
Fréchet Distance in Unweighted Planar Graphs
Ivor van der Hoog #

IT University of Copenhagen, Denmark

Thijs van der Horst #

Utrecht University, The Netherlands
TU Eindhoven, The Netherlands

Eva Rotenberg #

IT University of Copenhagen, Denmark

Lasse Wulf #

IT University of Copenhagen, Denmark

Abstract

The Fréchet distance is a distance measure between trajectories in Rd or walks in a graph G. Given
constant-time shortest path queries, the Discrete Fréchet distance DG(P, Q) between two walks P

and Q can be computed in O(|P | · |Q|) time using a dynamic program. Driemel, van der Hoog, and
Rotenberg [SoCG’22] show that for weighted planar graphs this approach is likely tight, as there
can be no strongly-subquadratic algorithm to compute a 1.01-approximation of DG(P, Q) unless the
Orthogonal Vector Hypothesis (OVH) fails.

Such quadratic-time conditional lower bounds are common to many Fréchet distance variants.
However, they can be circumvented by assuming that the input comes from some well-behaved class:
There exist (1 + ε)-approximations, both in weighted graphs and in Rd, that take near-linear time
for c-packed or κ-straight walks in the graph. In Rd there also exists a near-linear time algorithm to
compute the Fréchet distance whenever all input edges are long compared to the distance.

We consider computing the Fréchet distance in unweighted planar graphs. We show that there
exist no strongly-subquadratic 1.25-approximations of the discrete Fréchet distance between two
disjoint simple paths in an unweighted planar graph in strongly subquadratic time, unless OVH
fails. This improves the previous lower bound, both in terms of generality and approximation factor.
We subsequently show that adding graph structure circumvents this lower bound: If the graph is
a regular tiling with unit-weighted edges, then there exists an Õ((|P | + |Q|)1.5)-time algorithm to
compute DG(P, Q). Our result has natural implications in the plane, as it allows us to define a new
class of well-behaved curves that facilitate (1 + ε)-approximations of their discrete Fréchet distance
in subquadratic time.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms; Theory of computation → Graph algorithms
analysis

Keywords and phrases Fréchet distance, planar graphs, lower bounds, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.24

Related Version Full Version: https://arxiv.org/abs/2504.17342

Funding This work was supported by the Independent Research Fund Denmark grant 2020-2023
(9131-00044B) “Dynamic Network Analysis”, the Carlsberg Foundation Young Researcher Fellowship
CF21-0302 “Graph Algorithms with Geometric Applications”, the VILLUM Foundation grant
(VIL37507) “Efficient Recomputations for Changeful Problems”, and the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No
899987.

© Ivor van der Hoog, Thijs van der Horst, Eva Rotenberg, and Lasse Wulf;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idjva@dtu.dk
https://orcid.org/0009-0006-2624-0231
mailto:t.w.j.vanderhorst@uu.nl
https://orcid.org/0009-0002-6987-4489
mailto:erot@itu.dk
https://orcid.org/0000-0001-5853-7909
mailto:lawu@dtu.dk
https://orcid.org/0000-0001-7139-4092
https://doi.org/10.4230/LIPIcs.ESA.2025.24
https://arxiv.org/abs/2504.17342
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

24:2 Fréchet Distance in Unweighted Planar Graphs

1 Introduction

The Fréchet distance is a widely used metric for measuring the similarity between trajectories.
It is often illustrated through a metaphor: imagine a person walking along one trajectory
and their dog following another, connected by a leash. The Fréchet distance is the minimum
possible leash length over all synchronized traversals of both trajectories.

This metric has numerous applications, particularly in movement data analysis [10, 18,
24, 15, 5, 13, 25, 33]. It is versatile, having been applied to handwriting recognition [29],
coastlines [26], geometric shapes in geographic information systems [16], and trajectories
of moving objects such as vehicles, animals, and athletes [28, 30, 6, 13]. We consider the
discrete Fréchet distance, where trajectories are modeled as sequences of discrete points.

Alt and Godau [2] were the first to analyse the Fréchet distance from a computational
perspective. They considered trajectories as polygonal curves in Rd with n and m vertices, and
compute the continuous Fréchet distance in O(mn log(n + m)) time. Later, Buchin, Buchin,
Meulemans and Mulzer [11] introduced a faster randomized algorithm, achieving a running
time of O(n2√

log n(log log n)3/2) on a real-valued pointer machine and O(n2 log log n) on a
word RAM. For the discrete Fréchet distance, Eiter and Mannila [20] presented an O(nm)
time algorithm under constant-time distance computations. Agarwal, Avraham, Kaplan, and
Sharir [1] later improved this to O(nm(log log nm)/ log nm) in the word RAM.

Driemel, van der Hoog, and Rotenberg [19] initiate the study of Fréchet distance in graphs.
They consider as input a (weighted) graph G where a trajectory is a walk in the graph. The
distance between two vertices is the length of their shortest path. Given a constant-time
distance oracle, the discrete Fréchet distance DG(P, Q) between any two walks in G can then
be computed in O(nm) time using the algorithm by Eiter and Mannila [20].

Conditional Lower Bounds. Several conditional lower bounds exist for computing the
Fréchet distance or its constant-factor approximations. These results rely on complexity
assumptions such as the Orthogonal Vector Hypothesis (OVH) and the Strong Exponential
Time Hypothesis (SETH) [32]. Bringmann [7] established that no algorithm can compute
the (discrete or continuous) Fréchet distance between two polygonal curves of n vertices
in O(n2−δ) time for any δ > 0, unless OVH fails. The same lower bound holds for small
constant-factor approximations. Bringmann’s proof originally involved self-intersecting curves
in the plane, but later work by Bringmann and Mulzer [9] extended the result to intersecting
curves in R1. Buchin, Ophelders, and Speckmann [12] further demonstrated that the same
lower bound applies for any better-than-3-approximation algorithm for pairwise disjoint
planar curves in R2, or intersecting curves in R1.

Bringmann’s lower bound [7] holds also for unbalanced inputs: given two curves with n

and m vertices in the plane, no algorithm can compute the Fréchet distance in O((nm)1−δ)
time assuming OVH. Driemel, van der Hoog and Rotenberg [19] give a similar lower bound for
paths in a weighted planar graph. They prove that, unless OVH fails, no O((nm)1−δ)-time
algorithm can 1.01-approximate the discrete Fréchet distance between arbitrary paths in a
weighted planar graph – even if the ratio between smallest and highest weight is bounded
by a constant. This lower bound applies only to weighted graphs and does therefore not
exclude the existence of a fast algorithm on unweighted planar graphs. A closer inspection of
their argument reveals that their proof cannot simply be adapted to the unweighted case by
subdividing long edges often enough. In this case, new vertices get introduced to the graph
and their arguments break down.

