1))

m − (i − 1)

)
≤ exp

(
−

d
6 (10n ln(n) − n ln(n))

m

)

= exp(−
m
3n (9n log n)

m
) = 1

n3 ,

where we used the inequality (a−c
b)

(a
b)

≤ exp
(
− bc

a

)
(see Lemma 18) to obtain the first inequality

and the bound (i − 1) ≤ n ln(n) to obtain the second.

ESA 2025

22:10 Constructing Long Paths in Graph Streams

We can therefore extend the path with probability 1 − 1
n3 at any step i. Since we run

d/3 ≤ n steps overall to create the final path Pd/3 of length d/3, by the union bound, we
succeed with probability at least 1 − 1

n2 . Last, since a longest path in G is of length at most
n, the algorithm also constitutes an O(n/d)-approximation algorithm to Longest Path. ◀

3.2 Implementation in Streaming Models
Algorithm 1 can easily be implemented in both the insertion-only and the insertion-deletion
streaming models. In the insertion-only model, a uniform sample of the edges in the stream
can be obtained using reservoir sampling [32], and, in the insertion-deletion model, this can
be achieved using ℓ0-samplers [22] and rejection sampling. We obtain our main theorem:

▶ Theorem 1. In both the insertion-only and the insertion-deletion models, for undirected
graphs, there are semi-streaming algorithms that compute a path of length at least d/3 with
high probability, where d is the average degree of the input graph.

4 Insertion-only Lower Bound for Directed Graphs

In this section, we prove an Ω(n2) space lower bound for one-pass streaming algorithms
for LP on directed graphs that compute an (n1−o(1))-approximation. To this end, we work
with two input distributions DSLP (Simple Longest Path) and DLP (Longest Path). In
Subsection 4.1, we give a lower bound on the information cost of protocols that solve DSLP
well. We achieve this by, first, proving a lower bound on the communication cost of any
protocol that solves DSLP directly via combinatorial arguments, and then employ a message
compression argument that allows us to conclude that the information cost of such protocols
must also be large. Then, in Subsection 4.2, we present the distribution DLP, which makes use
of an (r, t)-RS-graph, and we establish a direct sum argument, showing that the information
cost of protocols that solve DLP is at least t times the information cost of protocols that solve
DSLP, which bounds the information cost of protocols that solve DLP from below. Then,
since information cost is a lower bound on communication cost, we obtain our result.

4.1 A Simple Distribution
We will first work with the distribution denoted DSLP(r), see Figure 2.

We first argue that the expected length of a longest path in H ∼ DSLP(r) is Ω(r).

▶ Lemma 11. The expected length of a longest path in H ∼ DSLP(r) is bounded as follows:

E
H←DSLP(r)

lp(H) ≥ 2λr ≥ 1.24r ,

where λ = 0.62432 . . . is the Golomb-Dickman constant.

Proof. For an input graph H = (A, B1 ∪ B2, E) ∼ DSLP(r) with B1 = {b1
1, . . . , b1

r} and
B2 = {b2

1, . . . , b2
r}, let H ′ be the graph obtained from H by contracting the vertex pairs b1

i

and b2
i , for all i, and by treating parallel edges in the resulting graph as single edges, see

Figure 3 for an illustration. It is easy to see that lp(H ′) = lp(H). Furthermore, denote by
D′SLP(r) the distribution of H ′. Observe that DSLP(r) and D′SLP(r) are uniform distributions
over their respective supports.

Next, consider the set Σr of permutations of the set {1, 2, . . . , r}. Consider now the
bijection f : Σr → range(D′SLP(r)), where a permutation σ ∈ Σr is mapped to the graph
that contains the edges (bi, aσ(i)), for all i. Then, we observe that, for a permutation σ ∈ Σr,
the length of the longest cycle lc(σ) is related to lp(f(σ)) as follows:

2 · lc(σ) − 1 = lp(f(σ)) .

