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Abstract
Imprecise measurements of a point set P = (p1, . . . , pn) can be modelled by a family of regions
F = (R1, . . . , Rn), where each imprecise region Ri ∈ F contains a unique point pi ∈ P . A retrieval
models an accurate measurement by replacing an imprecise region Ri with its corresponding point pi.

We construct the convex hull of an imprecise point set in the plane, by determining the cyclic
ordering of the convex hull vertices of P as efficiently as possible. Efficiency is interpreted in two
ways: (i) minimising the number of retrievals, and (ii) the computation time to determine the set of
regions that must be retrieved.

Previous works focused on only one of these two aspects: either minimising retrievals or optimising
algorithmic runtime. Our contribution is the first to simultaneously achieve both. Let r(F, P ) denote
the minimal number of retrievals required by any algorithm to determine the convex hull of P for
a given instance (F, P ). For a family F of n constant-complexity polygons, our main result is a
reconstruction algorithm that performs Θ(r(F, P )) retrievals in O(r(F, P ) log3 n) time.

Compared to previous approaches that achieve optimal retrieval counts, we improve the runtime
per retrieval from polynomial to polylogarithmic. We extend the generality of previous results to
simple k-gons, to pairwise disjoint disks with radii in [1, k], and to unit disks where at most k disks
overlap in a single point. Our runtime scales linearly with k.
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1 Introduction

Imprecision is inherent in real-world data. It arises from rounding errors in floating-point
computations, inaccuracies in measurement, and delayed sampling in GPS devices. In many
scenarios, imprecise data can be refined at a cost by computing exact values or by taking
additional samples. This is formalised in the model of imprecise geometry introduced by
Held and Mitchell [13], and studied further in [8–10,13,17,19,25].
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25:2 Instance-Optimal Imprecise Convex Hull

Imprecise geometry. An imprecise point set [13] is defined as a family of regions F =
(R1, . . . , Rn), where each region Ri contains a unique but unknown point pi. A realisation
P ∼ F is a sequence P = (p1, . . . , pn) where pi ∈ Ri. An input instance is a pair (F, P ). A
retrieval operation reveals the precise location of a point pi, replacing Ri with pi.

Let F ⊙P B denote the family F after retrieving all Ri ∈ B, where B ⊂ F . The aim
of a reconstruction algorithm is to identify a subset B ⊂ F such that for all realisations
P1, P2 ∼ F ⊙P B, the algorithm’s output (e.g., the cyclic order of the region indices of the
points around the convex hull) is identical for P1 and P2. Figure 1 illustrates an example.
After retrieving the subset B = {R3, R4}, the cycling ordering of the convex hull vertices is
identically (p1, p3, p2, p4) for all realisations of F ⊙P B.

We evaluate reconstruction algorithms by three criteria: the preprocessing time, the total
number of retrievals, and the running time per retrieval. Next, we consider instance-optimal
algorithms, which minimise the total number of retrievals in the strictest sense.

Worst-case results. Many geometric problems have been studied in imprecise geometry,
including Delaunay triangulations [8, 13, 19, 25], convex hulls [9, 10], Gabriel graphs [19], and
onion decompositions [17]. For these geometric problems, it is known that any reconstruction
algorithm must, in the worst case, use Ω(n) retrievals. Most of the existing algorithms
assume that the regions in F are pairwise disjoint unit disks [8, 9, 13, 17, 19, 25]. Under these
assumptions, deterministic worst-case optimal algorithms exist with O(n log n) preprocessing
time, O(n) retrievals, and O(n) reconstruction time. Ezra and Mulzer [10] allow F to consist
of arbitrary lines and reconstruct the convex hull using O(n) retrievals and O(n · α(n))
expected time where α(n) denotes the inverse Ackermann function. Buchin, Löffler, Morin
and Mulzer [3] permit overlapping unit disks of ply k (i.e., at most k disks intersect each
point in the plane). We summarize these results in the top three rows of Table 1.

Instance-optimality. In many instances, worst case bounds are overly pessimistic. Intuitively,
an algorithm is instance-optimal if, for every input (F, P ), no other algorithm performs
better on that instance. Constructing instance-optimal algorithms is challenging, as they
must match every alternative algorithm, including those tailored for specific instances.

Afshani, Barbay, and Chan [1] proved that, for many geometric problems including
constructing the convex hull, instance-optimal reconstruction time is unachievable. Likewise,
it is easy to see that instance-optimality in the number of retrievals cannot be guaranteed in
general: E.g., let F consist of two overlapping intervals R1 and R2 in R, with R1 \ R2 ̸= ∅
and R2 \ R1 ̸= ∅. Define P1 with p1 ∈ R1 \ R2 and p2 ∈ R1 ∩ R2, and P2 with p1 ∈ R1 ∩ R2

p1

p2

p3p5
p4

R1

R3
R5

R2

R4

p1

p5 R5

(a) (b)

p1

p2

p3
p4

R1

R2

Figure 1 (a) A family of regions F = R1, . . . , R5 and a sequence P = (p1, . . . , p5) with P ∼ F .
(b) If we retrieve R3 and R4 to obtain F ′ then for all P ′ ∼ F ′ the convex hull equals (p1, p3, p2, p4).
Note that if p3 would lie in R2 ∩ R3 instead, then retrieving only R3 and R4 does not suffice.
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and p2 ∈ R2 \ R1. In (F, P1), retrieving R1 suffices; in (F, P2), retrieving R2 suffices. No
algorithm can distinguish between the two instances without making a retrieval, and hence
must use two retrievals on one of the instances. Since exact instance-optimality cannot be
obtained, we instead aim for asymptotic instance-optimality.