I. van der Hoog, T. van der Horst, E. Rotenberg, and L. Wulf 24:3

Avoiding lower bounds through well-behaved curves. These lower bounds can be cir-
cumvented if the input is well-behaved. Driemel, Har-peled and Wenk [17] consider three
classes of curves in Rd which are well-behaved as long as their corresponding behavioural
parameter is low. These are c-packed curves [17, 8], ϕ-low density curves [17], and κ-bounded
curves [3, 4, 17]. They show algorithms to compute a (1 + ε)-approximation between two
well-behaved curves whose running time is near-linear in n and m. Gudmundsson, Mirz-
anezhad, Mohades, and Wenk consider the special case where all edges of the input curves
are long with respect to their Fréchet distance [23]. In this case, the Fréchet distance can be
computed in O((n + m) log(n + m)) time [23]. Driemel, van der Hoog, and Rotenberg [19]
show that if the input are walks in a graph G and one of the walks is restricted to a c-packed
or κ-straight path, then there exists (1 + ε)-approximations that take near-linear time.

Contribution. Driemel, van der Hoog, and Rotenberg [19] ruled out a strongly subquadratic
algorithm for a 1.01-approximation between paths in a weighted graph, while the construction
by Buchin, Ophelders, and Speckmann [12] rules out a strongly subquadratic algorithm for a
3-approximation between walks in an unweighted planar graph. We consider the discrete
Fréchet distance between paths in an unweighted planar graph. We prove (Theorem 5) that
no strongly-subquadratic 1.25-approximation algorithm exists unless OVH fails, thereby
improving both the generality (and also the approximation factor for planar graphs).

Next, we prove that adding graph structure circumvents this lower bound. If G is an
unweighted regular tiling of the plane, then there exists an Õ((n + m)1.5)-time algorithm to
compute the Fréchet distance DG(P, Q), between curves of length n and m. Our results have
natural implications in the plane, for a special class of well-behaved curves ((ε, δ)-curves, to
be defined). For those, we can compute the Fréchet distance under the L1 metric (respectively,
approximate it for any Lc metric) in Õ(

√
δ

ε (n + m)1.5) time (respectively, Õ(δ
ε2 (n + m)1.5)

time). For completeness, we explain the continuous analogy to (ε, δ)-curves in the full version
of this paper. We also compare this new curve class to existing well-behaved curve classes in
the full version.

2 Preliminaries

Let G be an unweighted graph where V (G) is its vertex set. We define P = (p1, . . . , pn)
and Q = (q1, . . . , qm) as two paths in G. A path cannot visit a vertex twice. For integers
i, i′ ∈ [n] with i ≤ i′ we denote by P [i : i′] the subpath of P from pi to pi′ . We define the
discrete Fréchet distance DG(P, Q) between P and Q as follows [19]: A sequence (ai, bi)i∈[k]
of pairs of indices is a monotone walk if for all i ∈ [k − 1] we have ai+1 ∈ {ai, ai + 1} and
bi+1 ∈ {bi, bi + 1}. Let Fn,m be the set of all monotone walks from (1, 1) to (n, m). The cost
of F ∈ Fn,m is the maximum of dist(pi, qj) over (i, j) ∈ F , where dist() denotes the length
of the shortest path between vertices. DG(P, Q) is the minimum cost of a walk in Fn,m.

DG(P, Q) = min
F ∈Fn,m

cost(F) = min
F ∈Fn,m

max
(i,j)∈F

dist(pi, qj).

(a) (b)

Figure 1 (a) The three regular plane tilings. (b) A hexagonal super-tiling of a triangular tiling.

ESA 2025

24:4 Fréchet Distance in Unweighted Planar Graphs

Decision variant. We focus on the decision variant where the input includes some ∆ ≥ 0
and the goal is to output whether DG(P, Q) ≤ ∆. The ∆-free space matrix M∆ is the n by m

matrix where M∆[i, j] is 0 if dist(pi, qj) ≤ ∆ and 1 otherwise. We follow geometric convention,
where i denotes the column of M∆ (column i corresponds to some pi ∈ P . Column entries
with value 0 correspond to qj ∈ Q with dist(pi, qj) ≤ ∆). Eiter and Mannila [20] define
a directed graph over M∆ where there is an edge from M∆[a, b] to M∆[c, d] if and only if
c ∈ {a, a + 1}, d ∈ {b, b + 1} and M∆[a, b] = M∆[c, d] = 0. They prove that DG(P, Q) ≤ ∆ if
and only if there exists a directed path from (1, 1) to (n, m) in this graph.

Orthogonal vectors. Our conditional lower bound reduces from the Orthogonal Vector
Hypothesis. The input consists of two ordered sets of d-dimensional Boolean vectors U, W of
sizes |U | = n and |W | = m. We denote for u ∈ U by ui ∈ {0, 1} its i’th component. The OV
problem is to find out if some vector of U is orthogonal to some vector of W .

▶ Definition 1 (Williams [32]). The orthogonal vector hypothesis (OVH) states that for all
δ > 0, there exists constants ω and 1 > γ > 0 such that the OV problem for vectors of
dimension d = ω log n and m = nγ cannot be solved in O((nm)1−δ) time.

We consider each vector in U (or W) as a string of d bits. We denote by str(U) and
str(W) the concatenation of all strings in U and W , respectively. A substring of some string
s1s2 . . . sk is the sequence sasa+1 . . . sb−1sb for some 1 ≤ a ≤ b ≤ k.

Regular tilings. A regular tiling T is an infinite plane graph where each face is a regular
polygon and each face has the same degree. There exist exactly three regular tilings [22]: the
triangular, square, and hexagonal tiling (Figure 1). Without loss of generality, we assume
that our tilings are axis-aligned. A face F of T is an open region bounded by the edges of T ,
we denote by F its closure. The edge length of T is the length of any edge. A tiling is unit
if its edges have unit length. A path in T is a path in its corresponding graph. We always
denote by T a unit tiling where (0, 0) is a vertex of T . For any pair of vertices p, q of T ,
the term dist(p, q) denotes the distance in the graph T . We assume that we can compute
dist(p, q) in constant time. Our algorithm considers what we will call a super-tiling of T and
a natural partition of the edges of P and Q into subpaths.

▶ Definition 2 (Figure 1 (b)). Given a regular tiling T of the plane, a super-tiling T of T is a
regular tiling of the plane whose vertex set is a subset of the vertex set V (T). The boundary
vertices B(T) are the vertices of T that lie on the boundary of some face of T.

▶ Definition 3. Consider a regular tiling T , some super-tiling T and a path P in T , we
define the breakpoints B(P,T) as all vertices in P ∩ B(T).

Given a path P in a tiling T and a super-tiling T of T , we want to consider how T splits
P into smaller snippets, each snippet “belonging” to a face of T. More formally:

▶ Definition 4 (Figure 2). Consider a regular tiling T and a super-tiling T of T . Given a
path P = (p1, p2, . . . , pn) in T , let I := {i ∈ [n] | pi ∈ B(P,T) or i ∈ {1, n}}. We define the
induced subpaths S(P,T) as all subpaths P [x : y], for consecutive x, y ∈ I. Note that for
each induced subpath, there exists a (not necessarily unique) face F in T whose closure F̄

contains it; we say the induced subpath is assigned to one such face (breaking ties arbitrarily).

I. van der Hoog, T. van der Horst, E. Rotenberg, and L. Wulf 24:5

(a) (b)

Figure 2 (a) For a face F in the super-tiling T, we show the set B(T) ∩ F . (b) Given a path P ,
we create a sequence of subpaths of P where consecutive subpaths overlap in a single vertex.