C. Konrad and C. Trehan 22:11

Input Distribution DSLP(r):
The directed graph G = (A, B = B1∪B2, E) with |A| = |B1| = |B2| = r, A = {a1, . . . , ar},
B1 = {b1

1, . . . , b1
r}, B2 = {b2

1, . . . , b2
r}, and E = EA ∪ EB , where EA are Alice’s edges and

EB are Bob’s edges, is obtained as follows:
Alice’s Input: Edge set EA

For each i ∈ [r], flip an unbiased coin Xi ∈ {0, 1} and if it comes out heads then insert
the directed edge (ai, b1

i) into the graph. If it comes out tail then insert the edge (ai, b2
i).

Observe that this constitutes a directed matching M that matches all A-vertices and
exactly one of b1

i , b2
i , for all i.

Alice holds the edges EA = M .
Bob’s Input: Edge set EB

Let N1 be a uniform random matching between A and B1, directed from B1 towards A.
Let N2 be a copy of N1, but every B1-vertex is replaced by the corresponding B2-vertex.
Bob holds the edges EB = N1 ∪ N2.

Figure 2 Input Distribution DSLP(r).

It is known that the expected length of a longest cycle in a random permutation σ ∈ Σr

is at least λ · r, where λ = 0.624 . . . is the Golomb-Dickman constant [20, 19]. Hence, we
obtain

E
H′∼D′

SLP(r)
lp(H ′) ≥ 2 · λ · r − 1 ≥ 1.24 · r ,

using the assumption that r is large enough. Since the longest paths in H and H ′ are
identical, the result follows. ◀

Next, we show that any deterministic protocol on distribution DSLP(r) that communicates
at most 1

100 r bits outputs a path of length O(log r) with high probability over DSLP(r).

▶ Lemma 12. Let ΠSLP be a deterministic one-way communication protocol for Longest Path
on distribution DSLP(r) that communicates at most r

100 bits. Then, the probability over the
input distribution DSLP(r) that ΠSLP outputs a path of length O(log r) is at least 1 − 1

500 .

Proof. Denote by M the set of possible directed input matchings M for Alice in DSLP(r).
Then, |M| = 2r. Next, since every message sent by protocol ΠSLP is of length at most
s := r/100, there are at most 2s different messages. On average, a message therefore
corresponds to 2r−s inputs, and, at most 1

1000 · 2r inputs yield messages that in turn only
correspond to at most 1

10002r−s inputs. Hence, at least 999
10002r inputs yield messages that

each correspond to at least 1
10002r−s inputs. Consider now one of these messages π, and

let M1, M2, . . . be the matchings M that correspond to π. Given π, the protocol can only
output an edge if it is contained in all matchings Mi. Suppose that there are k such edges.
Then, there are at most 2r−k input graphs that contain these edges. We then have:

2r−k ≥ 1
10002r−s ,

which implies k ≤ s + 10.
Denote by K this set of at most k ≤ s + 10 edges. We will now prove that the longest

path in K ∪ EB is of length O(log r) with high probability.

ESA 2025

22:12 Constructing Long Paths in Graph Streams

a1 b2
1 a1 b1

a2 b2
2 a2 b2

a3 b2
3 a3 b3

a4 b2
4 a4 b4

a5 b2
5 a5 b5

a6 b2
6 a6 b6

A B1 B2 A B

b1
1

b1
2

b1
4

b1
5

b1
6

H H ′

σ =
(

1 2 3 4 5 6
2 3 4 1 6 5

)

Figure 3 Illustration of the proof of Lemma 11. The vertices bi are obtained by contracting b1
i

and b2
i . We observe that the permutation σ has a longest cycle of length 4 (1 − 2 − 3 − 4), while H ′

(and H) have longest paths of lengths 7 (a1, b1, a2, b2, . . . , a4, b4).

