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Abstract
Let G be a directed graph with n vertices and m edges. We present a deterministic algorithm that
maintains the 2-edge-connected components of G under a sequence of m edge insertions, with a total
running time of O(n2 log n). This significantly improves upon the previous best bound of O(mn) for
graphs that are not very sparse. After each insertion, our algorithm supports the following queries
with asymptotically optimal efficiency:

Test in constant time whether two query vertices v and w are 2-edge-connected in G.
Report in O(n) time all the 2-edge-connected components of G.

Our approach builds on the recent framework of Georgiadis, Italiano, and Kosinas [FOCS 2024]
for computing the 3-edge-connected components of a directed graph in linear time, which leverages
the minset-poset technique of Gabow [TALG 2016].

Additionally, we provide a deterministic decremental algorithm for maintaining 2-edge-connectivity
in strongly connected directed graphs. Given a sequence of m edge deletions, our algorithm maintains
the 2-edge-connected components in total time n2+o(1), while supporting the same queries as the
incremental algorithm. This result assumes that the edges of a fixed spanning tree of G and of its
reverse graph GR are not deleted. Previously, the best known bound for the decremental problem
was O(mn log n), obtained by a randomized algorithm without restrictions on the deletions.

In contrast to prior dynamic algorithms for 2-edge-connectivity in directed graphs, our method
avoids the incremental computation of dominator trees, thereby circumventing the known conditional
lower bound of Ω(mn).
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1 Introduction

The design of dynamic graph algorithms is a classical area of research in theoretical computer
science, where the input graph evolves through a sequence of updates, typically edge insertions
and deletions. The goal of a dynamic algorithm is to update the solution to a problem more
efficiently than recomputing it from scratch after each change. A problem is said to be fully
dynamic if both insertions and deletions are allowed, and partially dynamic if only one type
of update is permitted. The latter includes the incremental setting (only insertions) and the
decremental setting (only deletions).

A fundamental problem in this domain is the computation and maintenance of edge-
connected components in both undirected and directed graphs, driven by various practical
and theoretical applications (see, e.g., [30]). Let G = (V, E) be a strongly connected directed
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26:2 Faster Dynamic 2-Edge Connectivity in Directed Graphs

graph (digraph) with n vertices and m edges. An edge e ∈ E is called a strong bridge if its
removal disconnects the graph, i.e., G \ e is no longer strongly connected. More generally,
a subset C ⊆ E is a cut if its removal disconnects the graph. If |C| = k, we refer to C

as a k-sized cut of G. A directed graph is said to be k-edge-connected if it contains no
(k − 1)-cuts. Two vertices v and w are k-edge-connected, denoted v ↔k w, if there exist
k edge-disjoint directed paths from v to w and k edge-disjoint directed paths from w to v.
(Note that paths from v to w and from w to v need not be edge-disjoint with each other.)
By Menger’s Theorem [27], this is equivalent to requiring that every set of fewer than k edge
deletions preserves strong connectivity between v and w. A k-edge-connected component of G

is a maximal subset of vertices U ⊆ V such that u ↔k v for all u, v ∈ U . These components
form a partition of V , since ↔k is an equivalence relation [14].

Connectivity problems are significantly more challenging in directed graphs than in
undirected ones (see, e.g., [8, 18, 23]). Until recently, it was known how to compute the
k-edge-connected components of undirected graphs in linear time only for k ≤ 5 [7, 10, 12, 20,
25, 28, 29, 33, 38]. In a very recent breakthrough, Korhonen [24] presented an kO(k2)m time
algorithm for computing the k-edge connected components of an undirected graph, which
yields linear-time algorithms for any fixed k. In contrast, for directed graphs, linear-time
algorithms are only known for k ≤ 3 [13, 16, 33].

Despite significant progress in fully dynamic algorithms for several fundamental connectiv-
ity problems in undirected graphs (see, e.g., [19, 21, 22, 31, 37]), their directed counterparts
remain substantially harder [4]. This difficulty is further underscored by conditional lower
bounds [1, 17]. In particular, Abboud and Vassilevska [1] showed that any fully dynamic
algorithm for maintaining whether a directed graph has more than two strongly connected
components (SCCs) must incur Ω(m1−ϵ) update or query time (for any constant ϵ > 0) unless
the Strong Exponential Time Hypothesis (SETH) fails. Due to such hardness results, much
of the research has focused on partially dynamic scenarios. For the problem of dynamically
maintaining the SCCs of a digraph, years of effort culminated in the following breakthrough
results. For the decremental setting, Bernstein, Probst, and Wulff-Nilsen [4] developed
a randomized algorithm (against an oblivious adaptive adversary) with O(m log4 n) total
expected time, while very recently van den Brand et al. [39] gave a deterministic algorithm
with m1+o(1) total update time. For the incremental problem, also very recently, Chen et
al. [6] gave a deterministic algorithm with m1+o(1) total update time. We note that the
algorithms of [6, 39] explicitly maintain the SCCs, while [4] only supports queries of whether
two vertices are strongly connected.

In this paper, we revisit the dynamic maintenance of 2-edge-connected components in
directed graphs, a problem first explored by Georgiadis, Italiano, and Parotsidis [15], who
presented an incremental algorithm with total time O(mn) and space O(m + n). After each
insertion, their algorithm supports the following queries in asymptotically optimal time:

query(v, w): Test in O(1) time whether two vertices v and w are 2-edge-connected.

report(): Report all 2-edge-connected components in O(n) time.

Moreover, when the answer to a query(v, w) is negative, their algorithm returns in constant
time a “witness”, i.e., a strong bridge that appears in all paths from v to w or in all paths
from w to v.

The decremental version was studied in [11], where a randomized algorithm with total
running time O(mn log n) and space O(n2 log n) was presented.
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Our results

We present new deterministic, incremental and decremental algorithms for maintaining the
2-edge-connected components of a directed graph that significantly improve upon the prior
time bounds for graphs that are not very sparse.