Submatrices of M∆. We show a subquadratic algorithm to decide whether DT(P, Q) ≤ ∆
if P and Q are paths in a tiling T . We compute a monotone walk from (1, 1) to (n, m) in M∆
by efficiently propagating reachability information across submatrices of M∆. For integers
i, i′ ∈ [n] and j, j′ ∈ [m] with i ≤ i′ and j ≤ j′ we denote by M∆[i : i′, j : j′] the submatrix
of M∆ that consist of all entries M∆[x, y] for (x, y) ∈ [i, i′] × [j, j′]. We define the bottom-left
facets of M∆[i : i′, j : j′] as all entries {M∆[i, y] | y ∈ [j, j′]} and {M∆[x, j] | x ∈ [i, i′]}. The
top-right facets are defined as the entries {M∆[i′, y] | y ∈ [j, j′]} and {M∆[x, j′] | x ∈ [i, i′]}.

(ε, δ)-curves. Finally, we introduce a new class of well-behaved curves in the plane. Intuit-
ively, an (ε, δ)-curve, for small δ, is a curve composed of short edges that does not revisit the
same region of the plane too frequently. Formally, fix a universal constant γ ∈ O(1). Let P

be a curve in the plane, and let Bε denote the set of all balls (in Euclidean metric) of radius
ε centred at the vertices of P . We say that P is an (ε, δ)-curve if all its edges have length at
most γ, and any point in the plane lies in at most δ balls from Bε.

For any given pair (P, ε), δ is determined. As ε decreases, so may δ. If δ remains large for
small ε, then many vertices of P are densely clustered – i.e., effectively, the curve frequently
revisits the same locations. We present an exact algorithm for the Discrete Fréchet distance
under the L1 metric with a linear dependency on

√
δ

ε . We assume that the input specifies
a desirable value of ε, and that this yields a favourable corresponding δ. Imposing that
δ is constant amounts to requiring that the curve does not revisit any ε-ball more than a
constant number of times – a restriction that somewhat resembles the well-studied c-packed
curves [17, 19, 8]. In the full version of this paper, we discuss in detail how our new class
relates to the prior well-behaved curve classes.

3 A lower bound for paths in an unweighted planar graph

Let G be an unweighted planar graph and P and Q be paths in G. We show a lower bound,
conditioned on OVH, that excludes any strongly subquadratic algorithm to compute a
1.25-approximation of DG(P, Q). Since we are space-restricted, we present our argument only
in the full version of this paper. Here, we assume that the reader is familiar with how these
lower bounds are typically constructed [7, 12, 19, 9] and only mention how our construction
differs from prior works. We start with some OV instance (U, W). We build an unweighted
planar graph G and two paths P and Q in G such that DG(P, Q) ≤ 4 if and only if the OV
instance is a yes-instance and DG(P, Q) ≥ 5 otherwise. One novelty of our approach is a
preprocessing step, where we transform (U, W) into an equivalent instance with additional
properties:

▶ Lemma 1. An instance U ′, W ′ ⊆ {0, 1}d′ of OV can be preprocessed in O(d′(n + m)) time,
resulting in a new instance U, W ⊆ {0, 1}d with d ∈ O(d′) such that:

a yes-instance stays a yes-instance and a no-instance stays a no-instance,

ESA 2025

24:6 Fréchet Distance in Unweighted Planar Graphs

for all u ∈ U , u1 = ud = 0 and for all w ∈ W , w1 = wd = 1,
if the instance is a no-instance, then ∀u ∈ U the vector u is not only non-orthogonal to
every w ∈ W , but even non-orthogonal to all consecutive length-d substrings of str(W).

This preprocessing significantly simplifies our proofs and may be of independent interest.
Previous lower bound constructions [7, 19, 12, 9] fix some ∆ ∈ R. Given an OV-instance
(U, W), they construct curves (P, Q) by constructing for each u ∈ U a subcurve f(u) and
each w ∈ W a subcurve g(w) (see Figure 3). The construction has a very strong property:
Consider a traversal of P and Q where the person and the dog remain within distance ∆ of
one another. If the person is in f(u) for some u ∈ U and the dog is in g(w) for some w ∈ W

then neither the person or the dog can stand still if the other moves.
Requiring the planar graph to be unweighted significantly restricts the freedom we have

in engineering the pairwise distance between vertices. We are unable to recreate an equally
strong property and instead obtain a much weaker statement: If the person is traversing
the subpath f(u) for some u ∈ U and the dog is traversing g(w) for some w ∈ W and the
person moves at least two steps then the dog has to move at least one. We rely upon our
preprocessing to then still argue that there exists a traversal of P and Q such that the leash
length is at most 4 if and only if there is an orthogonal pair (u, w) ∈ U × W .

▶ Theorem 5. Let P and Q be paths in an unweighted planar graph. Let |P | = n and
|Q| = m = nγ for some constant γ > 0. Then for all δ ∈ (0, 1), one cannot approximate
DG(P, Q) by a factor better than 1.25 in O((nm)1−δ) time unless OVH fails.

1′

0′

γ

α

α∗

β

β∗

x

y 0
1

z
x

y

0

1
b

α∗α 0′ 1′ β∗ βa

z

b

a

f : U → R2

f(u) = f(010011) = y 0 b 1 b 0 b 0 b 1 b 1

g : W → R2

g(w) = g(001100) = γ 0′ a 0′ a 1′ a 1′ a 0′ a 0′

P :=
⋃

u∈U

({x} ∪ f(u) ∪ {z})

Q := {α} ∪ {α∗} ∪
(⋃

w∈W

g(w)

)
∪ {β∗} ∪ {β}

γ

∆

Figure 3 We illustrate the construction for planar curves by Bringmann [7]. Each u ∈ U becomes
a subcurve f(u) of P and each w ∈ W becomes a subcurve g(w) of Q. Our table shows a green cell
if the distance between the vertices is less than ∆. If the person is in a subcurve f(u) and the dog is
in g(w) and the person moves from its vertex then the dog must also move.

4 Upper bound

We show that subquadratic algorithms do exist for unweighted planar graphs that exhibit
additional structure. Specifically, our main result is as follows:

▶ Theorem 6. Let T be a regular unit tiling and (P, Q) be paths in T with |P | = n and |Q|
= m. Given ∆ ∈ R, we can output whether DT(P, Q) ≤ ∆ in O((n + m)1.5 log(n + m)) time.

We compute DT(P, Q) as follows. Given (P, Q), we compute the smallest axis-aligned
rectangles RP and RQ that contain P and Q, respectively, in O(n + m) time. Let d0 be the
Euclidean length of the shortest segment (p, q) with p ∈ RP and q ∈ RQ, and let d1 be the
Euclidean length of the longest such segment. Observe that DT(P, Q) ∈ [d0

2 , 2d1], that this
range contains O(n + m) integers, and that DT(P, Q) is always integral. By performing a
binary search over [d0

2 , 2d1] ∩ Z, applying Theorem 6 at each step, we obtain:

I. van der Hoog, T. van der Horst, E. Rotenberg, and L. Wulf 24:7

▶ Corollary 7. Let T be a regular unit tiling, and let P and Q be paths in T with |P | = n

and |Q| = m. Then DT(P, Q) can be computed in O((n + m)1.5 log2(n + m)) time.