Denote by A′ the A-endpoints of the edges K, and let a′0 ∈ A′ be any vertex. We bound
the length of the path with starting point a′0. This path first uses the edge in K incident on
a′0, and denote by b′0 the other endpoint of this edge. Then, the path uses the edge of N1
or N2 incident on b′0 to return to an A-vertex that we denote by a′1. Observe that we can
only continue on this path if a′1 ∈ A′. If this is the case then we can continue in the same
fashion, visit a B-vertex b′1, and return to another A-vertex a′2. Again, we can only continue
if a′2 ∈ A′, and so on. For any i ≥ 1, the following holds:

Pr[a′i ∈ A′ | a′0, . . . , a′i−1 ∈ A′] ≤ s + 10 − i

r − i
≤ s + 10

r
= 1

100 + 10
r

≤ 1
50 ,

assuming that r is large enough. Hence, the probability that the path contains p + 2
A′-vertices and is thus of length 2(p + 1) is at most 1

50p . This further implies that, with
probability at least 1 − 1

r2 , the path is of length O(log r).
Observe that the argument above applies when considering any start vertex in A′. Hence,

by a union bound over all possible start vertices in A′, all paths starting at an A′ vertex are
of length O(log r) with probability at least 1 − 1

r . Last, observe that a longest path that
may be able to form could also start at a B-vertex. Such a path however is only by one edge
longer than a path starting at an A-vertex. The O(log r) length bound therefore still holds.

So far, we proved that for a message that corresponds to at least 1
1000 2r−s inputs, Bob can

only output a path of length at most O(log r) with high probability, where the probability is
over Bob’s input. Hence, overall, for a uniform input from DSLP(r), the probability that Bob
will output a path of length O(log r) is at least 999

1000 · (1 − 1
r) ≥ 998

1000 for r large enough. ◀

We use the notation LPα
ϵ to denote LP with approximation factor α and error probability ϵ.

▶ Theorem 13. The randomized one-way communication complexity of LPO(r/ log r)
1/4 on inputs

from DSLP(r) is Ω(r).

Proof. Towards a contradiction, let Πr be a randomized protocol for Longest Path on inputs
from DSLP(r) with approximation factor o(r/ log r) that errs with probability at most 1/4.
Given Πr, by Yao’s Lemma, there exists a deterministic protocol Πd on distribution DSLP(r)
with distributional error 1/4 and approximation factor o(r/ log r), i.e., on at least 3/4 of the
inputs, the protocol achieves a o(r/ log r)-approximation.

C. Konrad and C. Trehan 22:13

Lemma 11 states that EH←DSLP(r) lp(H) ≥ 1.24r. This allows us to bound the quantity
PrH←DSLP(r)[lp(H) ≥ 1

2 r], as follows:

1.24r ≤ E
H←DSLP(r)

lp(H) ≤ Pr
H←DSLP(r)

[lp(H) ≥ 1
2r] · 2r + (1 − Pr

H←DSLP(r)
[lp(H) ≥ 1

2r])1
2r

= r ·
(

1.5 · Pr
H←DSLP(r)

[lp(H) ≥ 1
2r] + 1

2

)
,

where we used the fact that the longest path in H is at most the number of vertices in H,
i.e., 2r. The previous inequality then implies that PrH←DSLP(r)[lp(H) ≥ 1

2 r] ≥ 1.24−0.5
1.5 ≥ 1

3 .
Next, Lemma 12 states that, with probability at least 1− 1

500 , Πd outputs a path of length
at most O(log r). Hence, with probability at least 1/3 − 1/500 > 1/4, there simultaneously
exists a longest path of length at least 1

2 r and Πd outputs one of length (O log r). The
approximation factor of Πd is therefore Ω(r/ log r), contradicting the fact that Πd achieves
an approximation factor of o(r/ log r) on at least 3/4 of the instances. Protocols Πd and Πr

therefore do not exist, which completes the proof. ◀

▶ Lemma 14. Let Π be a randomized protocol for LPO(r/ log r)
1/4− 1

100
on inputs from DSLP(r).

Then:

ICostDSLP(r)(Π) = Ω(r) .