▶ Theorem 1. We can maintain the 2-edge-connected components of a digraph with n vertices
through a sequence of edge insertions in O(n2 log n) total time. After each insertion, we can
test in O(1) time whether two vertices are 2-edge-connected and report the components in
O(n) time.

We also achieve nearly the same asymptotic bound in the decremental setting, under
certain assumptions on the edges that may be deleted.

▶ Theorem 2. We can maintain the 2-edge-connected components of a strongly connected
digraph with n vertices through a sequence of edge deletions in n2+o(1) total time, provided
that the edges of a fixed spanning tree of G and a fixed spanning tree of the reverse graph
GR are not deleted. After each deletion, we can test in O(1) time whether two vertices are
2-edge-connected and report the components in O(n) time.

The bound stated in Theorem 2 assumes that we maintain SCCs decrementally using the
algorithm of van den Brand et al. [39]. If instead we use the algorithm of Bernstein, Probst,
and Wulff-Nilsen [4], we obtain a randomized O(n2 log4 n)-time algorithm that supports
constant-time query(v, w) queries, but does not support report().

Both our incremental and our decremental algorithms require O(n2) space. Our results
build on the recent framework of Georgiadis, Italiano, and Kosinas [13], which computes
the 3-edge-connected components of a digraph in linear time using Gabow’s minset-poset
technique [8] to represent all minimum edge-cuts of a digraph. From these results, it follows
that the 2-edge-connected components of a digraph G can be identified as the strongly
connected components of two specially constructed labeling graphs. Although these labeling
graphs can have size O(mn), we show how to maintain a compact representation of size
O(n2) that can be efficiently updated in the dynamic setting.

Our techniques are fundamentally different from those of [11, 15]. The algorithm of [15]
relies on maintaining dominator trees incrementally, while [11] maintains the SCCs of G \ v

for every vertex v, using n instances of a decremental SCCs algorithm [26]. This also
supports decremental dominator tree maintenance in O(mn log n) time and O(n2 log n) space.
Importantly, [11] showed that maintaining dominator trees incrementally or decrementally in
total time O((mn)1−ϵ) (for some constant ϵ > 0) is not possible unless the OMv Conjecture [17]
fails. This bound applies even to algorithms that do not explicitly maintain the dominator
tree but can answer parent queries. Consequently, both [11] and [15] are subject to this
hardness barrier, whereas our new algorithms are not. However, unlike [15], our algorithms
do not provide a witness edge when the answer to a query(v, w) is negative.

2 Preliminaries and notation

We assume that the reader is familiar with standard graph terminology. All graphs in this
paper are directed, i.e., an edge e = (u, v) in digraph G is directed from u, the tail of e, to v,
the head of e. Also, we allow G to have multiple edges between the same pair of vertices. To
simplify our bounds, we will assume that G may have no more than two copies of each edge,
so that the number of edges is m = O(n2). (Notice that adding more than two copies of the
same edge (u, v) does not affect 2-edge-connectivity.) If C is a set of edges, then CR denotes
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the set of the reversed edges from C. We also let GR = (V, ER) denote the reverse graph of
G = (V, E), i.e., the digraph that results from G after reversing the orientation of all edges.
For a graph or a set of edges F , we use V (F ) to denote the set of the endpoints of the edges
in F . If F consists of a single edge e, we may simply write V (e) (which denotes the set of
the endpoints of e). Also, for a graph F , we use E(F ) to denote the set of edges in F .

Let G = (V, E) be a digraph. For any S, T ⊆ V , we denote the set of edges whose tail is
in S and their head in T by E(S, T ) = {(u, v) | (u, v) ∈ E, u ∈ S, v ∈ T}. We denote the set
of outgoing edges from a set S ⊆ V to the rest of the graph by δ(S) = E(S, V \ S), and the
number of such edges by out(S) = |δ(S)|. Similarly, we denote the set of incoming edges
from the rest of the graph to S by ρ(S) = E(V \ S, S) and the number of such edges by
in(S) = |ρ(S)|. When S contains only a single vertex u, we slightly abuse notation and write
out(u), in(u) instead of out({u}), in({u}).

For a set of edges E′ ⊆ E and a set of vertices S ⊆ V , ρE′(S) denotes the set of edges in
E′ that enter S from V \ S.

2.1 Flow graphs, dominators, and bridges

A flow graph is a directed graph with a distinguished start vertex s such that every vertex
is reachable from s. Let G = (V, E) be a strongly connected graph. Since G is strongly
connected, all vertices are reachable from s and reach s, so we can view both G and GR as
flow graphs with start vertex s. To avoid ambiguities, throughout the paper, we will denote
those flow graphs respectively by Gs and GR

s . Let Gs be a flow graph with start vertex
s. An edge (u, v) is a bridge of Gs if all paths from s to v include (u, v).1 A vertex u is a
dominator of a vertex v (u dominates v) if every path from s to v in Gs contains u. The
dominator relation is reflexive and transitive. Its transitive reduction is a rooted tree, the
dominator tree D: u dominates v if and only if u is an ancestor of v in D. The dominator
tree and the bridges of a flow graph can be computed in linear time [2, 5].

2.2 Cuts

A cut is a partition of the vertices of a graph into two disjoint subsets S, T . A cut determines
a cut-set E(S, T ), since the removal of these edges makes all vertices in T unreachable from
vertices in S. We may use the term “cut” interchangeably to denote either the partition
(S, T ) or the set of edges E(S, T ). (The meaning will always be clear from the context.) We
say that a cut (S, T ) is a k-sized cut if out(S) = in(T ) = k; then we say S is a k-out set and
T is a k-in set. A cut (S, T ) is trivial if |S| = 1 or |T | = 1. A cut C separates vertex s from
vertex t if all paths from s to t contain an edge in C. We refer to such a cut C as an s-t
cut. Any partition of the vertices into two sets S and T = V \ S, such that s ∈ S and t ∈ T

naturally defines an s-t cut. We also refer to the partition (S, T ) as an s-t cut of G. The
size of this cut is equal to |E(S, T )|, i.e., the number of edges directed from S to T . An s-t
mincut is a cut (S, T ) of minimum size such that s ∈ S and t ∈ T . Consider a flow graph Gs

and a k-in set T such that s ̸∈ T . We call T a k-sized s-cut of G. Then, all paths from s to
T contain an edge in ρ(T ). Clearly, any cut of G is an s-cut of Gs or an s-cut of GR

s , which
allows us to focus only on the s-cuts of G.