Formally, we denote for any input instance by r(F, P ) the minimum integer such that
there exists a subset B ⊂ F of size r(F, P ) where all realizations P ′ ∼ (F ⊙P B) have the
same vertex-ordering along the convex hull of P ′. We note that r(F, P ) is, equivalently, the
optimal number of retrievals. We say that an algorithm is instance-optimal if for all inputs
(F, P ) it uses Θ(r(F, P )) retrievals. We highlight that r(F, P ) depends on both the region
family F and the specific realisation P . To illustrate, suppose F consists of nested rectangles
Rn ⊂ Rn−1 ⊂ . . . ⊂ R1. If P ∼ F is such that the convex hull of (p1, p2, p3, p4) contains
all of R5, then retrieving just those four suffices: r(F, P ) = 4. But if all pi coincide then
r(F, P ) = n.

Prior instance-optimal work. Only a few instance-optimal reconstruction algorithms are
known (see Table 1). Bruce, Hoffmann, Krizanc, and Raman [2] presented the first such
algorithm for the convex hull. Their approach is computationally expensive, using an
unspecified but superlinear time per retrieval (we discuss this in detail in the full version).
Subsequent works show that polylogarithmic time per retrieval is achievable, albeit on
geometric structures that are much simpler than the convex hull.

Van der Hoog, Kostitsyna, Löffler, and Speckmann [21] introduced the first near-linear
instance-optimal algorithm, solving the sorting problem for one-dimensional intervals. Their
algorithm preprocesses the intervals in O(n log n) time and uses Θ(r(F, P )) retrievals, with
at most logarithmic time per retrieval. Later, Van der Hoog, Kostitsyna, Löffler, and Speck-
mann [22] extended this approach to two-dimensional inputs for Pareto front reconstruction,
under the assumption that F consists of pairwise disjoint axis-aligned rectangles. Their
method also guarantees at most logarithmic time per retrieval.

Here, we show that polylogarithmic time per retrieval is achievable for reconstructing the
convex hull with an instance-optimal number of retrievals. Moreover, our work generalises
previous works in that we can handle overlapping regions in two dimensions, whereas previous
works could only support one-dimensional inputs or disjoint two dimensional inputs.

Simultaneous work. Simultaneously and independently of this paper, Löffler and Raichel [18]
developed an algorithm for reconstructing the convex hull when F is a set of unit disks of ply k.
Their number of retrievals (Table 1) is not instance-optimal but rather worst-case optimal
for every instance F . Formally, they use O(w(F )) retrievals for some region-dependent value
w(F ) with r(F, P ) ≤ w(F ) ≤ n. We discuss their result in more detail in the full version.

Instance optimality in other fields. The study of instance-optimal algorithms extends
beyond computational geometry. A prime example is sorting under partial information.
Given a partial order O over a set X and an unknown linear extension L, the goal is to sort
X using a minimum number of comparisons, where a comparison queries the order of a pair
(x, y) ∈ X under L. This is directly analogous to retrievals. Kahn and Saks [16] introduced
an exponential-time algorithm that is instance-optimal in the number of comparisons. Since
then, significant progress has been made on improving the runtime of such algorithms [5, 15],
culminating in near-linear time algorithms that are instance-optimal in both runtime and
comparisons [12,23,24]. Another example is the bidirectional shortest path problem. Haeupler,
Hladík, Rozhoň, Tarjan, and Tětek [11] show an algorithm that finds the shortest path
between two nodes s and t using an instance-optimal number of edge-weight comparisons.
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25:4 Instance-Optimal Imprecise Convex Hull

Table 1 Previous results that compute a sorting, Pareto front, convex hull, or Delaunay triangu-
lation. The bottommost result is simultaneous and independent work from ours.

Shapes Overlap Structures Preprocess Retrievals Reconstruction time Source

Unit disks No many O(n log n) O(n) O(n) [8, 9, 13,17,19,25]
Disks k Delaunay O(n log n) O(n) O(n log k) rand. [4]
Lines Yes hull O(n log n) O(n) (n · α(n)) rand. [10]

Intervals Yes sorting O(n log n) Θ(r(F, P )) O(r(F, P ) · log n) [21]
Axis rect. No front O(n log n) Θ(r(F, P )) O(r(F, P ) · log n) [22]
Smooth Yes front, hull O(poly n) Θ(r(F, P )) O(r(F, P ) · poly n) [2]

O(1)-gons Yes hull O(n log3 n) Θ(r(F, P )) O(r(F, P ) · log3 n) Thm 33
k-gons Yes hull O(kn log3 n) Θ(r(F, P )) O(r(F, P ) · k log3 n) Thm 34
[1, k]-disks No hull O(kn log3 n) Θ(r(F, P )) O(r(F, P ) · k log3 n) Full version
Unit disks k hull O(kn log3 n) Θ(r(F, P )) O(r(F, P ) · k log3 n) Full version
Unit disks k hull O(k3n) O(w(F )) O(k3 · w(F )) [18]

Our contributions. We present the first algorithm for convex hull reconstruction that is
instance-optimal while only requiring polylogarithmic time per retrieval. If F is a family of n

constant-complexity simple polygons, we preprocess F in O(n log3 n) time and reconstruct
the convex hull of any P ∼ F using Θ(r(F, P )) retrievals and O(r(F, P ) log3 n) total time.
Our approach applies to simple k-gons with a linear factor in k in space and time, to pairwise
disjoint disks with radii in [1, k], and to unit disks of ply k (see Table 1). Compared to previous
approaches for convex hulls that achieve optimal retrieval counts [2], we exponentially improve
the runtime per retrieval from polynomial to polylogarithmic. Compared to near-linear time
algorithms for convex hulls (or, Delaunay triangulations) [8–10,13,18,19,25], we significantly
reduce the number of retrievals used and broaden the generality of input families. The latter
comes at a cost of a polylogarithmic slowdown if r(F, P ) is linear in n.