Proof. Denote by Π a randomized one-way two-party communication protocol for LPO(r/ log r)
1/4− 1

100
on inputs from DSLP(r). Given Π, using the message compression technique stated in
Theorem 9, we obtain a protocol Π′ for LPO(r/ log r)

1/4− 1
100

that sends a message of expected size
(recall that M is Alice’s input matching)

s := IDSLP(r)(M : Π) + 2 · log
(
1 + IDSLP(r)(M : Π)

)
+ O(1) , (1)

where the expectation is taken over the randomness used by the protocol. Then, by the
Markov inequality, the probability that the message is of size at least 100 · s is at most 1

100 .
Given Π′, we now construct a protocol Π′′ with maximum message size 100 · s that solves

LP with slightly increased error: Whenever Π′ sends a message of size at most 100 · s, Π′′ also
sends this message and the protocol behaves exactly the same as Π′. However, when Π′ sends
a message of size at least 100 · s, Π′′ aborts and thus fails. Since the probability of sending a
message of size larger than 100 · s is 1/100, the error probability of Π′′ is (1

4 − 1
100) + 1

100 = 1
4 .

From Theorem 13, we obtain that the communication cost of Π′′ is Ω(r), which implies that
100 · s = Ω(r). Hence, combined with Inequality 1, we conclude that

Ω(r) = IDSLP(r)(M : Π) ≤ IDSLP(r)(M : Π | R) = ICostDSLP(r)(Π) ,

where the inequality follows from property P1 stated in the preliminaries. ◀

4.2 Hard Input Distribution and Direct Sum Argument
The input distribution DLP(n) used to obtain our main lower bound is stated in Figure 4.

We now argue that a protocol ΠLP(n) that solves LP under distribution DLP(n) can be
used to obtain a protocol ΠSLP(r) that solves LP under DSLP(r), where r is the size of the
induced matchings of the RS-graph used in DLP(n). This establishes a connection between
the information costs of ΠLP(n) and ΠSLP(r). We use the reduction stated in Algorithm 2.

This reduction has the following properties:

ESA 2025

22:14 Constructing Long Paths in Graph Streams

Input Distribution DLP(n):
Let H = (AH , BH , EH) be an (r, t)-RS graphs with |AH | = |BH | = n and induced
matchings MH

1 , MH
2 , . . . , MH

t .
Alice’s Input: Edge set EA

Given H = (AH , BH , EH), we construct the directed bipartite graph G = (A, B =
B1 ∪̇ B2, E), where:

A is a copy of AH , and B1 and B2 are copies of BH .
For every edge e = {a, b} ∈ EH , we flip an unbiased coin Xa,b. If it comes out heads
then the directed edge (a, b) between the sets A and B1 is introduced, and if it comes
out tail then the directed edge (a, b) between the sets A and B2 is introduced.

We denote the edges in E that originated from the matching MH
i , for any i, by Mi. Alice

holds the edges EA = ∪iMi.
Bob’s Input: Edge set EB

Let J ∈ [t] be a uniform random index.
Consider the matching MH

J ∈ EH and let A′H = A(MH
J) and B′H = B(MH

J). Let NJ

be a uniform random matching between A′ and B′.
Bob introduces two copies of NJ into G: To this end, let A′ ⊆ A be the copy of A′H
in G, let B′1 ⊆ B1 be the copy of B′ in B1, and let B′2 ⊆ B2 be the copy of B′ in
B2. The first copy N1

J is introduced between A′ and B′1, and the second copy N2
J is

introduced between A′ and B′2. The edges in N1
J and N2

J are directed such that the
A-vertex constitutes the head and the B-vertex the tail of the directed edge.

Bob holds the edges EB = N1
J ∪ N2

J .

Figure 4 Input Distribution DLP(n).