Additional definitions. To prove Theorem 6, we first introduce a few new concepts. Let
T be a regular, unit, axis-aligned tiling. Based on T , we construct a super-tiling T of
the same type as T , that is, if T is a square/triangular/hexagonal tiling, then T is also a
square/triangular/hexagonal tiling. We state our results in general terms, but for ease of
reading, the reader may assume T is a square tiling. For a (super) tiling T, we define the
halfslabs of any face F of T by picture (Figure 4).

▶ Definition 8. Let T be a regular tiling, and let T be a super-tiling of T . We say that two
faces F and F ′ of T are well-separated by a vertex v ∈ V (T) if, for all p ∈ V (T) ∩ F and
q ∈ V (T) ∩ F ′, there exists a shortest path from p to q in T that passes through v.

Having faces F, F ′ be well-separated proves to be very useful, since in such a pair the distance
between some vertex p ∈ V (T) ∩ F and q ∈ V (T) ∩ F ′ can be well-understood. We provide
an efficient algorithm to compute the pairwise Fréchet distance between subpaths of P and Q

whenever their corresponding faces in T are well-separated. We identify a sufficient condition
that ensures that some pair F, F ′ is well-separated, based on the alignment of the two:

▶ Definition 9. Let T be a regular tiling. Two faces F and F ′ of T are aligned if F ′ intersects
a halfslab of F (or F intersects a halfslab of F ′).

▶ Lemma 10. Let T be an axis-aligned regular unit tiling, and let T be a super-tiling of T of
the same type as T . Any two faces F, F ′ of T that are not aligned are well-separated by a
vertex v ∈ V (T).

Proof. Consider first the case where T is a square tiling (and so T is too). The situation is
depicted in Figure 5 (a). If the faces F, F ′ are not aligned, then F ′ is contained in one of the
four regions (R1, R2, R3, R4) of the plane formed by the halfslabs of F . Let v be the vertex
at the apex of the region which contains F ′. We claim that for any vertices p ∈ V (T) ∩F and
q ∈ V (T) ∩ F ′, there exists a shortest path between p and q that passes through v. Hence F

and F ′ are well-separated. The claim is easy to see from the properties of shortest paths in
grid graphs. We provide an alternative proof of the claim, with the advantage that it can be
more easily generalized to the triangular and hexagonal grid. See Figure 5 (b) and consider
for i = 1, 2, . . . the circles of radius i in the plane graph T centred around p, and q.

hi := {x ∈ V (T) : dist(p, x) = i}, h′
i := {x ∈ V (T) : dist(q, x) = i}.

We can see that hi, h′
i can be described as diamonds with four sides. Let us among the

four sides of hi denote by Xi the side that is facing towards F ′. Likewise, let us among the

F F F

Figure 4 For a face F in a square/triangular/hexagonal (super-)tiling, its halfslabs are the infinite
slabs enclosing F along the directions depicted here (orange).

ESA 2025

24:8 Fréchet Distance in Unweighted Planar Graphs

four sides of h′
i denote by X ′

i the side that is facing towards F . Note that all of Xi, X ′
i are

parallel for i ∈ N. Let ℓ denote the line through vertex v parallel to the Xi. Let a ∈ N be
minimal such that ha touches ℓ. Since Xa is parallel to ℓ, we have Xa ⊆ ℓ. Furthermore, no
matter which p ∈ V (T) ∩ F was chosen as the centre of the circles hi, we always have v ∈ Xa.
This follows due to the way and the angle in which the circles hi expand. Analogously, let
b ∈ N be minimal such that h′

b touches ℓ. Due to the way the h′
i expand and since F and

F ′ are not aligned, we have v ∈ X ′
b. Now, the circle ha is entirely on one side of ℓ, the

circle h′
b is entirely on the other side, and v ∈ ha ∩ h′

b. By definition of ha, h′
b, this implies

dist(p, q) = a + b and there is a shortest path between p, q that passes through v.
For the case of triangular and hexagonal grids, the situation is depicted in Figures 6 and

7. Here the halfslabs divide the plane into 6 cone-shaped regions R1, . . . , R6. Let vj be the
point at the apex of Rj for j = 1, . . . , 6. Note that vj is also a vertex of V (T). For both
the triangular and hexagonal grid, the definitions of hi, h′

i, Xi, X ′
i, ℓ, a, b can be made in an

analogous matter. Analogously, it follows that vj ∈ ha ∩ h′
b which concludes the lemma. ◀

v

p

q

F
F ′

(a)

R2R3

R1

v

p

q
h′
2

h′
3

h3

h2

(b)

X3 X ′
3

ℓ

Figure 5 (a) The two faces F, F ′ of the square super-tiling T are non-aligned.

v1

v2

v3
v4

v5

v6

F

F ′

(a)

R1

R2

R6

v1

p

qh′
2

h′
3

X ′
4

h2

ℓ

X2

q̃

(b)

ℓ̃

Figure 6 (a) Vertex v1 well-separates non-aligned faces in a triangular grid. (b) Proof.

Algorithm overview. Given T and paths P and Q, we first compute a suitable super-tiling:

▶ Lemma 11. Let T be a regular unit tiling, and let P and Q be two paths in T of lengths n

and m. In O((n + m)1.5) time, we can compute a super-tiling T such that:
the edges of T have a length in Θ(

√
n + m), and

the total number of induced subpaths in S(P,T)∪S(Q,T) (see Definition 4) is O(
√

n + m).

Proof. Our proof is inspired by that of Chan and Rahmati [14, Lemma 1], who prove an
analogous statement for grids and curves in higher-dimensional real space (without graphs).
For the proof, we assume without loss of generality that T is axis-aligned.

I. van der Hoog, T. van der Horst, E. Rotenberg, and L. Wulf 24:9

q

p
F

F ′

v1

(a)

v2

v3v4

v6

R1

R2

R6 q

p

v1
X ′

5

(b)

h′
3h′

4

X4

h′
5

ℓ

Figure 7 (a) Vertex v1 well-separates non-aligned faces in a hexagonal grid. (b) Proof.

Let f =
⌈√

n + m
⌉
, and let T0 be any axis-aligned super-tiling of T with an edge length

in Θ(f). For each i ∈ [f − 1], define Ti to be the super-tiling obtained by shifting T0 by
the vector (i, i) if T is square, or by (0, i

√
3) if T is triangular or hexagonal. These shifted

super-tilings remain axis-aligned super-tilings of T , as all their vertices align with those of T .
Since we shift in a direction not aligned with any edge of T , and since i ≤ f − 1, each

edge or vertex of T lies on the boundary of O(1) faces across the family {Ti}f−1
i=0 . It follows

that for any discrete vertex set V ⊆ V (T) with |V | = k, there exists some Ti such that
only O(k/f) vertices lie on boundaries of faces in Ti. Therefore, there exists a super-tiling
T ∈ {T0, . . . ,Tf−1} such that the total number of boundary vertices from P and Q is
O((n + m)/f), which implies O((n + m)/f) = O(

√
n + m) induced subpaths. To compute T,

we iterate over all vertices v of P and Q and, for each, determine the O(1) super-tilings Ti

with v ∈ B(Ti) by iterating over all T ∈ {T0, . . . ,Tf−1}. This takes O((n + m)f) total time.
We then select the super-tiling Ti that minimizes |(P ∪ Q) ∩ B(Ti)|. ◀

Let T be the computed super-tiling of T . We partition P and Q into induced subpaths,
denoted by S(P,T) and S(Q,T). These O(

√
n + m) subpaths naturally induce a subdivision

of the free-space diagram M∆ into O(n + m) rectangular submatrices M∆[i : i′, j : j′], where
P [i : i′] ∈ S(P,T) and Q[j : j′] ∈ S(Q,T) (see Figure 8(a)).