1 Throughout the paper, to avoid confusion, we use consistently the term bridge to refer to a bridge of a
flow graph and the term strong bridge to refer to a strong bridge in the original graph.
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2.3 Trees and fundamental cycles
Let T be a rooted tree. Throughout, we assume that the edges of T are directed away from
the root. For each directed edge (u, v) in T , we say that u is a parent of v (and we denote
it by t(v)) and that v is a child of u. Every vertex except the root has a unique parent. If
there is a (directed) path from vertex v to vertex w in T , we say that v is an ancestor of w

and that w is a descendant of v, and we denote this path by T [v, w]. If v ̸= w, we say that v

is a proper ancestor of w and that w is a proper descendant of v, and denote by T (v, w] the
path in T to w from the child of v that is an ancestor of w.

A spanning tree T of a flow graph Gs with start vertex s is rooted at s and contains
a unique path from s to any other vertex. For an edge e ̸∈ T , we let T (e) denote the
fundamental cycle of e in T , i.e., the cycle that is formed in T when we add edge e, ignoring
edge directions. Let e = (u, v) ̸∈ T , and let z be the nearest common ancestor of u and v

in T . Then T (e) \ e consists of two directed paths, one from z to u, and another from z to
v. (One of these paths may consist of a single vertex.) For a set S ⊆ V (S), we let LCA(S)
denote the lowest common ancestor in T of all vertices in S.

Let Gs be a flow graph and let T be a spanning tree of Gs rooted at s. We let N denote
the set of non-tree edges of Gs, i.e., N = E(Gs) \ T . For any vertex v ∈ Gs, we let ρN (v)
denote the set of non-tree edges that are incoming to v.

2.4 Minimum 1-in sets
Let Gs be a strongly connected digraph with a fixed start vertex s. A set of vertices S is called
a 1-in set if s /∈ S and in(S) = |E(V \ S, S)| = 1. For every vertex v ̸= s that is contained in
a 1-in set, we let M(v) denote the (inclusion-wise) minimum 1-in set that contains v. We
call this the M -set of v. Note that M(v) is well-defined due to the submodularity of cuts.
Specifically, we have the following.

▶ Lemma 3. Let S and S′ be two 1-in sets that contain a vertex v ̸= s. Then, S ∩ S′ is also
a 1-in set.

Proof. We have that S ∩ S′ and S ∪ S′ contain v but not s. By the submodularity of cuts,
we have:

in(S ∩ S′) + in(S ∪ S′) ≤ in(S) + in(S′) (1)

Since S and S′ are 1-in sets, the right hand side of (1) equals 2. Since S ∩ S′ and S ∪ S′ are
cuts that separate v from s, we have in(S ∩ S′) ≥ 1 and in(S ∪ S′) ≥ 1. Now (1) implies
that in(S ∩ S′) = 1. This shows that S ∩ S′ is a 1-in set. ◀

If v is not contained in a 1-in set, then we let M(v) = V (G). We use MR(v) to denote
the M -set of v in GR

s . The importance of considering the M -sets (in both Gs and GR
s ) is

demonstrated in the following proposition.

▶ Proposition 4 ([13]). Let G be a strongly connected digraph with a fixed start vertex s.
Then, for any two vertices u and v, we have u ↔2 v if and only if M(u) = M(v) and
MR(u) = MR(v).

According to Proposition 4, in order to compute the 2-edge-connected components of G,
it is sufficient to compute the M -sets in Gs and GR

s . As in [13], our approach is to compute
the partition of V (G) into the sets of vertices that have same M -set in Gs, and the sets of
vertices that have the same M -set in GR

s . It follows by Gabow [8], that this partition (w.r.t.
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Figure 1 Example of flow graph and an insertion sequence that elicits Θ(n2) changes of the
M(vi) sets. Each graph Gk,l is formed by adding the edges (xi, vj) for 1 ≤ l ≤ j and 2 ≤ i ≤ k.
Hence, Gk,l+1 results from Gk,l after inserting the edge (xk, vl+1), and Gk+1,1 results from Gk,n

after inserting the edge (xk+1, v1). In Gs, we have M(vi) = {x1, vi, vi+1, . . . , vn}, for 1 ≤ i ≤ n. In
Gk,l, M(vi) = {xk, xk−1, . . . , x1, vi, vi+1, . . . , vn}, for 1 ≤ i ≤ l.

either Gs or GR
s ) corresponds to the strongly connected components of a labeling graph LG.

So, our goal here is to show how to maintain this information efficiently in the incremental
or decremental setting. Note that there are insertion sequences (or deletion sequences) that
can cause O(n2) changes of the M -sets. See Figure 1.

First, we need to extend the definition of M -sets to edges of Gs as follows. Let e be an
edge such that there is a 1-in set that contains both endpoints of e. Then M(e) denotes the
edge-set of the induced subgraph of the minimum 1-in set that contains both endpoints of
e. To obtain the minimum 1-in set of each vertex v, [8] uses an augmented version of Gs,
defined as follows. For every vertex v ≠ s of Gs, we introduce a new vertex v′, two parallel
edges of the form (v, v′), and two parallel edges of the form (v′, v). Let us call G+

s = (V, E)
the resulting graph. Then, it follows that for every vertex v ̸= s of Gs, we have that M(v)
corresponds in a natural way to M((v, v′)) (in G+

s ).
Since, by Lemma 3, the M(e) sets are closed under intersection, they admit a poset

representation. For any edge e ∈ E, let [e] = {f : M(f) = M(e)}. We define the following
relation on the edges of Gs: for e, f ∈ E, let [e] ≻ [f ] if and only if M(f) ⊂ M(e). Hence,
({[e]}, ≻) forms a poset that represents all the minimum M -sets.