Organisation. In Section 2, we provide some preliminaries. Then, in Section 3, we present
our general algorithm for reconstructing the convex hull and prove its optimality (Theorem 18).
In Section 4, we present a data structure for simple k-gons and give an instance-optimal
algorithm that uses O(kn) space and O(r(F, P ) · k2 log3(kn)) time (Theorem 33). In the full
version we improve the dependency on k to near-linear (Theorem 34). In the full version, we
study pairwise disjoint disks with a radius in [1, k], or, unit disks with ply k.

2 Preliminaries

Recall that an imprecise point set is defined as a family of geometric regions F = (R1, . . . , Rn),
and a realisation P ∼ F is defined as a sequence P of n points with pi ∈ Ri. We explicitly
allow for duplicate points in P and do not assume general position. The algorithm has two
phases [13]: a preprocessing phase, where only F is available, and a reconstruction phase, in
which we may perform a retrieval on any Ri ∈ F , replacing Ri with the point pi. To maintain
generality, we require only that each Ri is a point or a closed, connected, bounded region whose
boundary is a simple closed piecewise-C1 curve. Non-point regions must have connected
interiors and coincide with the closure of their interiors; see Figure 2. Next, we define
retrievals, convex hulls, vertices, edges, reconstruction strategies, and instance-optimality.
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Retrievals. Given a family of regions F , a retrieval operation on a non-point region Ri

replaces Ri with its associated point pi (thereby updating F ). We write F ⊙P A for the family
resulting from retrieving all regions in A ⊆ F . We denote by F − A the family obtained by
removing all regions in A from F . This removal is used in our analysis when we identify
regions whose corresponding points cannot appear on the convex hull.

Critical assumptions. Since all regions in F are closed, we claim that we must assume P

may contain duplicates and require that the convex hull of a point sequence includes all
collinear and duplicate points. To illustrate, let F consist of n identical unit squares, and
suppose P ∼ F includes four points forming the corners of one square. A lucky algorithm
might retrieve these four points first and construct the convex hull [14]. If we assumed general
position or excluded duplicates from the convex hull, this algorithm could then conclude
that all remaining points cannot lie on the convex hull and terminate early. However, such
behaviour cannot be guaranteed against an adversary. Since all regions are indistinguishable,
an adversary may simply give these four points last. Alternatively, if F consisted of open
regions, we could assume general position and exclude duplicates.

Upper quarter convex hull. We focus on the upper quarter convex hull of P . The other three
quarters can be constructed analogously, and the full convex hull results from combining
them. Let CH(P ) denote the upper quarter convex hull: the boundary of the smallest
convex set containing P ∪ {(−∞, −∞), (+∞, −∞)}. We assume that (Rn+1, Rn+2) =
({(−∞, −∞)}, {(+∞, −∞)}), with corresponding points (pn+1, pn+2). These are always
included in F and P . For any family of regions F , we denote by OCH(F ) the upper quarter
outer convex hull: the boundary of the smallest convex area enclosing all regions in F .
Thus, CH(P ) and OCH(F ) represent convex hulls over point sequences and region families,
respectively. As convex hulls define boundary curves, we may say that a point p ∈ R2 lies on,
inside, or outside CH(P ) or OCH(F ).

Vertices and edges. We define convex hull vertices and edges of OCH(F ). Although
intuitive in simpler settings, these concepts require care due to the generality of F .

▶ Definition 1. A point p ∈ R is a vertex of a region R if p lies on the boundary of R and
every open line segment through p contains a point not on the boundary of R. For any R ∈ F ,
V (R) is the (infinite) set of vertices of R.

Intuitively, the edges of OCH(F ) connect successive vertices lying on its boundary. Due
to potential overlaps between regions, vertices may coincide. As illustrated in Figure 2(c), a
single edge may therefore be considered to connect different pairs of overlapping vertices. To
avoid such degeneracy, we define V (F ) =

⋃
R∈F V (R) as a set, and define edges robustly:

(a) (b) (c)

R1

R2 R3

R4

R5

e

Figure 2 (a) Regions may have bends and sharp corners, and, be points. (b) Regions may not be
unbounded, non-simple, connected by a line, or have infinitely many sharp corners. (c) Vertices
between regions may coincide, and point regions (R3) may coincide with vertices of other regions.

ESA 2025



25:6 Instance-Optimal Imprecise Convex Hull

▶ Definition 2. We define an edge (s, t) of OCH(F ) to be a pair of distinct vertices in V (F )
where the subcurve of OCH(F ) from s to t contains no vertices in V (F ) other than s and t.

Note that a disk has infinitely many vertices but no edges under these definitions. We also
define when a region appears on the outer convex hull:

▶ Definition 3. We say a region R appears on OCH(F ) if there is a point p on OCH(F )
with p ∈ R. (Observe that we may always pick p to be a vertex of R.)