Algorithm 2 Construction of protocol ΠSLP(r).
Require:

1. Protocol ΠLP(n) that solves LPα
1/4 under distribution DLP(n)

2. Input (M, N1, N2) ∼ DSLP(r), Alice holds matching M , Bob holds matchings N1, N2

1: Alice and Bob use public randomness to generate a uniform random index J ∈ [t]
2: Alice samples graph G ∼ DLP(n) and updates matching MJ in G such that MJ = M

3: Bob set N1
J = N1 and N2

J = N2 and adds these to G

4: Alice and Bob run the protocol ΠLP(n) on G, denote by P the output of ΠLP(n)
5: return Longest sub-path of P that solely uses edges in MJ ∪ N1

J ∪ N2
J

▶ Lemma 15. Consider the reduction in Algorithm 2. Given any path P in G of length at
least 2, the path P ′ with the first and last edge removed only uses edges from MJ ∪ N1

J ∪ N2
J .

Proof. Let P be a path of length at least 2 in G. Since G is bipartite, every other edge in P
must be an edge from N1

J ∪ N2
J since these are the only edges with head in A. Observe that

the edges MJ are the only edges with both endpoints in A(N1
J ∪N2

J) and B(N1
J ∪N2

J). Hence,
for any three consecutive edges e, f, g in path P, if e and g are edges from N1

J ∪ N2
J , then f

must be an edge from MJ . It follows that if an edge that is not contained in MJ ∪ N1
J ∪ N2

J

is included in P then this edge must be the first or the last edge of P. ◀

Given our reduction, we now relate the information costs of ΠSLP(r) and ΠLP(n):

C. Konrad and C. Trehan 22:15

▶ Lemma 16. Let ΠLP(n) be a protocol for LPα
ϵ , for some parameters α and ϵ, and let

ΠSLP(r) be the protocol obtained from ΠLP(n) via the reduction given in Algorithm 2. Then,
ΠSLP(r) has approximation factor O(α), errs with the same probability ϵ, and:

ICostDLP(n)(ΠLP(n)) = t · ICostDSLP(r)(ΠSLP(r)) .

Proof. We denote by RSLP and RLP the public randomness used in ΠSLP(r) and in ΠLP(n),
respectively. Then (see the rules P1, . . . , P4 in the preliminaries):

ICostDSLP(r)(ΠSLP(r)) = IDSLP(r)(M : ΠSLP(r) | RSLP)
= IDSLP(r)(MJ : ΠLP(n) | RLP, J)
= Ej←J IDLP(n)(MJ : ΠLP(n) | RLP, J = j) P2

= 1
t

·
∑
j∈[t]

IDLP(n)(Mj : ΠLP(n) | RLP, J = j)

= 1
t

·
∑
j∈[t]

IDLP(n)(Mj : ΠLP(n) | RLP) P3

≤ 1
t

·
∑
j∈[t]

IDLP(n)(Mj : ΠLP(n) | M1, . . . , Mj−1, RLP) P1

= 1
t

· IDLP(n)(M1, . . . , Mt : ΠLP(n) |RLP) P4

= ICostDLP(n)(ΠLP(n)) .

Regarding the approximation factor, observe that lp(H) ≤ lp(G). Furthermore, by Lemma 15,
the path found by ΠSLP(r) is at most by 2 shorter than the path found by ΠLP(n), which in
turn is of length at least lp(G)/α. Hence, the approximation factor of ΠSLP(r) is bounded
by lp(H)

lp(G)/α−2 ≤ lp(G)
lp(G)/α−2 = O(α) . ◀

We are now ready to state our main lower bound result for directed graphs.

▶ Theorem 17. The randomized one-way communication complexity of LPO(r/ log r)
1/4− 1

500
(n) is

Ω(r · t).

Proof. Let ΠLP(n) be a protocol for LPO(r/ log r)
1/4− 1

500
(n). Then, from Lemmas 16 and 14, we

obtain

ICostDLP(n)(ΠLP(n)) = Ω(r · t) .