Our algorithm makes use of a wave-front method. We define a wave-front W as a
monotone walk through the grid [1, n] × [1, m] that separates (1, 1) from (n, m). At each grid
point (i, j) ∈ W , we store a Boolean value indicating whether there exists a monotone walk
F from (1, 1) to (i, j) such that all points on F lie in free space: that is, M∆[x, y] = 0 for all
(x, y) ∈ F (Figure 8(b)).

(a)
(b)

Figure 8 (a) For a given tiling T , we first compute a super-tiling T which partitions the edges of
P and Q. These subpaths divide the ∆-free space matrix M∆ into submatrices that correspond to
aligned and non-aligned curve pairs (green dashed versus neutral). (b) We maintain a wave-front W

which is a monotone curve through M∆ that has a Boolean value at each entry. An update selects a
submatrix M∆[i : i′, j : j′] and removes from W its bottom-left facets (adding its top-right facets).

ESA 2025

24:10 Fréchet Distance in Unweighted Planar Graphs

An update to the wave-front W selects a pair of subpaths (P [i : i′], Q[j : j′]) ∈ S(P,T) ×
S(Q,T) such that the bottom and left facets of the submatrix M∆[i : i′, j : j′] lie on the
current wave-front. The update removes these facets from W and inserts the top and right
facets instead. To perform the update, we consider the faces FP and FQ of T that P [i : i′],
respectively Q[j : j′], are assigned to, and proceed via a case distinction:
1. If FP and FQ are not aligned, then they are well-separated by a vertex v (by Lemma 10),

and we show how to perform a fast update using v.
2. If FP and FQ are aligned, we perform a brute-force update and use a counting argument

to bound the total running time of these updates.

We analyse both cases separately, observing that while some instances may involve only
Case 1 or only Case 2 submatrices, we can independently bound the total cost for each case.

Case 1: Updating with (P [i : i′], Q[j : j′]) where FP and FQ are not aligned. We show
an update algorithm that is near-linear in the perimeter of the submatrix M∆[i : i′, j : j′].

▶ Lemma 12. Let P [i : i′] ∈ S(P,T) and Q[j : j′] ∈ S(Q,T) be subpaths whose faces FP

and FQ in T are not aligned. Then the corresponding wave-front update can be performed in
O(k log k) time, where k = |P [i : i′]| + |Q[j : j′]|.

Proof. By Lemma 10, the subcurves P [i : i′] and Q[j : j′] are well-separated by some vertex
v ∈ V (T), which we can identify in constant time. Given v, we compute two curves in R
whose ∆-free space matrix equals M∆[i : i′, j : j′]. We define these curves as follows.

For a point p ∈ P [i : i′] we let p̄ = dist(p, v). Likewise, for a point q ∈ Q[j : j′], we let
q̄ = − dist(q, v). Note the difference in sign. Because P [i : i′] and Q[j : j′] are well-separated
by v, we have dist(p, q) = dist(p, v) + dist(v, q) = |p̄ − q̄| for any p ∈ P [i : i′] and q ∈ Q[j : j′].
We let P̄ = (p̄i, . . . , p̄i′) and Q̄ = (q̄j , . . . , q̄j′).

The ∆-free-space matrix M∆[i : i′, j : j′] is equal to the ∆-free space matrix of the
sequences P̄ and Q̄ over the real line under the absolute value metric. Let M̄∆ be this matrix.
We compute the top and right facets of M̄∆ in O(k log k) time with existing fast algorithms
for 1D separated sequences [8, 31]. ◀

Case 2: Updating with (P [i : i′], Q[j : j′]) where FP and FQ are aligned. For aligned
face pairs, we fall back on a brute-force update strategy based on switching cells, a concept
introduced by Har-Peled, Knauer, Wang and Wenk. [4].

▶ Definition 13 (Switching cells). A cell (i, j) in M∆ is a switching cell if M∆[i, j] = 0, but
either M∆[i, j − 1] = 1 or M∆[i, j + 1] = 1 (or both).

The switching cells in a submatrix M∆[i : i′, j : j′] allow for a direct update of the wave-front:

▶ Lemma 14 ([4]). Let P [i : i′] and Q[j : j′] be two subpaths. Given all s switching cells in
M∆[i : i′, j : j′], a brute-force wave-front update takes O(|P [i : i′]| + |Q[j : j′]| + s) time.

We apply the brute-force update algorithm to all subpath pairs (P [i : i′], Q[j : j′]) ∈
S(P,T) × S(Q,T) whose associated faces FP and FQ in T are aligned. We now show that
the total number of switching cells encountered in these submatrices is not too large:

▶ Lemma 15. Let T be a regular unit tiling, and let P and Q be two paths in T . Let T
be any super-tiling of T with edge length Θ(

√
n + m). Then there are at most O(n

√
n + m)

pairs (pi, qj) such that M∆[i, j] is a switching cell and pi and qj lie on aligned faces of T.
We can compute these pairs in O(n

√
n + m log m) time.

I. van der Hoog, T. van der Horst, E. Rotenberg, and L. Wulf 24:11

Proof. Fix a vertex pi and let Fp be a face of T such that pi ∈ Fp. Since P and Q are paths
in a unit tiling, a switching cell M∆[i, j] occurs only if qj lies at distance exactly ∆ from pi.

Let Bi(∆) ⊆ V (T) denote the set of all vertices at distance exactly ∆ from pi. This set
lies on the boundary of a shape whose geometry depends on the tiling type:

Bi(∆) is the boundary of a diamond if T is a square tiling.
Bi(∆) is the boundary of a regular hexagon if T is a triangular tiling.
Bi(∆) is the boundary of a (non-regular) hexagon if T is a hexagonal tiling.

These regions are convex. Consider a face F ′ of T that is aligned with Fp. The
intersection of Bi(∆) with F ′ contains at most O(

√
n + m) vertices. Each of these vertices

could correspond to at most one vertex qj ∈ Q where (i, j) is a switching cell. There are only
O(1) faces of T that are aligned with Fp, whose closures intersect Bi(∆). Hence, there are at
most O(

√
n + m) such qj values per pi. Summing over all n vertices of P gives the desired

O(n
√

n + m) bound.
What remains is to compute these pairs (pi, qj). We preprocess Q in a membership query

data structure. For each pi ∈ P , we select its assigned face Fp in constant time and we
identify the O(1) faces F ′ of T that are aligned with Fp and intersect Bi(∆) in constant time.
For every such face F ′, we iterate over the vertices v in F ′ ∩ Bi(∆). We find if there exists a
qj ∈ Q with v = qj in O(log m) time through a membership query. If so, then we compute
dist(pi, qj+1) and dist(pi, qj−1) to determine whether M∆[i, j] is a switching cell. ◀

We are now ready to prove our main theorem:

▶ Theorem 6. Let T be a regular unit tiling and (P, Q) be paths in T with |P | = n and |Q|
= m. Given ∆ ∈ R, we can output whether DT(P, Q) ≤ ∆ in O((n + m)1.5 log(n + m)) time.