Reconstruction algorithms. We will retrieve regions until all realisations P ′ ∼ F yield the
same ordering of points along their convex hull. We formalise this via a partial order:

▶ Definition 4. Given P ∼ F , let ⪯(CH(P )) be the partial order on [n] induced by the
left-to-right traversal of CH(P ), i.e. for pa, pb ∈ P , we have a ≺ b if and only if pa and pb

both lie on CH(P ) and pa lies strictly to the left of pb.

We say a family F is finished if all realisations P1, P2 ∼ F satisfy ⪯(CH(P1)) = ⪯(CH(P2)).
A reconstruction algorithm retrieves some B ⊆ F such that F ⊙P B is finished. Let r(F, P )
denote the minimum number of retrievals needed by any such algorithm.

▶ Observation 5. For any fixed P ∼ F , let A ⊂ F be a smallest subset of F such that F ⊙P A

is finished. Then |A| is a tight lower bound for r(F, P ).

A reconstruction algorithm is instance-optimal if for all inputs (F, P ) it retrieves Θ(r(F, P ))
regions before F is finished. We distinguish two types of reconstruction algorithms:

A reconstruction strategy is any such algorithm, analysed only by the number of retrievals.
A reconstruction program is a reconstruction algorithm executed on a pointer machine or
RAM, and is analysed by both retrievals and instructions.

The previous instance-optimal reconstruction strategy. Bruce, Hoffmann, Krizanc, and
Raman [2] present an instance-optimal reconstruction strategy for region families F consisting
of points and closed piecewise-C1 regions. They do not present a corresponding reconstruction
program. When F consists of disks or polygons, a reconstruction program may be derived,
albeit with unspecified polynomial-time costs per retrieval. We further discuss their algorithm
in the full version. We rely on a key concept of their paper, i.e. a witness.

▶ Definition 6. Let F be a family of regions and let A ⊆ F . Any A ⊂ F is a witness if for
all P ′ ∼ (F − A), the family A ∪ P ′ is not finished.

We observe that a reconstruction strategy is instance-optimal if, at each step, it retrieves all
regions from a constant-size witness set of F .

2.1 Explicit dynamic planar convex hull
We rely on a data structure to maintain the upper quarter convex hull of a dynamic point set.
Overmars and van Leeuwen [20] provide the best-known solution, achieving deterministic
update time O(log2 n). Their data structure, known as the Partial Hull Tree (PHT), is now
textbook material. We follow their terminology:

▶ Definition 7 (PHT from [20]). Given a two-dimensional point set S, the Partial Hull Tree
stores S in a leaf-based balanced binary tree T (sorted by x-coordinates). For each interior
node ν ∈ T , denote by CH(ν) the (upper quarter) convex hull of all points in the leaves of
the subtree rooted at v. For each ν ∈ T , with children (x, y) and parent w, the PHT stores:
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The bridge e(ν) (the unique edge in CH(ν) that is not in CH(x) and CH(y)), and
a concatenable queue E∗(ν) (a balanced tree of the edges in CH(ν) − CH(w)).

We denote by E(ν) a balanced tree over CH(ν) and by V [ν] the vertices in the subtree of ν.

Note that for the root ρ of T , E(ρ) = E∗(ρ).

3 Witnesses and an instance-optimal reconstruction strategy

We introduce a new geometric classification over the edges of OCH(F ). This leads to an
alternative instance-optimal reconstruction strategy, detailed in Algorithm 1. Our results
hold in full generality for any family F of points and closed regions whose boundaries are
simple, closed, piecewise-C1 curves. In particular, each region is connected and bounded,
and any non-point region has a connected interior equal to its closure; see Figure 2. We
define a classification over vertex pairs (s, t), which we apply to edges of OCH(F ). However,
we formulate the classification for arbitrary vertex pairs, as this generality will be useful for
our data structures. We say that two regions Ra, Rb ∈ F are strictly vertically separated if
there exists a vertical line ℓ where Ra and Rb lie in opposite open half-planes defined by ℓ.

Figure 3 Three examples of a band (blue) between regions (green, brown).

▶ Definition 8 (Band. Fig. 3). For any pair of regions (Ra, Rb) (where a = b is allowed) we
define band(Ra, Rb) as the area enclosed by the (full) outer convex hull of {Ra, Rb}.

▶ Definition 9 (Fig. 4). We say (s, t) ∈ V (Ra) × V (Rb) with s ̸= t and Ra, Rb ∈ F , is:
canonical in F if the following holds for all x ∈ {s, t}. Either:

x is exclusively a vertex of point regions, or
x is a vertex of a unique region that is not a point region.

dividing in F if (s, t) is canonical and either:
a = b, or
Ra, Rb are strictly vertically separated.

occupied in F if (s, t) is dividing and:
band(Ra, Rb) contains a vertex in V (F − Ra − Rb) − {s} − {t}.

In our reconstruction strategy, we retrieve regions until no non-canonical, non-dividing, or
occupied edges remain. This alone does not guarantee that F is finished, so we introduce a
final characterisation based on convex chains.

▶ Definition 10 (Spanning chain. Fig. 5). A convex chain C = (q, r, . . . , s, t) is spanning in
F if the following three conditions hold:

all edges on C are dividing in F ,
q ∈ V (Ra), r, s ∈ V (Rb), t ∈ V (Rc) where Rb intersects the inside of OCH({Ra, Rc}),
all vertices of C between and including r and s are in V (Rb).