3 Computing minimum 1-in sets via Gabow’s minset poset

Let G = (V, E) be a strongly connected digraph, and let s be an arbitrary vertex of G. We
view G as a flow graph with start vertex s. Recall that a 1-in set X is a set of vertices such
that X ⊆ V \ s and in(X) = |E(V \ X, X)| = 1. Consider the flow graph Gs, and let T be a
spanning tree rooted at s. For simplicity, sometimes we slightly abuse notation and refer to
T as the set of tree edges. For any set of vertices X, we denote by T [X] the subgraph of T

induced by X. We say that X is cut by T if ρ(X) ⊆ T (that is, the only edges that enter X

are tree edges of T ), and X is cospanned by T if T [X] is a tree. The next characterization
follows from [8].

▶ Lemma 5 ([8]). Let Gs be a flow graph with start vertex s, and let T be a spanning tree of
Gs. Any set of vertices X ⊆ V \ s is a 1-in set of Gs if and only if it is cut and cospanned
by T .
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Figure 2 A strongly connected flow graph Gs, its corresponding labeling graph LG, and the
minimum 1-in set poset. In Gs the tree edges are black and the non-tree edges are blue. In LG, the
vertices that correspond to tree edges are gray and the vertices that correspond to non-tree edges
are blue. We have M((a, b)) = {(a, b), (a, c), (b, d), (d, a), (e, b), (c, e), (c, e)}.

According to Lemma 5, if X is a 1-in set of Gs, then T [X] is a tree with root r and the
only edge entering X is the edge (t(r), r) ∈ T .

3.1 Labeling function and labeling graph LG
Gabow [8] defines a labeling graph LG with the property that the strongly connected
components of LG correspond to the edges of Gs that have the same M -set. For any vertex
v ̸= s, there is at most one incoming edge to v that can be the incoming edge to M(v), and
the rest have the property that both of their endpoints also belong to M(v). Thus, the
idea is to assign a label to every edge e, which is essentially a set of pointers to edges that
participate in the same M -set as e. Thus, the M -sets are given as the reachability sets of
various edges with respect to this labeling. However, we cannot afford to explicitly compute
the M -sets of all vertices, as their total size can be quadratic to |V (Gs)|.

In [8], the vertex set V (LG) of LG consists of the edges of G, and the edges (f, g) ∈ E(LG)
are defined by a labeling function Lc : E 7→ 2E . In our case, this labeling function becomes

Lc(e) =
{

ρN (u) ∪ ρN (v) e = (u, v) ∈ T

T (e) e ∈ N (2)

This function implies a labeling graph LG that has vertex set E (i.e., one vertex for each
edge of G), and edges (e, f) where e ∈ E and f ∈ L(e). For e, f ∈ E, we say that f is a
successor of e if there is a path from e to f in LG. The important property of the labeling
graph LG is that the minimum set M(e) of each edge e is equal to the set of all successors
of e in LG [8]. This implies the following key proposition. (See Figure 2.)

▶ Proposition 6 ([8, 13]). Let Gs be a strongly connected flow graph with start vertex s, and
let e and f be any two edges.
(a) If e is contained in a 1-in set, then M(e) = M(f) if and only if e and f are strongly

connected in LG.
(b) If e is not contained in a 1-in set, then e and f are strongly connected in LG if and only

if f is also not contained in a 1-in set.

By Proposition 6, we have that any two vertices v and w are 2-edge-connected if and only
if (v, v′) and (w, w′) are strongly connected both in the labeling graph LG+ of G+

s and in
the labeling graph LG+

R of (G+
s )R.

ESA 2025
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Note that each tree edge e = (v, w) has out-degree equal to |ρN (v)| + |ρN (w)| in LG,
while each non-tree edge f has out-degree equal to the number of tree edges in T (f). Hence,
LG has m vertices and O(mn) edges. Nevertheless, Gabow [8] showed that the nodes [e] of
the corresponding poset ({[e]}, ≻), which form a compact representation of these M -sets
sufficient for our purposes, can be computed in O(m) time by a clever implementation of an
algorithm for computing the SCCs [7] of LG. (We remark that the node-finding algorithm
of [8] does not compute the complete poset, which has O(n) vertices and O(n2) edges.) The
key idea is to use appropriate data structures, based on set merging [9], to avoid generating
all edges of LG. This algorithm critically depends on a specific ordering of operations within
the SCC algorithm, which makes it unsuitable for use in incremental or decremental settings.

4 Incremental algorithm

In this section, we present our incremental algorithm for maintaining the 2-edge-connected
components of a digraph G. We consider, first, the case where G is strongly connected, and
let T be a spanning tree of the corresponding flowgraph Gs, for an arbitrarily chosen start
vertex s. Our algorithm operates on a modified labeling graph, denoted by L̂G, with the
following properties: (i) L̂G contains O(n) vertices and O(n2) edges, (ii) the SCCs of L̂G
correspond to the poset nodes [x] of the minimum 1-in sets of Gs, where x ∈ V (G) ∪ T , and
(iii) we can efficiently maintain L̂G through a sequence of edge insertions.