Since the choice of ΠLP(n) was arbitrary, and information complexity is a lower bound on
communication complexity, the result follows. ◀

Finally using the well-known connection between streaming algorithms and one-way
two-party communication protocols as well as the RS-graph construction by Alon et al. as
stated in Theorem 7, we obtain the following theorem:

▶ Theorem 3. Any one-pass algorithm for LPO(n1−o(1)/ log(n1−o(1))
1/4− 1

500
(n) = LPO(n1−o(1))

1/4− 1
500

(n)
requires space Ω(n2).

ESA 2025

22:16 Constructing Long Paths in Graph Streams

5 Conclusion

We studied one-pass streaming algorithms for LP and showed that, in both insertion-only
and insertion-deletion streams, for undirected graphs, there are semi-streaming algorithms
that find paths of lengths at least d

3 with high probability, where d is the average degree of
the input graph. The algorithm can also give an α-approximation algorithm that uses space
Õ(n2/α). We then showed that no such result can be obtained for directed graphs in that a
n1−o(1)-approximation requires space Ω(n2), even in insertion-only streams. We also showed
that semi-streaming algorithms in the insertion-only model for undirected graphs cannot
yield an arbitrarily small constant factor approximation, and, in insertion-deletion streams,
space Ω(n2/α3) is necessary to obtain an α-approximation in undirected graphs.

We conclude with two open questions: First, while we resolved the space complexity of
one-pass algorithms for directed graphs in both the insertion-only and the insertion-deletion
models, the space complexity for undirected graphs, in particular, in the insertion-only
model, remains wide open. Can we close this gap? Second, for undirected graphs, are there
multi-pass semi-streaming algorithms that compute paths longer than Θ(d), where d is the
average degree of the input graph?

References

1 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation clustering in data streams. Algorithmica, 83(7):1980–2017, 2021. doi:10.1007/
S00453-021-00816-9.

2 Noga Alon, Ankur Moitra, and Benny Sudakov. Nearly complete graphs decomposable
into large induced matchings and their applications. In Howard J. Karloff and Toniann
Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, May 19–22, 2012, pages 1079–1090. ACM, 2012. doi:
10.1145/2213977.2214074.

3 Sepehr Assadi. A two-pass (conditional) lower bound for semi-streaming maximum matching.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9–12, 2022, pages 708–742. SIAM, 2022. doi:10.1137/1.9781611977073.32.

4 Sepehr Assadi, Soheil Behnezhad, Christian Konrad, Kheeran K. Naidu, and Janani Sundaresan.
Settling the pass complexity of approximate matchings in dynamic graph streams. In Yossi
Azar and Debmalya Panigrahi, editors, Proceedings of the 2025 Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2025, New Orleans, LA, USA, January 12-15, 2025, pages
864–904. SIAM, 2025. doi:10.1137/1.9781611978322.25.

5 Sepehr Assadi, Aaron Bernstein, Zachary Langley, Lap Chi Lau, and Robert Wang. Streaming
and communication complexity of load-balancing via matching contractors. In Yossi Azar
and Debmalya Panigrahi, editors, Proceedings of the 2025 Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2025, New Orleans, LA, USA, January 12-15, 2025, pages
3423–3449. SIAM, 2025. doi:10.1137/1.9781611978322.113.

6 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆ + 1) vertex
coloring. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 767–786. SIAM, 2019. doi:10.1137/1.9781611975482.48.

7 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 1723–1742. SIAM, 2017. doi:10.1137/1.9781611974782.113.

https://doi.org/10.1007/S00453-021-00816-9
https://doi.org/10.1007/S00453-021-00816-9
https://doi.org/10.1145/2213977.2214074
https://doi.org/10.1145/2213977.2214074
https://doi.org/10.1137/1.9781611977073.32
https://doi.org/10.1137/1.9781611978322.25
https://doi.org/10.1137/1.9781611978322.113
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1137/1.9781611974782.113

C. Konrad and C. Trehan 22:17

8 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345–1364. SIAM,
2016. doi:10.1137/1.9781611974331.CH93.