ESA 2025
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R4 = R5 = v

R1

R2

R3

t

u

v

r

s

w R6 = w

Figure 4 We illustrate all (sub) cases of vertex pairs corresponding to Definition 9:
All pairs that include t are non-canonical, as t is a vertex of more than one non-point region.
All pairs in {r, s, u, v, w}2 are all canonical, as v is exclusively a vertex of two point regions.
The pair (u, v) is non-dividing, as R3 and R4 are not vertically separated.
The pairs (s, u), (r, u), (r, v), (s, v), and any pair in {r, s, u, v} × {w} are dividing because their
regions are vertically separated. (r, s) is dividing because they are vertices of the same region.
The pair (r, s) is not occupied since band(R1, R1) only contains vertices of R1. The pair (v, w)
is not occupied since band(R4, R6) only contains vertices v and w.
The pair (u, w) is occupied as V (F − R3 − R6) contains the vertex t ∈ R2. The pairs (s, u),
(r, u), (r, v), (s, v), (r, w), and (s, w) are also occupied.

q

r

s

t u

v

Figure 5 The convex chain from q to t is spanning. The chain from r to v is not spanning.

We use OCH({Ra, Rc}) rather than band(Ra, Rc) in Definition 10 to ensure meaningful
behaviour even when Ra and Rc are point regions (since band(Ra, Rc) would then be empty).
Algorithm 1 processes edges of OCH(F ) by a priority based on Definitions 9 and 10:

non-canonical ≫ canonical but non-dividing ≫ occupied ≫ in spanning chain.

In the following two subsections, we first show that each case in Algorithm 1 retrieves a
witness. Then, we prove that if Algorithm 1 is instance-optimal.

3.1 Proving that Algorithm 1 retrieves only witnesses
The first case of Algorithm 1 considers a non-canonical edge, which implies that there is a
point on OCH(F ) that lies in two regions that are not both point regions.

▶ Lemma 11 (Proof in the full version). Let s ∈ OCH(F ) be a point that lies in two regions
Ra, Rb that are not both point regions. Then {Ra, Rb} is a witness.

The second case of Algorithm 1 considers an edge (s, t) of OCH(F ) that is canonical
but not dividing in F . Let s ∈ V (Ra) and t ∈ V (Rb). Because (s, t) is canonical but not
dividing it holds that a ̸= b and Ra and Rb are distinct regions that are not strictly vertically
separated. The following lemma implies that {Ra, Rb} is indeed a witness.

▶ Lemma 12 (Proof omitted). Let Ra, Rb ∈ F with Ra ̸= Rb appear on OCH(F ). If Ra and
Rb are not strictly vertically separated, then {Ra, Rb} is a witness.
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Algorithm 1 A data structure friendly reconstruction strategy: Reconstruct(F ).

if ∃ an edge (s, t) of OCH(F ) that is non-canonical in F then
Let s ∈ V (Ra) and s ∈ V (Rb) (or t) where Ra is not a point region
Reconstruct(F ⊙P {Ra, Rb})

else if ∃ an edge (s, t) of OCH(F ) that is canonical but not dividing in F then
Let s ∈ V (Ra) and t ∈ V (Rb) for a ̸= b

Reconstruct(F ⊙P {Ra, Rb})
else if ∃ an edge (s, t) of OCH(F ) that is occupied in F then

Let s ∈ V (Ra) and t ∈ V (Rb) for a ̸= b

Let Ri with Ri ̸= Ra and Ri ̸= Rb be a region with V (Ri) ∩ band(Ra, Rb) ̸= ∅
Reconstruct(F ⊙P {Ra, Rb, Ri})

else if ∃ a contiguous subchain C = (q, r, . . . , s, t) of OCH(F ) spanning in F then
Let Ra, Rb, Rc be as in the definition of spanning chains
Reconstruct(F ⊙P {Ra, Rb, Rc})

else
Return OCH(F )

end if

The third case of Algorithm 1 considers an occupied edge. The next lemma shows that
any choice of region that has a vertex in the occupied band gives rise to a witness.

▶ Lemma 13 (Proof omitted). Let (s, t) be an edge of OCH(F ) that is occupied in F . Let
s ∈ V (Ra) and t ∈ V (Rb) for a ̸= b. Let Ri be a region not equal to Ra or Rb with a vertex
q ∈ V (Ri) ∩ band(Ra, Rb). Then {Ra, Rb, Ri} is a witness.

The final case of Algorithm 1 considers any remaining spanning subchains of OCH(F ).

▶ Lemma 14 (Proof omitted). Let (q, r, . . . , s, t) be a contiguous subchain of OCH(F ) that
is spanning in F . Let Ra, Rb, Rc be as in Definition 10. Then {Ra, Rb, Rc} is a witness.

3.2 Proving that Algorithm 1 is instance-optimal
We now prove that Algorithm 1 is instance-optimal. That is, the algorithm retrieves the
minimal number of regions (up to constant factors) necessary to determine the ordering of
points on the convex hull, for any realisation P ∼ F . We first observe that Algorithm 1
only terminates when F is terminal, meaning: every edge of OCH(F ) is dividing, no edge of
OCH(F ) is occupied, and no contiguous subchain of OCH(F ) is spanning.

For the remainder of this section, let A denote the multiset of regions that appear on
OCH(F ). If F is terminal, the regions in A satisfy the following structure:

▶ Lemma 15. If F is terminal, then all regions in A are strictly vertically separated from
each other, with the exception of pairs of regions that are duplicates of the same point.