4.1 Modified labeling graph
The modified labeling graph L̂G is defined as follows. The vertex set of L̂G consists of the
tree edges of T and the vertices of G, i.e., V (L̂G) = T ∪ V (G). The edge set is defined by
the following modified labeling function L̂c : T ∪ V (G) 7→ 2T ∪V (G):

L̂c(x) =
{

{u, v} x = (u, v) ∈ T

{e ∈ T : ∃f ∈ ρN (v) such that e ∈ T (f)} x = v ∈ V (G) (3)

Hence, (x, y) ∈ E(L̂G) if and only if y ∈ L̂c(x). Note that both LG and L̂G are bipartite
graphs, since any edge connects a tree edge e ∈ T with a non-tree edge f ∈ N in the former,
and a tree edge e ∈ T with a vertex v ∈ V (G) in the latter. While LG has m vertices and
O(mn) edges, L̂G has 2n − 1 vertices and O(n2) edges.

▶ Lemma 7. For any two edges f, g ∈ T , g is reachable from f in LG if and only if g is
reachable from f in L̂G.

Proof. Suppose g is reachable from f in LG. Let P be a path from f to g in LG. Since
LG is bipartite, the length of P is even. Consider two consecutive edges (x, y) and (y, z)
on P , such that x, z ∈ T and y ∈ N . Also, let x = (u, v). Then, by the definition of Lc,
y ∈ ρN (u) ∪ ρN (v), and z ∈ T (y). Then, by the definition of L̂c, L̂G contains (x, u) and
(x, v), and either (u, z) or (v, z). In both cases, x reaches z in L̂G. Hence, it follows by
induction on the length of P that if g is reachable from f in LG then g is also reachable
from f in L̂G.

We show the contrapositive by similar arguments. Suppose g is reachable from f in L̂G.
Let P be a path from f to g in L̂G. Since L̂G is bipartite, the length of P is even. Consider
two consecutive edges (x, y) and (y, z) on P , such that x, z ∈ T and y ∈ V (G). Also, let
x = (u, v). Then, by the definition of L̂c, y ∈ {u, v}, z ∈ T (e) where e ∈ ρN (y). Then, by
the definition of Lc, LG contains the edges (x, e) and (e, z), and so x reaches z in LG. Hence,
it follows by induction on the length of P that if g is reachable from f in L̂G then g is also
reachable from f in LG. ◀
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An alternative but equivalent definition of L̂G can be obtained by applying a sequence of
vertex contractions to LG. Specifically, for each vertex v ∈ V (G), we contract all non-tree
edges in ρN (v) and subsequently eliminate any duplicate edges. While this may appear more
intuitive, we adopt the original formulation as it enables the construction of L̂G in O(n2)
total time.

▶ Corollary 8. For any two edges f, g ∈ T , [f ] = [g] if and only if f and g are strongly
connected in L̂G.

By Proposition 4 and Corollary 8, to determine whether two vertices u and v are 2-edge-
connected in G, it suffices to check whether the edges (u, u′) and (v, v′) in the augmented
graph G+

s are strongly connected in both the modified labeling graph of G+
s and that of its

reverse (G+
s )R. The following lemma shows that, in fact, it is not necessary to work with the

augmented graph explicitly.

▶ Lemma 9. For any two vertices u, v ∈ V (G), (v, v′) is reachable from (u, u′) in the modified
labeling graph L̂G

+
of G+

s if and only if v is reachable from u in L̂G.

Proof. Suppose L̂G
+

contains a path P from (u, u′) to (v, v′). Since L̂G
+

is bipartite, and
because the only non-tree edges entering (u, u′) in G+

s , except its copy (u, u′), are in ρN (u),
the next vertex on P after (u, u′) must be u. Consider now the penultimate vertex w on
P . Then w ∈ V (G), and from the definition of L̂c (equation (3)), there is a non-tree edge
e ∈ ρN (w) such that (v, v′) ∈ T (e). But this is possible only for w = v and e = (v′, v).
Hence, P contains a path from u to v, and so, L̂G also contains a path from u to v.

Now suppose that L̂G contains a path P from u to v. From the definition of L̂c

(equation (3)), L̂G
+

contains an edge from (u, u′) to u. Also, since (v′, v) ∈ ρN (v) and
(v, v′) ∈ T ((v′, v)), L̂G

+
also contains an edge from v to (v, v′). Hence, L̂G

+
contains a path

from (u, u′) to (v, v′). ◀

▶ Corollary 10. Let G be a strongly connected digraph with a fixed start vertex s. Then, for
any two vertices u and v, we have u ↔2 v if and only if u and v are strongly connected in
the modified labeling graph L̂G of Gs and in the modified labeling graph L̂GR of GR

s .

4.2 Incremental construction of L̂G
Here we describe how to construct L̂G incrementally as edges are added to a strongly
connected graph G with a designated start vertex s. The labeling graph is defined with
respect to a fixed spanning tree T of the flow graph Gs, rooted at s. (Similarly, we have a
fixed spanning tree TR of GR

s , rooted at s, that defines the labeling graph of GR
s .)

We initialize L̂G by inserting a vertex for each v ∈ V (G) and for each tree edge e ∈ T .
Also, for each tree edge e = (u, v), we add to L̂G the edges (e, u) and (e, v).

Let v be a vertex of G, and let e be a tree edge of T . We say that e is covered by v if
there is an edge f ∈ ρN (v) such that e ∈ T (f), i.e., if e ∈ L̂c(v). For each vertex v ∈ V (G),
we maintain the set of tree edges that are covered by v, using the following simple fact.

▶ Lemma 11. Let v be a vertex such that |ρN (v)| ≥ 1, and let Tv be the set of tree edges
that are covered by v. Then, Tv is a tree, rooted at the lowest common ancestor in T of all
the vertices in V (ρN (v)).