9 Sepehr Assadi, Christian Konrad, Kheeran K. Naidu, and Janani Sundaresan. O(log log n)
passes is optimal for semi-streaming maximal independent set. In Bojan Mohar, Igor Shinkar,
and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 847–858. ACM,
2024. doi:10.1145/3618260.3649763.

10 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. Journal of Computer and System Sciences, 87:119–139,
2017. doi:10.1016/j.jcss.2017.03.003.

11 Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approximating longest directed
paths and cycles. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella,
editors, Automata, Languages and Programming, pages 222–233, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg. doi:10.1007/978-3-540-27836-8_21.

12 Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex ordering
problems in directed graph streams. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 1786–1802. SIAM, 2020. doi:10.1137/1.9781611975994.109.

13 Yi-Jun Chang, Martin Farach-Colton, Tsan-sheng Hsu, and Meng-Tsung Tsai. Streaming
complexity of spanning tree computation. In Christophe Paul and Markus Bläser, editors, 37th
International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March
10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 34:1–34:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.STACS.2020.34.

14 Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival
streams. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 45:1–45:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ICALP.2019.45.

15 Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover
in dynamic graph streams. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPICS.CCC.2020.30.

16 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/J.TCS.2005.09.013.

17 Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex
Samorodnitsky. Monotonicity testing over general poset domains. In John H. Reif, editor,
Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002,
Montréal, Québec, Canada, pages 474–483. ACM, 2002. doi:10.1145/509907.509977.

18 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Yuval Rabani, editor, Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 468–485. SIAM, 2012. doi:10.1137/1.9781611973099.41.

19 S. W. Golomb. Random permutations. Bull. Amer. Math. Soc. 70, 1964.
20 S. W. Golomb, L. R. Welch, and R. M. Goldstein. Cycles from nonlinear shift registers.

Technical report, Progress Rep. No. 20-389, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California, 1959.

ESA 2025

https://doi.org/10.1137/1.9781611974331.CH93
https://doi.org/10.1145/3618260.3649763
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1007/978-3-540-27836-8_21
https://doi.org/10.1137/1.9781611975994.109
https://doi.org/10.4230/LIPICS.STACS.2020.34
https://doi.org/10.4230/LIPICS.ICALP.2019.45
https://doi.org/10.4230/LIPICS.CCC.2020.30
https://doi.org/10.1016/J.TCS.2005.09.013
https://doi.org/10.1145/509907.509977
https://doi.org/10.1137/1.9781611973099.41

22:18 Constructing Long Paths in Graph Streams

21 Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan. The
communication complexity of correlation. In 22nd Annual IEEE Conference on Computational
Complexity (CCC 2007), 13-16 June 2007, San Diego, California, USA, pages 10–23. IEEE
Computer Society, 2007. doi:10.1109/CCC.2007.32.

22 Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Maurizio Lenzerini and Thomas Schwentick,
editors, Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 49–58. ACM, 2011.
doi:10.1145/1989284.1989289.

23 Ramkumar G. D. S. Karger D, Motwani R. On approximating the longest path in a graph.
Algorithmica, pages 82–98, 1997. doi:10.1007/BF02523689.

24 Shahbaz Khan and Shashank K. Mehta. Depth First Search in the Semi-streaming Model. In
Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 42:1–42:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2019.42.

25 Lasse Kliemann, Christian Schielke, and Anand Srivastav. A streaming algorithm for the
undirected longest path problem. In Piotr Sankowski and Christos D. Zaroliagis, editors,
24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus,
Denmark, volume 57 of LIPIcs, pages 56:1–56:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPICS.ESA.2016.56.

26 Christian Konrad and Kheeran K. Naidu. On two-pass streaming algorithms for maximum
bipartite matching. In Mary Wootters and Laura Sanità, editors, Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021,
August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference),
volume 207 of LIPIcs, pages 19:1–19:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.APPROX/RANDOM.2021.19.