Proof. Given T , P , and Q, we begin by applying Lemma 11 to compute in O((n + m)1.5)
time a super-tiling T and the corresponding subpaths S(P,T) and S(Q,T). The number
of subpath pairs (P [i : i′], Q[j : j′]) ∈ S(P,T) × S(Q,T) is O(n + m). For each pair, we
determine if the corresponding faces FP and FQ in T are aligned, which takes O(n + m) total
time.

The product set S(P,T) × S(Q,T) induces a grid of O(n + m) rectangular submatrices
of M∆ with O(

√
n + m) rows and columns. Thus:∑

submatrices M ′ of M∆

|facets(M ′)| =
∑

(P [i:i′],Q[j:j′])∈S(P,T)×S(Q,T)

(i′ − i+ j′ − j) ∈ O((n+m)1.5). (1)

Next, we initialize the wave-front W by computing the first row and first column of M∆,
i.e., all entries M∆[i, 1] for i ∈ [n] and M∆[1, j] for j ∈ [m], in O(n + m) time. We then
iterate diagonally through all pairs (P [i : i′], Q[j : j′]) in S(P,T) × S(Q,T) and perform a
wave-front update for each pair.

If the two faces FP and FQ of T assigned to P [i : i′] and Q[j : j′] are not aligned then we
apply Lemma 12. The total time spent in this case equals:∑

(P [i:i′],Q[j:j′]) where (FP ,FQ) are not aligned

O((i′ − i + j′ − j)) log(i′ − i + j′ − j)

By Equation 1, this sum is upper bound by O((n + m)1.5 log(n + m).
If the two faces FP and FQ of T assigned to P [i : i′] and Q[j : j′] are aligned then we

apply Lemma 14 instead. The total time spent is:∑
P [i:i′],Q[j:j′]) where (FP ,FQ) are aligned

O((i′ − i + j′ − j) + switching cells(M∆[i : i′, j : j′]))

ESA 2025

24:12 Fréchet Distance in Unweighted Planar Graphs

The first term and second term are bounded by O((n + m)1.5 log(n + m)) by Equation 1
and Lemmas 14+15, respectively. Once the wave-front W reaches the entry (n, m), we have
determined whether DT(P, Q) ≤ ∆, proving the theorem. ◀

5 The discrete Fréchet distance under the L1 metric

We extend our techniques for paths in tilings to curves in the plane. Fix some universal
constant γ > 0 and fix some value ε ∈ (0, 1). We consider R2 under the L1 metric, and two
polygonal curves P and Q with n and m vertices, respectively. In full generality, we only
require that all edges in P have length at most γ and that Q is an (ε, δ)-curve. Denote their
discrete Fréchet distance under the L1 metric by DF (P, Q). We show that we can compute
DF (P, Q) in Õ

(√
δ

ε (n + m)1.5
)

time. We adapt this algorithm in the full version of this
paper, to make it work for any Lc metric, by allowing some inaccuracy.

Our approach. Given some ∆ ∈ R, we first show how to decide whether DF (P, Q) ≤ ∆
using the wave-front propagation technique from Section 4, with suitable modifications
for curves in the plane. Let t > 1 be a parameter to be determined later. We define an
axis-aligned square tiling T of the plane where each square has edge length t.

▶ Definition 16. We define the breakpoints B(P,T) of P as the set of vertices p ∈ V (P)
such that some edge of P incident to p intersects an edge of T.

Note that B(P,T) may contain overlapping but distinct vertices of P (since an (ε, δ)-curve
may visit the same point up to δ times). If we remove all edges from P which intersect
some edge of T, we see that the breakpoints induce a partition of the vertices of P into
pairwise vertex-disjoint subcurves P [i : i′], each fully contained in the closure F of a face
F ∈ T. We refer to these subcurves as the induced subcurves S(P,T) and we assign each
induced subcurve to a face in T. We prove that for a suitable choice of T, the total number
of induced subcurves satisfies |S(P,T) ∪ S(Q,T)| = O((n + m)/t).

We then apply our wave-front algorithm over the product set S(P,T) × S(Q,T). For a
pair of subcurves (P [i : i′], Q[j : j′]), let FP and FQ denote their respective containing faces
in T. We distinguish two cases:

If FP and FQ are not aligned, we show that (P [i : i′], Q[j : j′]) is well-separated by a
corner of either FP or FQ. We then apply Lemma 12 to perform a wave-front update in
O((i′ − i + j′ − j) log(n + m)) time.
If FP and FQ are aligned, we apply the brute-force algorithm of Lemma 14, but with a
more careful analysis of the number of switching cells.

Balancing the choice of t is critical: a larger t reduces the number of wave-front updates,
while a smaller t reduces the number of switching cells encountered. We choose t to optimize
the overall running time.

Choosing a tiling. We construct a tiling T such that it creates few induced subcurves.

▶ Lemma 17. Given t ≥ 1, we can compute in O((n + m)t) time a square tiling T of edge
length t such that the number of induced subcurves satisfies |S(P,T)∪S(Q,T)| = O((n+m)/t).

Proof. The proof mirrors that of Lemma 11. Let T0 be an axis-aligned square tiling with
edge length t, and let Ti denote the tiling obtained by shifting T0 by (i, i) for i ∈ [t − 1]. We
required that each edge e of P or Q has length at most γ ∈ O(1). Thus each edge intersects
the boundary of at most O(1) of the shifted tilings. It follows that there exists an index i

such that Ti induces only O((n + m)/t) breakpoints across P and Q.

I. van der Hoog, T. van der Horst, E. Rotenberg, and L. Wulf 24:13

To find Ti, we iterate over all O(n + m) edges of P and Q. For each edge, we test for
intersection with each of the t candidate tilings in constant time. This gives an overall
running time of O((n + m)t) to find the tiling Ti that minimizes |B(P,Ti) ∪ B(Q,Ti)|. ◀

Wave-front updates. Unlike in Section 4, the subcurves in S(P,T) are vertex-disjoint.
Thus, we never have a submatrix M∆[i : i′, j : j′] whose bottom-left facet coincides with
the current wave-front W . However, we can always find a submatrix M ′ := M∆[i : i′, j : j′]
where each of the cells on the bottom-left facet of M ′ is adjacent to a cell in W . We extend
W to cover it in O(i′ − i + j′ − j) time via brute force and thereby define wave-front updates
analogously.

Case 1: Updating with (P [i : i′], Q[j : j′]) where FP and FQ are not aligned. Our key
observation is that, even though the edges of P [i : i′] and Q[j : j′] do not coincide with T, a
pair of faces (FP , FQ) of T are still well-separated whenever they are not aligned:

▶ Lemma 18. Let P [i : i′] ∈ S(P,T) and Q[j : j′] ∈ S(Q,T) be subcurves whose faces FP

and FQ in T are not aligned. Then the corresponding wave-front update can be performed in
O(k log k) time, where k = |P [i : i′]| + |Q[j : j′]|.