Proof. Consider an edge f ∈ ρN (v). Then, v is contained in the fundamental cycle T (f), so
Tv is connected. Since Tv ⊆ T , Tv is a tree. Let rootv be the root of Tv. If ρN (v) contains
a single edge e = (u, v), then Tv is rooted at LCA(V (e)). Now suppose |ρN (v)| > 1. Let
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e = (u, v) and e′ = (w, v) be two edges in ρN (v). Let z = LCA(u, v) and z′ = LCA(w, v).
Since both z and z′ are ancestors of v in T , we have LCA(z, z′) ∈ {z, z′}. We conclude that
rootv = LCA(V (ρN (v))). ◀

Lemma 11 allows us to use simple data structures to maintain Tv for each vertex v.
Specifically, we do not maintain Tv explicitly, but keep a bit vector bv, indexed by the vertices
of V (G) that indicates the vertices participating in Tv. Also, we store the current root
of Tv. During the construction we maintain the following invariant (I): For any vertex u,
we have bv[u] = 1 if and only if (t(u), u) is covered by v. Thus, bv[u] = 1 if and only if
(t(u), u) ∈ L̂c(v), which means that L̂G contains the edge (v, (t(u), u)). So, intuitively, we
can view the bit vectors bv as forming an adjacency matrix of the vertices v ∈ V (G) in L̂G.

Initially, we set bv[u] = 0, for all vertices u ∈ V (G), and set rootv = v. (The root of
Tv is the only vertex in Tv that is not marked in bv.) Furthermore, we need to be able
to test the ancestor-descendant relation in T . There are several simple O(1)-time tests of
this relation [34]. The most convenient one for us is to number the vertices of T from 1 to
n in preorder and compute the number of descendants of each vertex v. We denote these
numbers by pre(v) and size(v), respectively. Then v is a descendant of u if and only if
pre(u) ≤ pre(v) < pre(u) + size(u).

Suppose now that an edge e = (u, v) is added into G. Then, since T is a spanning tree
of Gs, e is a new non-tree edge in ρN (v). So, we need to find the tree edges f ∈ T (e) such
that L̂G does not contain the edge (v, f). Equivalently, we need to find the vertices in T (e)
that are not already marked in bv. Let x be the lowest common ancestor of u and v in T .
(Note that we only use x for reference and do not need to find it explicitly.) To find the
relevant unmarked vertices, we traverse the part of the cycle T (e) from u to x as follows. Let
y = u be the current vertex. While y is not an ancestor of v, we check if bv[y] = 1. If not,
then we set bv[y] = 1, add the edge from v to (t(y), y) in L̂G, and set y = t(y). Otherwise,
we let y = rootv. This procedure stops as soon as y is an ancestor of v. At this point, if
bv[y] = 0, then we set rootv = y. We repeat the same procedure for y = v, where we stop
when y becomes an ancestor of u.

▶ Lemma 12. The above procedure correctly updates L̂G in O(n2) total time for all edge
insertions.

Proof. It is easy to verify that the procedure maintains invariant (I) correctly, because of
Lemma 11. Also, the algorithm inserts an edge (v, e) into L̂G if and only if e is covered by v,
which is in accordance to the labeling function L̂c. Now we bound the total running time
for the construction of L̂G after all insertions. The total running time is dominated by the
time we need to locate tree edges that are just covered by each insertion. Let e = (u, v) be a
newly added edge to G. The above procedure visits at most two vertices that are already
marked in bv. For all other visited vertices u, we have bv[u] = 0 before the visit and bv[u] = 1
after the visit, excluding rootv, which also is visited at most twice per added edge. Hence,
the total time throughout the whole sequence of insertions is bounded by O(n2). ◀

4.3 Incremental computation of the 2-edge-connected components
Let G be a strongly connected graph that undergoes edge insertions. We chose an arbitrary
start vertex s, and compute a spanning trees T of G and a spanning TR of GR, rooted at s.
We maintain two instances of the modified labeling graph of Section 4.1, L̂G that represents
the minimum 1-in sets of G, and L̂GR that represents the minimum 1-in sets of GR, using
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the two fixed spanning trees T and TR. When an edge (u, v) is inserted into G, we execute
the update operation of Section 4.2 for L̂G and for L̂GR. Note that for L̂GR, we search for
tree edges of TR that are covered by u.

We maintain the SCCs of L̂G and L̂GR incrementally, by running on each labeling graph
the incremental SCCs algorithm of Bender et al. [3] for dense graphs. For a digraph with n

vertices, the algorithm of [3] runs in O(n2 log n) total time. The modified labeling graphs
L̂G and L̂GR have O(n) vertices and O(n2) edges, since during their construction we never
add duplicate edges. By Lemma 12, we can construct them incrementally in O(n2) time,
and the total time for maintaining their SCCs is also O(n2 log n).

We turn now to the query operations query(v, w) and report(). Each SCC of L̂G (and
similarly of L̂GR) is represented by a canonical vertex, and the partition of the vertices into
SCCs is maintained through a disjoint set union data (DSU) structure [36, 35]. The DSU
data structure supports the operation unite(p, q), which, given canonical vertices p and q,
merges the SCCs containing p and q into one new SCC and makes p the canonical vertex
of the new SCC. It also supports the query find(v), which returns the canonical vertex of
the SCC containing v. Since we aim at constant time queries, we use such a data structure
that can support each find operation in worst-case O(1) time and any sequence of unite
operations in total time O(n log n) [36]. This way, we can identify the canonical vertex of
the auxiliary component containing a query vertex in constant time. Hence, by Corollary 10,
we can answer query(v, w) in G also in constant time, by testing if u and v are strongly
connected in both L̂G and L̂GR.

To answer a report() query, we create, for each vertex v ∈ V (G), a label label(v) =
⟨cv, cR

v , v⟩, where cv and cR
v are the canonical vertices in the SCCs of L̂G and L̂GR, respectively,

that contain v. As above, each of these canonical vertices is available in O(1) time. We form
a list L consisting of label(v) for all v ∈ V (G), and sort them lexicographically in O(n) time
using bucket sorting. Then, in the sorted list L, the vertices of the same 2-edge-connected
component appear consecutively, since they have the same canonical vertices in their labels.
Therefore, we can report the 2-edge-connected components of G in O(n) time.