27 Christian Konrad and Kheeran K. Naidu. An unconditional lower bound for two-pass streaming
algorithms for maximum matching approximation. In David P. Woodruff, editor, Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA,
January 7-10, 2024, pages 2881–2899. SIAM, 2024. doi:10.1137/1.9781611977912.102.

28 Christian Konrad, Kheeran K. Naidu, and Arun Steward. Maximum matching via maximal
matching queries. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha
Kanté, editors, 40th International Symposium on Theoretical Aspects of Computer Science,
STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 41:1–41:22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.STACS.2023.
41.

29 Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus
Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and
Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA,
USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science,
pages 170–181. Springer, 2005. doi:10.1007/11538462_15.

30 Slobodan Mitrovi?, Anish Mukherjee, Piotr Sankowski, and Wen-Horng Sheu. Faster semi-
streaming matchings via alternating trees, 2025. doi:10.48550/arXiv.2412.19057.

31 Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

32 Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57,
1985. doi:10.1145/3147.3165.

https://doi.org/10.1109/CCC.2007.32
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1007/BF02523689
https://doi.org/10.4230/LIPIcs.STACS.2019.42
https://doi.org/10.4230/LIPICS.ESA.2016.56
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.19
https://doi.org/10.1137/1.9781611977912.102
https://doi.org/10.4230/LIPICS.STACS.2023.41
https://doi.org/10.4230/LIPICS.STACS.2023.41
https://doi.org/10.1007/11538462_15
https://doi.org/10.48550/arXiv.2412.19057
https://doi.org/10.1145/3147.3165

C. Konrad and C. Trehan 22:19

A Technical Lemmas

▶ Lemma 18. Let a, b, c be positive with a − c ≥ b. Then: (a−c
b)

(a
b)

≤ exp(− b·c
a) .

Proof. We compute as follows:(
a−c

b

)(
a
b

) =
(a−c)!

(a−b−c)!b!
a!

(a−b)!b!
= (a − c) · (a − c − 1) · . . . · (a − b − c + 1)

a · (a − 1) · . . . · (a − b + 1) ≤ (1 − c

a
)b ≤ exp(−bc

a
) ,

where we used the inequality 1 + x ≤ exp(x), which holds for all x. ◀

▶ Lemma 19. Let G = (V, E) be a graph with |V | = n, |E| = m, and average degree d = 2 m
n .

Then, there exists a subset of vertices U ⊆ V such that the vertex-induced subgraph G[U] has
minimum degree greater than d

2 .

Proof. We iteratively remove vertices of degree at most d/2 from G until no such vertex is
left. Let Gi be the graph with the first i vertices removed, and let G0 = G. We denote mi

the number of edges in Gi, and ni = n − i the number of vertices in Gi. It can then be seen
by induction that the average degree di of every graph Gi is still at least d0 = d. Indeed,
observe that removing a vertex of degree at most d/2 removes at most d/2 edges from the
graph. Then, the average degree of graph Gi+1 is:

2 · mi+1

ni+1
≥ 2 ·

mi − d
2

n − (i + 1) = 2 ·
d
2 (n − i) − d

2
n − (i + 1) = d .

Then, since the average degree remains as high as d throughout, and we only ever remove
vertices of degree at most d/2, the process must leave a non-empty graph with minimum
degree at least ⌊d/2 + 1⌋ behind. The set U then is the set of vertices that are not removed
by this process. ◀

ESA 2025

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Outline

	2 Preliminaries
	2.1 Rusza-Szemerédi Graphs
	2.2 Streaming Models
	2.3 Communication Complexity
	2.4 Information Complexity and Message Compression

	3 Algorithm
	3.1 Sampling-based Algorithm
	3.2 Implementation in Streaming Models

	4 Insertion-only Lower Bound for Directed Graphs
	4.1 A Simple Distribution
	4.2 Hard Input Distribution and Direct Sum Argument

	5 Conclusion
	A Technical Lemmas