Proof. Assume, without loss of generality, that the bottom-left corner of FP lies above and
to the right of the top-right corner of FQ. Then any shortest L1 path from a point in FP to
one in FQ may be rerouted through that corner. The rest follows from Lemma 12. ◀

Case 2: Updating with (P [i : i′], Q[j : j′]) where FP and FQ are aligned. We upper
bound the number of switching cells Mδ[i, j] where pi and qj lie in aligned faces of T:

▶ Lemma 19. Let T be the tiling from Lemma 17. Then there are at most O(δn(t+1)
ε2) pairs

(pi, qj) such that M∆[i, j] is a switching cell and pi and qj lie in aligned faces of T. We can
compute these pairs in O(δn(t+1)

ε2 log m) time.

Proof. We preprocess Q by snapping its vertices to a square grid G of edge length ε−1,
forming Q′. Each vertex in Q′ corresponds to O(δ) original vertices since Q is an (ε, δ)-curve.
We store Q′ in a spatial data structure (e.g., a lexicographically sorted balanced binary tree),
where a query point z returns all qj ∈ Q corresponding to z in O(δ + log n) time.

Recall that all edges of Q have length at most γ ∈ O(1). Fix a vertex pi and let Fp be a
face of T that contains pi. Let Bi(∆) be the metric circle (under the L1 metric) of radius ∆
centred at pi. Let Γ denote a ball with radius 2γ and B∗

i (∆) be the metric annulus that is
the Minkowski-sum Γ ⊕ Bi(∆). Observe that an edge (qj , qj+1) of Q intersects Bi(∆) only if
one of its corresponding vertices q′

j and q′
j+1 of Q′ lies in B∗

i (∆).
There are O(1) faces F ′ of T that are aligned with Fp and that intersect B∗

i (∆). Let
A := B∗

i (∆) ∩ F ′. Distinguishing between ∆ > 1 and ∆ ≤ 1, we see that A has an area of
O(max{1, t}γ) and therefore A contains at most O(γ max{1,t}

ε2) = O(t+1
ε2) vertices of G. We

iterate over the vertices in B∗
i (∆) ∩ F ′ ∩ V (G) and for each we perform a membership query

on Q′. This returns O(δ(t+1)
ε2) vertices of Q′. For each reported vertex q′

j we test if M∆[i, j]
is a switching cell in constant time. Thus, for any pi ∈ P , we compute all switching cells
M∆[i, j] that correspond to the lemma statement in O(δ(t+1)

ε2 log m) time. ◀

▶ Theorem 20. Let P and Q be two curves in R2 under the L1 metric with |P | = n and
|Q| = m. Fix a universal constant γ ∈ O(1). For ε > 0 (with ε ∈ ω(

√
δ
n)) and ∆ ∈ R,

if P has edge length at most γ and Q is an (ε, δ)-curve, then we can compute whether
DF (P, Q) ≤ ∆ in O(

√
δ

ε (n + m)1.5 log(n + m)) time.

ESA 2025

24:14 Fréchet Distance in Unweighted Planar Graphs

Proof. Let t ≥ 1 be a value that we set later. Given P and Q, we apply Lemma 17 to
compute in O((n + m)t) time our tiling T and the O((n + m)/t) induced subcurves S(P,T)
and S(Q,T). The product set S(P,T) × S(Q,T) induces a grid over M∆ with O((n + m)/t)
rows and columns. Thus:∑

submatrices M ′ of M∆

|facets(M ′)| =
∑

(P [i:i′],Q[j:j′])∈S(P,T)×S(Q,T)

(i′ − i+j′ −j) ∈ O((n+m)2/t). (2)

We iteratively perform wave-front updates with the input (P [i : i′], Q[j : j′]). Let FP and
FQ denote the corresponding two faces of T. If FP and FQ are not aligned then we apply
Lemma 14. The total time spent in this case equals:∑

(P [i:i′],Q[j:j′]) where (FP ,FQ) are not aligned

O((i′ − i + j′ − j)) log(n + m)

By Equation 2, this sum is upper bound by O((n+m)2

t log(n + m)).
If FP and FQ are aligned then we apply Lemma 15 instead. The total time spent is:∑
P [i:i′],Q[j:j′]) where (FP ,FQ) are aligned

O((i′ − i + j′ − j) + switching cells(M∆[i : i′, j : j′]))

The first term is upper bounded by O((n+m)2

t) by Equation 2. The second term is upper
bounded by O(δn(t+1)

ε2 log m) by combining Lemma 14 and 19. It follows, assuming that
ε√
δ

√
n goes to infinity, that if we choose t ∈ Θ(ε·(n+m)√

δn
) the total running time is upper

bounded by O(
√

δ
ε (n + m)1.5 log(n + m)). ◀

Computing DF (P, Q). Given P and Q, there is a set of O(nm) values S, which can be
computed in O(nm) time, such that DF (P, Q) ∈ S. The classical algorithm to compute
DF (P, Q) performs binary search over S. Since we want to use subquadratic time, we cannot
compute the set S explicitly. Instead, we represent S as the Cartesian sum X ⊕ Y of two sets
of O(n + m) values. The Cartesian sum of X and Y is the multiset X ⊕ Y = {{x + y | x ∈
X, y ∈ Y }}. We can use existing techniques [21, 27] for selection in Cartesian sums to binary
search over the Cartesian sum X ⊕ Y without explicitly computing its O(|X| · |Y |) elements.

Specifically, we define X and Y as follows. The set X contains, for each point (x, y) ∈ P ,
the four values x + y, −x + y, x − y and −x − y. The set Y is defined analogously for points
in Q. For all (p, q) ∈ P × Q, the distance between p and q is the sum of an element in X and
an element in Y . That is, their distance is an element of X ⊕ Y . Hence, DF (P, Q) ∈ X ⊕ Y .

After sorting X and Y , we can compute the ith smallest value in X ⊕ Y , for any given i,
in O(|X| + |Y |) = O(n + m) time [21, 27]. We binary search over the integers 1, . . . , |X| · |Y |,
and for each considered integer i, we compute the ith smallest value ∆ in X ⊕ Y . Then
we use our decision algorithm (Theorem 20) to decide whether DF (P, Q) ≤ ∆ to guide the
search to DF (P, Q). Thus, we obtain the following result:

▶ Corollary 21. Given γ > 0, let P and Q be curves in R2 under L1 with |P | + |Q| = n + m.
For any ε > 0, if P has edge length at most γ and Q is an (ε, δ)-curve, then DF (P, Q) can
be computed in O(

√
δ

ε (n + m)1.5 log2(n + m)) time.

References
1 Pankaj K Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the

discrete Fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429–449,
2014. doi:10.1137/130920526.

https://doi.org/10.1137/130920526

I. van der Hoog, T. van der Horst, E. Rotenberg, and L. Wulf 24:15

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75–91,
1995. doi:10.1142/S0218195995000064.

3 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45–58, 2004. doi:10.1007/s00453-003-1042-5.

4 Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In European Symposium on Algorithms (ESA), pages 52–63,
2006. doi:10.1007/11841036_8.