4.4 Extension to general digraphs
Now we extend our incremental algorithm to general (not strongly connected) digraphs.
We note that Proposition 6 requires us to use labeling graphs that correspond to strongly
connected flow graphs. To that end, we construct a two-level data structure, that uses various
instances of the incremental SCCs algorithm of Bender et al. [3], as mentioned in Section 4.3.

Let G be the input digraph subject to edge insertions. The top level of our data structure,
that we refer to as ISC(G), maintains the strongly connected components of G with the use
of the incremental SCCs algorithm of [3]. More precisely, ISC(G) maintains the SCCs of G,
represented with a DSU data structure, and the condensation of G, denoted by Ḡ, which is
the directed acyclic graph that results from G after we contract each SCC into its canonical
vertex. We note that [3] also maintains a topological ordering of Ḡ, and when a new SCC
is formed, it removes loops and duplicate edges. The bottom level of our data structure
maintains the information about the 1-in sets and 1-out sets within each SCC C of G, in
a structure I2EC(C). Specifically, for each strongly connected component C of G, with a
designated start vertex s, we store a spanning tree T of G[C] and a spanning tree TR of
GR[C], rooted at s. Also, we maintain the data structures of Sections 4.2 and 4.3.

Now we describe how to handle an edge insertion. Suppose a new edge (x, y) is inserted
into G. If x and y are located the same SCC C of G, then we execute the insertion procedure
for I2EC(C), described in Sections 4.2 and 4.3. Otherwise, we execute the insertion in
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the ISC(G) data structure. Note that this operation inserts the edge (find(x), find(y)) into
the condensation Ḡ of G. If this insertion does not create a cycle in Ḡ then we are done.
Otherwise, ISC(G) finds a new SCC of Ḡ, corresponding to a new SCC of G, that is contracted
into some canonical vertex. As a result, we need to update the bottom-level structure for
the involved components of G.

Let C be the new SCC of G. The data structure ISC(G) identifies all components
C1, C2, . . . , Ck of G that are merged into C after the insertion of (x, y), along with the edges
E(Ci, Cj) that connect distinct components. (Each such edge (u, v) satisfies u ∈ Ci, v ∈ Cj ,
where Ci precedes Cj in a topological ordering of the components.) Without loss of generality,
assume that C1 is the largest of these components. We choose the canonical (start) vertex s

of C to be the start vertex of C1. We refer to this component C1 as the principal component
of C. Also, we refer to the vertices of C1 as the principal vertices of C. The remaining
vertices in C2, . . . , Ck are the secondary vertices of C.

Now we describe how to construct the data structure I2EC(C) for the new component
C. We describe only the construction of the structures for G[C]. The structures for the
reverse graph GR[C] are updated similarly. First, we extend the spanning tree T1 of G[C1],
which is rooted at s, to a spanning tree T of G[C] rooted at s, so that T1 ⊆ T . To achieve
this, it suffices to traverse the edges E(Ci, Cj) and the edges of the two spanning trees that
we maintain for each component C2, . . . , Ck. This is enough to construct T , since the two
spanning trees of each Ci form a sparse strongly connected subgraph of G[Ci]. (Note that
we cannot afford to traverse all edges of G[Ci].) Once T is constructed, we traverse it to
recompute pre(v) and size(v) for all v ∈ T . This enables testing the ancestor-descendant
relation in T in O(1) time.

Next, we need to update the structures that keep track of the covered edges of T for
each vertex v ∈ C. To initialize these structures for the new component C, we maintain the
structures bv and rootv, for all principal vertices v as they are. Then, we insert the nontree
edges e = (u, v) such that u is a secondary vertex in C. For each secondary vertex u, we
compute bu and rootu from scratch. Hence, in effect we construct I2EC(C) by inserting the
secondary vertices and their adjacent edges in the data structure I2EC(C1) of the principal
component.

▶ Lemma 13. The above procedure correctly updates I2EC(C), for all SCCs C of G in
O(n2 log n) total time over all edge insertions.

Proof. The correctness of the algorithm follows from Lemma 12, and the fact that the top
structure ISC(G) maintains the SCCs of G. Next, we bound the total running time for any
sequence of edge insertions.

First, we bound the total running time required to update the spanning tree T of G[C], for
each SCC formed in G. Let C be a new SCC of G that is formed by merging the components
C1, . . . , Ck, where C1 is the principal component. Let ni be the number of vertices in each
component Ci, and let mij = |E(Ci, Cj)| be the number of edges connecting Ci and Cj . Then,
the construction of T takes time proportional to

∑k
i=1 ni+

∑
1≤i,j≤k mij = nC +

∑
1≤i,j≤k mij ,

where nC =
∑k

i=1 ni is the number of vertices in the new component C. Note that the second
term, i.e., the sum

∑
1≤i,j≤k mij is charged only once during the construction of all spanning

trees. Hence, the overall construction time for all spanning trees is O(n2 + m) = O(n2).
Next, we consider the time required to maintain the data structures for the tree edges

covered by each vertex v ∈ V (G). Note that for as long as v is a principal vertex in a
component C, the total time spent to process the edges in ρN (v) and update bv and rootv is
O(nC). Next, we consider the contribution of each vertex as a secondary vertex. Every time
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we merge a sequence of secondary components C2, . . . , Ck with a principal component C1,
we charge O(nC) time to each secondary vertex v, since we recompute bv and rootv from
scratch. Let C1

v , . . . , Cξ
v be the sequence of SCCs that contain v as a secondary vertex. Let

ni
v be the number of vertices in Ci

v just before it gets merged into a larger component. Then,
ni

v ≤ ni+1
v /2, for 1 ≤ i < ξ, and nξ

v ≤ n. The time required to maintain the data structures
for the tree edges covered by v in Ci

v is proportional to ni
v. Hence, the total time for the

whole sequence of components C1
v , . . . , Cξ

v is bounded by
∑ξ

i=1 ni
v ≤

∑log n
i=0 n/2i < 2n. This

gives an O(n2) total bound for all vertices.
Finally, we consider the total time required to maintain the incremental SCCs data

structures. Such a structure for the subgraph induced by a component C with nC vertices
requires O(n2