Proof. Walk along OCH(F ) from left to right, considering edges (s, t) with s ∈ Ra, t ∈ Rb,
a ̸= b. As F is terminal, this edge is dividing, hence Ra lies strictly to the left of Rb. All
previously encountered regions lie strictly left of Ra, hence also strictly to the left of Rb.
Moreover, this edge is not occupied, so Rb is disjoint from all regions not equal to Rb. ◀

With Lemma 15, we define for each region R that appears on OCH(F ) its left (or right)
neighbour as the first region on OCH(F ) that lies strictly left (or right) of R. Note that
two duplicate point regions on OCH(F ) have the same neighbours. Next, we show that the
points corresponding to regions in A always appear on the convex hull (Lemma 16), and that
no points corresponding to regions in F − A appear on the convex hull (Lemma 17).
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Figure 6 pb must be above papc, as otherwise there is a spanning contiguous subchain of OCH(F ).

▶ Lemma 16. If F is terminal, then for any P ′ ∼ A each point in P ′ lies on CH(P ′).

Proof. Let P ′ ∼ A and Rb ∈ A−{(−∞, −∞), (∞, −∞)} be arbitrary. Let Ra and Rc be the
left and right neighbour of Rb on OCH(F ). Observe that these neighbours are well-defined
as (−∞, −∞) and (∞, −∞) lie on OCH(F ). Suppose by contradiction that pb lies below the
segment papc. Then Rb intersects the inside of OCH({Ra, Rc}), see Figure 6, so there is a
contiguous subchain of OCH(F ) that is spanning in F . This contradicts F being terminal.
Since Rb was arbitrary, this shows that any three consecutive points in P ′ form a convex-down
angle. Hence, P ′ spans a convex polygon, so all points in P ′ appear on CH(P ′). ◀

▶ Lemma 17. If F is terminal, then for any P ∼ F only points of regions in A lie on CH(P ).

Proof. Let P ′ ∼ A be arbitrary. Suppose by contradiction that there is a region Ri ∈ F − A

with a point pi ∈ Ri on or outside of CH(P ′). Since the inside of CH(P ′) is convex, we may
require pi to be an extreme point of Ri, so pi ∈ V (Ri). By Lemma 15 and Lemma 16, there
exist consecutive regions Ra, Rb ∈ A for which pi lies on or above papb. As papb lies fully
inside band(Ra, Rb), the point pi lies in or directly above band(Ra, Rb). We make a case
distinction, where pi lies directly above Rb (or Ra), or, on the upper tangent of Ra, Rb.

Suppose first that pi lies directly above a point q ∈ Rb. Let Ra, Rc be the left and right
neighbour of Rb on OCH(F ), respectively. Let r be the point on OCH(F ) directly above
pi. Then r ∈ band(Rb, Rc) (or r ∈ band(Ra, Rb)), hence also pi ∈ band(Rb, Rc) as bands
are convex and pi lies on qr. Hence, F is not terminal. Similarly, pi being directly above
a point in Ra implies that F is not terminal. Furthermore, pi cannot lie above the upper
tangent of Ra, Rb since Ri /∈ A. This shows that pi does not lie above band(Ra, Rb), hence
pi ∈ band(Ra, Rb), so F is not terminal. ◀

▶ Theorem 18. Algorithm 1 is an instance-optimal reconstruction strategy.

Proof. First, we show that when Algorithm 1 terminates, the set F is finished. Let F be
terminal. Let A ⊆ F be the multiset of regions that appear on OCH(F ). Let P ′ ∼ A

and Q′ ∼ F − A be arbitrary. By Lemma 17, no points in Q′ are on CH(P ′ ∪ Q′). By
Lemma 16, the points in P ′ all appear on CH(P ′ ∪ Q′). Moreover, together with Lemma 15,
this implies that for all P1 ∼ A and P2 ∼ A, ⪯(CH(P1)) = ⪯(CH(P2)). So, F is finished.
Hence, Algorithm 1 is a correct reconstruction strategy.

We now show instance-optimality. By Lemmas 11, 12, 13 and 14, the algorithm retrieves
a constant-size witness in each iteration. Let X1, . . . , Xk be the sets of non-point regions of
these witnesses. Since the witnesses have constant size, Algorithm 1 does O(k) retrievals. A
retrieval turns a region into a point region, hence the Xi are pairwise disjoint. On the other
hand, if (F ⊙P A) is finished for some A ⊆ F , then A needs to contain at least one element
from each Xi (by the definition of witness). As the Xi are disjoint, this forces |A| ≥ k. Hence,
Algorithm 1 is instance optimal by Observation 5. ◀
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Figure 7 The convex chain from q to v is hit in F since (s, t) is occupied due to the red vertices.

4 Regions that are simple k-gons

We present a reconstruction program that executes our strategy from Algorithm 1 in
polylogarithmic time per retrieval. To this end, we restrict F to a family of n (possibly
overlapping) simple polygons, each with at most k vertices. Recall that V (F ) = (v1, . . . , vm)
denotes the set of all m ∈ O(kn) distinct vertices in F . After each retrieval, we update F by
replacing Ri with pi, and update V by deleting O(k) vertices from V and adding pi to V .

▶ Observation 19. For any family of regions F , OCH(F ) has the same edges as CH(V (F )).

Consider a PHT T of V (F ) (Definition 7). After one retrieval, let T ′ be the updated PHT.
We define the recourse set as the set symmetric difference of all bridges in T and all bridges
in T ′. Recourse is defined as the maximum size, across all possible retrievals, of any recourse
set. A PHT has O(log m) recourse per update, and hence O(k log m) recourse per retrieval.