5 Yoonsik Bang, Jiyoung Kim, and Kiyun Yu. An improved map-matching technique based
on the Fréchet distance approach for pedestrian navigation services. Sensors, 16(10), 2016.
doi:10.3390/s16101768.

6 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching
vehicle tracking data. In International Conference on Very Large Data Bases (VLDB), pages
853–864, 2005. doi:10.5555/1083592.1083691.

7 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquad-
ratic algorithms unless SETH fails. In IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pages 661–670, 2014. doi:10.1109/FOCS.2014.76.

8 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry & Applications, 27(1-2):85–120, 2017. doi:10.1142/S0218195917600056.

9 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
Journal of Computational Geometry, 7(2):46–76, 2016. doi:10.4230/LIPIcs.SOCG.2015.739.

10 Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera Sacristan,
Rodrigo I Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for map construc-
tion. In ACM International Conference on Advances in Geographic Information Systems
(SIGSPATIAL), pages 1–10, 2017. doi:10.1145/3139958.3139964.

11 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017. doi:10.1137/1.9781611973402.103.

12 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2887–2901, 2019. doi:10.5555/3310435.3310614.

13 Maike Buchin, Bernhard Kilgus, and Andrea Kölzsch. Group diagrams for representing
trajectories. International Journal of Geographical Information Science, 34(12):2401–2433,
2020. doi:10.1145/3283207.3283208.

14 Timothy Chan and Zahed Rahmati. An improved approximation algorithm for the discrete
Fréchet distance. Information Processing Letters (IPL), 138:72–74, 2018. doi:10.1016/J.IPL.
2018.06.011.

15 Daniel Chen, Anne Driemel, Leonidas Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the Fréchet distance. In ACM Workshop on Algorithm Engin-
eering and Experiments (ALENEX), pages 75–83, 2011. doi:10.1137/1.9781611972917.8.

16 Thomas Devogele. A new merging process for data integration based on the discrete
Fréchet distance. In Advances in spatial data handling, pages 167–181, 2002. doi:
10.1007/978-3-642-56094-1_13.

17 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete Computational Geometry, 48(1):94–127, 2012.
doi:10.1007/s00454-012-9402-z.

18 Anne Driemel, Amer Krivošija, and Christian Sohler. Clustering time series under the Fréchet
distance. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 766–785. SIAM,
2016. doi:10.5555/2884435.2884490.

ESA 2025

https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1007/s00453-003-1042-5
https://doi.org/10.1007/11841036_8
https://doi.org/10.3390/s16101768
https://doi.org/10.5555/1083592.1083691
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1142/S0218195917600056
https://doi.org/10.4230/LIPIcs.SOCG.2015.739
https://doi.org/10.1145/3139958.3139964
https://doi.org/10.1137/1.9781611973402.103
https://doi.org/10.5555/3310435.3310614
https://doi.org/10.1145/3283207.3283208
https://doi.org/10.1016/J.IPL.2018.06.011
https://doi.org/10.1016/J.IPL.2018.06.011
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.1007/978-3-642-56094-1_13
https://doi.org/10.1007/978-3-642-56094-1_13
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.5555/2884435.2884490

24:16 Fréchet Distance in Unweighted Planar Graphs

19 Anne Driemel, Ivor van der Hoog, and Eva Rotenberg. On the discrete Fréchet distance in a
graph. In International Symposium on Computational Geometry (SoCG), pages 36:1–36:18,
2022. doi:10.4230/LIPICS.SOCG.2022.36.

20 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

21 Greg N. Frederickson and Donald B. Johnson. Generalized selection and ranking: Sorted
matrices. SIAM Journal of Computing, 13(1):14–30, 1984. doi:10.1137/0213002.

22 Branko Grünbaum and Geoffrey Colin Shephard. Tilings and patterns. Courier Dover
Publications, 1987. doi:10.5555/19304.

23 Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola Wenk. Fast Fréchet
distance between curves with long edges. International Journal of Computational Geometry &
Applications, 29(02):161–187, 2019. doi:10.1145/3191801.3191811.

24 Richard Kenefic. Track clustering using Fréchet distance and minimum description length.
Journal of Aerospace Information Systems, 11(8):512–524, 2014. doi:10.2514/1.I010170.

25 Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike Buchin, Luca Giuggioli,
Jed Long, Trisalyn Nelson, Michel A Westenberg, and Kevin Buchin. Visual analytics of delays
and interaction in movement data. International Journal of Geographical Information Science,
31(2):320–345, 2017. doi:10.5555/3048386.3048392.

26 Ariane Mascret, Thomas Devogele, Iwan Le Berre, and Alain Hénaff. Coastline matching
process based on the discrete Fréchet distance. In Progress in Spatial Data Handling, pages
383–400. Springer, 2006. doi:10.1007/3-540-35589-8_25.

27 Andranik Mirzaian and Eshrat Arjomandi. Selection in X+Y and matrices with sorted rows
and columns. Information Processing Letters, 20(1):13–17, 1985. doi:10.1016/0020-0190(85)
90123-1.

28 Roniel Sousa, Azzedine Boukerche, and Antonio Loureiro. Vehicle trajectory similarity: Models,
methods, and applications. ACM Computing Surveys, 53(5), 2020. doi:10.1145/3406096.

29 E Sriraghavendra, K Karthik, and Chiranjib Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Ninth International Conference on Document
Analysis and Recognition (ICDAR), pages 461–465, 2007. doi:10.1109/ICDAR.2007.4378752.

30 Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey of trajectory
distance measures and performance evaluation. Proceedings of the VLDB Endowment, 29(1):3–
32, 2020. doi:10.1007/s00778-019-00574-9.

31 Thijs van der Horst, Marc van Kreveld, Tim Ophelders, and Bettina Speckmann. The geodesic
Fréchet distance between two curves bounding a simple polygon. CoRR, abs/2501.03834, 2025.
doi:10.48550/arXiv.2501.03834.

32 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science (TCS), 348(2-3):357–365, 2005. doi:10.1016/J.TCS.2005.09.
023.

33 Dong Xie, Feifei Li, and Jeff M Phillips. Distributed trajectory similarity search. Proceedings
of the VLDB Endowment, 10(11):1478–1489, 2017. doi:10.14778/3137628.3137655.

https://doi.org/10.4230/LIPICS.SOCG.2022.36
https://doi.org/10.1137/0213002
https://doi.org/10.5555/19304
https://doi.org/10.1145/3191801.3191811
https://doi.org/10.2514/1.I010170
https://doi.org/10.5555/3048386.3048392
https://doi.org/10.1007/3-540-35589-8_25
https://doi.org/10.1016/0020-0190(85)90123-1
https://doi.org/10.1016/0020-0190(85)90123-1
https://doi.org/10.1145/3406096
https://doi.org/10.1109/ICDAR.2007.4378752
https://doi.org/10.1007/s00778-019-00574-9
https://doi.org/10.48550/arXiv.2501.03834
https://doi.org/10.1016/J.TCS.2005.09.023
https://doi.org/10.1016/J.TCS.2005.09.023
https://doi.org/10.14778/3137628.3137655

	1 Introduction
	2 Preliminaries
	3 A lower bound for paths in an unweighted planar graph
	4 Upper bound
	5 The discrete Fréchet distance under the L_1 metric