C log nC) total time. We distribute this cost to the nC vertices of the component,
so each vertex is charged a cost of O(nC log nC). Hence, for as long as a vertex v is a
principal vertex in its component C, it is charged a cost of O(nC log nC), where nC is the
number of vertices in C just before it is merged as a secondary component. If this never
happens, then nC is the final number of vertices in C. It remains to bound the contribution
of v as a secondary vertex, which we can do as above. Let C1

v , . . . , Cξ
v be the sequence of

SCCs that contain v as a secondary vertex, where each Ci
v has ni

v vertices just before it
gets merged into a larger component. As before, ni

v ≤ ni+1
v /2, for 1 ≤ i < ξ, and nξ

v ≤ n.
Then, the cost charged to v for the whole sequence of components C1

v , . . . , Cξ
v is bounded by∑ξ

i=1 ni
v log ni

v ≤ log n
∑log n

i=0 n/2i < 2n log n. This gives an O(n2 log n) total bound for all
vertices. ◀

5 Decremental algorithm

In this section, we present our decremental algorithm for maintaining the 2-edge-connected
components of a digraph G. We can assume that G is strongly connected, as otherwise we
can process each SCC separately. Let s be an arbitrarily chosen start vertex of G. Let T be
a fixed spanning tree of flow graph Gs, and let TR be a fixed spanning tree of flow graph GR

s .
(Both T and TR are rooted at s.) The algorithm operates on the assumption that the edges
of T and TR are never deleted throughout the deletion sequence.

We describe how to efficiently update the edges of the modified labeling graph L̂G of
Section 4.1, as we delete edges in G. To achieve this, we need to maintain some additional
information about the tree edges that are covered by each vertex v ∈ V (G).

For a tree edge e ∈ T , we define coverv(e) to be the number of edges f ∈ ρN (v) that
cover e, i.e., such that e ∈ T (f). Then (v, e) ∈ E(L̂G) if and only if coverv(e) > 0. Our
approach is to maintain the coverv(e) values using a dynamic tree data structure [32]. This
way, we can update L̂G efficiently, and maintain its SCCs decrementally using the algorithm
of [39].

A dynamic tree T is a data structure that efficiently maintains a collection of rooted trees,
whose edges have real-valued costs, under dynamic operations such as linking and cutting
edges, while supporting cost updates and queries on paths and subtrees. For our purposes,
we will assume that each such data structure maintains a single tree that corresponds to
the spanning tree T of Gs with root s. Recall that for any vertex v ̸= s, t(v) denotes the
parent of v in T . Here, we also let T [v, w] denote the tree path between two vertices v and
w, ignoring edge directions.

We will use the following dynamic tree operations, which are supported in O(log n) time.
cost(v): If v ̸= s, then return the cost of the edge (t(v), v).
update(v, w, x): Add x to the cost of all edges on the tree path T [v, w].
mincost(v, w): Return a vertex u ∈ T [v, w] such that the edge (t(u), u) has minimum
cost among the edges on the tree path T [v, w].
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We note that the original description of Sleator and Tarjan [32] has the operation
update(v, x), which adds the value x to the cost of the edges on the path from v to the root of
T , and the operation mincost(v), which returns an edge of minimum cost on the path from v

to the root of T . We can implement our versions of update and mincost, by using the operation
evert(v) of [32], which makes v the root of T , as follows. To implement update(v, w, x), we do
evert(w), update(v, x), and evert(s). Similarly, to implement mincost(v, w) we do evert(w),
mincost(v), and evert(s).

To initialize L̂G, we compute a spanning tree T of G rooted at s, and insert the edges of
L̂G as in Section 4.2. We also compute the pre(v) and size(v) values for all v ∈ T , so that we
can test the ancestor-descendant relation in T in O(1) time. Then, for each vertex v ∈ V (G),
we maintain a dynamic tree data structure Tv, which implements the operations update and
mincost on T , where each tree edge e ∈ T has cost coverv(e). Initially, all edge costs in Tv

are zero. Then, we process each edge (u, v) ∈ ρN (v), and execute update(v, u, +1).
During the execution of the deletion sequence, we do the following. Let e = (u, v) be

the next edge of G to be deleted. By our assumption, e ∈ ρN (v), and we need to find the
tree edges f ∈ T (e) that are covered only by e. For each such tree edge f , we delete the
corresponding edge (v, f) from L̂G.

To find these edges f ∈ T (e), first we execute update(v, u, −1). Then, we recursively search
a tree path T [x, y] for uncovered edges (that is, tree edges f ∈ T [x, y] with coverv(f) = 0),
where initially x = u and y = v, as follows. We compute w = mincost(x, y), and check if
cost(w) ̸= 0. If this is the case, then all the edges on T [x, y] are still covered by v, and we
are done. Otherwise, we delete the edge (v, (t(w), w)) from L̂G, and repeat recursively this
step for the two paths of T [x, y] \ (t(w), w).

In more detail, if w is an ancestor of x, then we recursively search for uncovered edges on
T [x, w] and on T [y, t(w)]. Otherwise, if w is an ancestor of y, then we recursively search for
uncovered edges on T [y, w] and on T [x, t(w)]. Hence, we obtain the following bound.

▶ Lemma 14. We can maintain the modified label graph L̂G under a sequence of edge
deletions of G in O(n2 log n) total time.

Proof. Consider the deletion of an edge e ∈ ρN (v). The above procedure finds a tree edge
f ∈ T (e) that becomes uncovered by v using a constant number of dynamic tree operations.
For each edge f with coverv(f) = 0, we delete the corresponding edge (v, f) in L̂G. Since L̂G
has O(n2) edges, and each dynamic tree operation takes O(log n) time, the bound follows. ◀

From Lemma 14 and the fact that we use the decremental algorithm of [39] to maintain
the SCCs of L̂G, we obtain Theorem 2.
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