Augmenting the Partial Hull Tree. Within each leaf of T , corresponding to a vertex
v ∈ V (F ), we maintain two doubly linked lists. The point region list stores all point regions
that are v. The non-point region list stores the other regions R ∈ F where v ∈ V (R). Recall
that Algorithm 1 retrieves regions corresponding to the endpoint of edges that are:

non-canonical ≫ canonical but non-dividing ≫ occupied ≫ in spanning chain.

For every node ν ∈ T with bridge e(ν) = (s, t), we maintain pointers to the leaves containing
s and t, along with Boolean flags indicating whether e(ν) is canonical or dividing. An update
to F may make O(n) edges occupied. So instead, we maintain a different property (Fig. 7):

▶ Definition 20. A convex chain C = (q, r, . . . , s, t, . . . , u, v) of vertices is hit in F if:
all edges of C are dividing,
the edge (s, t) is occupied in F ,
s ∈ V (Ra), t ∈ V (Rb) and a ̸= b, and
q /∈ V (Ra), r, . . . , s ∈ V (Ra), t, . . . , u ∈ V (Rb) and v /∈ V (Rb).

Recall Definition 7, where for ν ∈ T , E(ν) denotes a balanced binary tree on CH(ν). The
PHT stores in ν a concatenable queue E∗(ν) which is E(ν) minus all edges that are in E(w)
where w is the parent of ν. We further augment the data structure by maintaining four
balanced trees associated with E∗(ν), where edges are ordered by their appearance in E∗(ν):
1. a tree Λ∗(ν) storing all edges (s, t) ∈ E∗(ν) that are non-canonical in F ,
2. a tree storing all edges (s, t) ∈ E∗(ν) that are canonical and non-dividing in F ,
3. a tree storing all contiguous subchains of E∗(ν) that are spanning in F ,
4. a tree storing all contiguous subchains of E∗(ν) that are hit in F .
We only give the first tree a name since all others are maintained in similar fashion. We
denote by Λν a balanced tree on all non-canonical edges in E(ν).
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▶ Observation 21 (by Definition 9). For any canonical bridge (s, t) in T , there exists a unique
area R(s) that contains s. R(s) is either a point, or a unique region in F and can be found
in O(1) time by checking the regions lists stored at one of the leaves that (s, t) points to.

We store for every region in F their maximum and minimum x-coordinate, this way we
can test if a pair of regions is vertically separated in constant time.

Candidate chains. Our data structure maintains for each ν ∈ T , a collection of special
edges and special chains. We observe that these chains have a special structure:

▶ Definition 22. Let ν ∈ T and consider E(ν) (not E∗(ν)). Any contiguous subchain
C = (q, s, . . . , r) of E(ν) is a candidate chain if all edges of C are dividing in F and:

C = (q, s, r) with q ∈ V (Ra), s ∈ V (Rb), r ∈ V (Rc), and q, r ̸∈ V (Rb), or,
all interior vertices of C are in V (Rb) and q, r ̸∈ V (Rb),
(note that this implies that all interior vertices are not in V (Rx) for x ̸= b).

▶ Observation 23. Any subchain of E(ν) that is spanning in F is also a candidate chain.

▶ Observation 24. Any subchain (q, r, . . . , s, t, . . . , u, v) of E(ν) is hit in ν only if
(q, r, . . . , s, t) and (s, t, . . . , u, v) are candidate chains.

▶ Lemma 25. Let ν ∈ T . There are at most two candidate chains that contain an edge (s, t)
of E(ν) and, given E(ν) and our data structure, we can find these in O(k) time.

Proof. Suppose two candidate chains C and C ′ share (s, t). By the definition of candidate
chains, (s, t) must be the final edge of C and the first edge of C ′. First, identify the up
to two length-3 chains in E(ν) containing (s, t). Check each such chain in O(1) time for
the dividing property by consulting the Boolean flags. If all edges are dividing, we apply
Observation 21 to test whether the chain satisfies the conditions of a candidate chain.

Next, consider candidate chains of length ≥ 4 in which (s, t) is an interior edge. Check, in
O(1) time via Observation 21, whether both s and t lie in a unique region Rb. If so, perform
an in-order traversal of E(ν) – moving up to O(k) steps left from s and up to O(k) steps right
from t – to find the maximal contiguous chain with all edges dividing and interior vertices
contained in V (Rb). The chain ends when we encounter an edge whose endpoints do not
lie entirely in V (Rb). This identifies the unique candidate chain C of length ≥ 4 containing
(s, t) as an interior edge. To find chains where (s, t) is the first or last edge, apply the above
procedure to the edges immediately before and after (s, t). ◀

Update time. After each retrieval, we update bridges for all nodes along O(k) root-to-leaf
paths in T . For each bridge (s, t), we update its leaf pointers with constant overhead.
Corollaries 27, 28, 30, and 32 show how to determine whether a bridge is canonical, dividing,
part of a spanning chain, or part of a hit chain in F , respectively, in O(k log2 m) time. Since
the recourse per retrieval is O(k log m), this yields an overall update time of O(k2 log3 m).

▶ Observation 26 (by Definition 9). For any node ν ∈ T , its bridge e(ν) = (s, t) is canonical
in F if and only if both leaves containing s and t meet one of the following conditions:

The non-point region list is empty, or,
The point region list is empty and the region list contains exactly one region.

▶ Corollary 27. We can dynamically maintain, in O(k log2 m) time, for each node ν ∈ T a
balanced binary tree Λ∗(ν) of all edges (s, t) ∈ E∗(ν) that are non-canonical in F .
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Proof. Test, using Observation 26, whether any bridge is canonical in constant time. Since
the recourse is O(k log m), the set of all bridges can be updated without incurring asymptotic
overhead.

To maintain Λ∗(ν) for each node ν ∈ T , we follow the technique from [20] for concatenable
queues. For any node ν with child x, compute Λ(x) from (Λ(ν), e(ν), Λ∗(x)) in O(log m)
time by splitting Λ(ν) at the bridge e(ν), and joining the result with Λ∗(x). Traverse all
O(k) updated root-to-leaf paths, using the split operation, in O(k log2 m) total time. Then,
traverse the paths bottom-up. At each node ν with children x and y, we have access to the
newly updated trees Λ(x) and Λ(y). Compute (Λ(ν), Λ∗(x), Λ∗(y)) by splitting Λ(x) and
Λ(y) at the endpoints of the new bridge e(ν) and joining the result. ◀

▶ Corollary 28. We can dynamically maintain in O(k log2 m) time for each node ν ∈ T a
balanced binary tree on all edges (s, t) ∈ E∗(ν) that are canonical but non-dividing in F .

Proof. The set of bridges has O(k log m) recourse. Once a bridge is known to be canonical,
we apply Observation 21 to determine the unique areas R(s) and R(t) containing s and t.
We then test in constant time whether R(s) and R(t) are vertically separated, using stored
x-coordinates. The tree is maintained using the same procedure as in Corollary 27. ◀

▶ Lemma 29. For any ν ∈ T , given e(ν) = (s, t) and E(ν), we may find the at most two
contiguous subchains C of E(ν) with s, t ∈ C that are spanning in F in O(k log m) time.

Proof. Apply Lemma 25 to obtain all O(1) candidate chains in E(ν) containing (s, t). Let
C = (q, . . . , r′) be such a chain. To test whether C is spanning in F , use Observation 21 to
find the unique regions R(q), Rb, and R(r′). Construct OCH(R(q)∪R(r′)) in O(k log k) time
and perform a convex hull intersection test with Rb in O(log m) time using the algorithm of
Chazelle [6]. The chain is spanning if and only if this test returns true. ◀

▶ Corollary 30. We can dynamically maintain in O(k2 log2 m) time for each node ν ∈ T a
balanced binary tree of all subchains of E∗(ν) that are spanning in F .

Proof. Whenever the set of leaves of a node ν ∈ T changes (which occurs for O(k log m)
nodes), invoke Lemma 29 on e(ν) to maintain all chains that are spanning in F (and
contiguous subchains of CH(ν) but not of CH(x) or CH(y)). The balanced binary tree
associated to E∗(ν) can be maintained in an identical manner as previous corollaries. ◀

▶ Lemma 31. For any node ν ∈ T and any edge (x, y) ∈ E(ν), we can find all contiguous
subchains of E(ν) that contain (x, y) and are hit in F in O(k log2 m) time.

Proof. Apply Lemma 25 to find all candidate chains containing (x, y). Then, for each
candidate chain, consider the adjacent edge and apply the lemma again to construct all
possible hit chains. For each resulting subchain, test whether the middle edge i(s, t) is
occupied as follows: Construct band(R(s), R(t)) in O(k log k) time [7]. Temporarily remove
R(s) and R(t) from F , and delete s and t from V (F ), in O(k log2 m) time. Update the
corresponding PHT T ′ without updating auxiliary data. The hull CH(V (F ) \ {s, t}) is stored
at the root of T ′. By intersection testing between band(R(s), R(t)) and CH(T ′) in O(log m)
time [6], we can test if any hit chain is occupied. ◀

▶ Corollary 32. We can dynamically maintain in O(k2 log3 m) time for each node ν ∈ T a
balanced binary tree of all subchains of E∗(ν) that are hit in F .

Proof. As with Corollary 30, we invoke Lemma 31 on O(k log m) nodes where the leaf set
changes. For each, we update the associated trees using split and join operations. ◀
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▶ Theorem 33. Let F be a family of n simple polygons, where each region in F has at most
k vertices. We can preprocess F using O(kn) space and O(k2n log3(kn)) time, such that
given P ∼ F we reconstruct CH(P ) using O(kn) space and O(r(F, P )k2 log3(kn)) time.

Proof. By Corollaries 27, 28, 30, and 32, we may maintain our augmented Partial Hull
Tree in O(k2 log3(kn)) time per retrieval. This data structure maintains at its root four
balanced trees storing all: non-canonical edges, canonical but non-dividing edges; subchains
of OCH(F ) that are spanning in F , or hit in F . We observe that Algorithm 1 only considers
occupied edges if all edges on OCH(F ) are dividing. Then, any occupied edge corresponds
to a hit subchain. Thus, we may immediately use these trees to execute Algorithm 1. This
procedure performs O(r(F, P )) retrievals and so the theorem follows. ◀

In the full version, we note that our approach has two bottlenecks. First, the algorithm
from Lemma 25 may “skip” over O(k) edges to find the largest candidate chain. By applying
a technique similar to skip-lists, we improve its running time by a factor k. Secondly, our
approach frequently uses a subroutine where for any two regions R(s) and R(t) we construct
band(R(s), R(t)) in O(k log k) time. We show that by storing for each region Ri its convex
hull, this construction time becomes polylogarithmic and we obtain the following:

▶ Theorem 34. Let F be a family of n simple polygons where each region in F has at most k

vertices. We can preprocess F using O(kn log n) space and O(kn log3(kn)) time, such that
given P ∼ F we reconstruct CH(P ) using O(r(F, P ) · k log3(kn)) time.
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