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—— Abstract

We consider a natural extension of online makespan scheduling on identical parallel machines by

introducing scenarios. A scenario is a subset of jobs, and the task of our problem is to find a global
assignment of the jobs to machines so that the maximum makespan under a scenario, i.e., the
maximum makespan of any schedule restricted to a scenario, is minimized.

For varying values of the number of scenarios and machines, we explore the competitiveness of
online algorithms. We prove tight and near-tight bounds, several of which are achieved through novel
constructions. In particular, we leverage the interplay between the unit processing time case of our
problem and the hypergraph coloring problem both ways: We use hypergraph coloring techniques to
steer an adversarial family of instances proving lower bounds for our problem, which in turn leads
to lower bounds for several variants of online hypergraph coloring.

2012 ACM Subject Classification Theory of computation — Online algorithms
Keywords and phrases online scheduling, scenario-based model, online algorithms
Digital Object Identifier 10.4230/LIPIcs.ESA.2025.27

Related Version Full Version: https://arxiv.org/abs/2507.04016

Funding The author was supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy — The Berlin Mathematics Research
Center MATH+ (EXC-2046/1, project ID: 390685689).

Acknowledgements I would like to thank Martin Skutella for inspiring me to consider this problem,
for his invaluable suggestions and for the insightful discussions. I am also grateful to the anonymous

reviewers for their careful reading and valuable feedback.

1 Introduction

We study a natural extension of online makespan scheduling, also known as online load
balancing, one of the most well-known problems in the scope of online optimization. In
online makespan scheduling, we know a number m of identical parallel machines in advance,
in addition to which jobs j are revealed one at a time along with their processing times
pj > 0. Our task is to assign the jobs to a machine as soon as they are revealed, solely under
the knowledge of the preceding jobs, so as to minimize the makespan, i.e., the maximum
sum of processing times any machine is assigned to. This problem was initially studied by
Graham almost 60 years ago, who proved that assigning every job to a currently least loaded
machine is a (2 — -1 )-competitive algorithm [13]. It was observed that no better deterministic
algorithm can exist for m € {2,3} [13, 9], while for larger values of m, such a tight ratio is
still not known.

We extend online makespan scheduling by a scenario-based model: We are given a number
m of machines. There is a known number K of job sets (called scenarios) S, C {1,...,n},
k € [K], over a common ground set {1,...,n}. Although the number of scenarios is known,
neither the number of jobs nor their processing times p; (j € [n]) are known in advance. The
ground set [n] is revealed in increasing order of jobs; more precisely, we are incrementally
informed of pq,...,p; as well as Sy N {1,...,j} for increasing j. The task is to find a global
assignment 7: {1,...,n} — {1,...,m} of the jobs to machines that delivers a reasonable
solution restricted to every scenario. To be more precise, the objective is to minimize the
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makespan of the worst-case scenario, i.e., the scenario that yields the highest makespan. As
in the classical online scheduling problem, a job 57 must be assigned irrevocably to a machine
7(J) as soon as it is revealed. In essence, we are solving a finite number of instances of Online
Makespan Scheduling over the same ground set of jobs simultaneously.

The simplicity of the scenario model offers a variety of interpretations and applications.
For instance, we can view the scenarios as distinct services that are provided in m (number
of machines) sites to n (number of jobs) customers, where the customers are revealed one
by one with their desired services and need to be assigned to one of the sites immediately.
Another interpretation of our problem may concern a fair balancing of goods according to
multiple agents in the following setting: Each of the K agents are interested in partitioning a
subset Sy, k € {1,..., K} of n goods with weights p; among m buckets, where the partition
should be as balanced for all agents as possible (i.e., we would like to minimize the maximum
bucket load for any agent). Here, the goods are revealed one by one together with the agents
that are interested in them.

Moreover, even special cases of online makespan scheduling under scenarios correspond
to interesting questions in their own regard. The special case p; = 1 of unit processing times
is related to some cases of discrepancy minimization as well as hypergraph coloring.

In the large array of previous research on combinatorial optimization under scenarios,
it was shown for several offline problems that optimizing under a number of scenarios is
computationally harder than their underlying single-scenario counterparts. Accordingly, our
goal in this work is to gain a better understanding of the intersection of scenario-based
models and competitiveness, in particular how competitiveness diminishes under a growing
number of scenarios.

1.1 OQur Contribution

Implementing a miscellany of ideas to analyze competitiveness bounds for the varying numbers
m of machines and K of scenarios, we achieve several tight bounds and further nontrivial
bounds. An overview of our results, depending on the numbers m and K, can be seen in
Table 1. Several of the entries are obtained via a generalization of Graham’s List Scheduling
Algorithm which we extend using the pigeonhole principle.

By a simple example, one can show that for any number m > 2 of machines and (at least)
3 scenarios, no algorithm with a competitive ratio better than 2 can exist, even for jobs with
unit processing times. To underline the competitiveness gap between two and three scenarios,
we contrast the aforementioned result with an algorithm for two machines and two scenarios,
which is one of our main results.

» Theorem 1. There exists a 5/3-competitive algorithm for ONLINE MAKESPAN SCHEDULING
UNDER SCENARIOS for m = K = 2.

This algorithm as well as its analysis combine techniques well-known from algorithms for
online makespan scheduling with novel ideas that concern the scenario-based properties
of a schedule. We first alter the definition of competitive ratio by allowing only specific
lower bounds for an offlie optimum, which allows us to make structural modifications and
restrictions on worst-case instances. What sets our analysis apart from previous work is
that we alternate between forward and reverse engineering: Assuming that our algorithm
obeys some fixed rules, we explore what we may assume about a well-structured worst-case
instance. In spite of seemingly strong restrictions that we impose, the ratio of our algorithm
is not far from the best achievable bound by any deterministic algorithm, which we show is
at least %ﬁ ~ 1.640. Altogether, we obtain a near-complete picture of competitiveness for
m = 2.
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The remainder of the paper demonstrates a disparity between increasing the number m
of machines and increasing the number K of scenarios. For a fixed but arbitrary m, we show
that there exists a sufficiently large number K (m) of scenarios and a family of instances with
K (m) scenarios, on which no deterministic online algorithm can achieve a ratio better than
m. Furthermore, we can even choose all instances to have unit processing times p; = 1. This
result is particularly noteworthy, considering that any online algorithm on m machines is
trivially m-competitive: Indeed, the online output is at most the total load and an offline
optimum is at least the average load, and these are by at most a factor of m apart.

To find the suitable number K (m), we interpret the instances as hypergraphs, passing
to a problem we call ONLINE MAKESPAN HYPERGRAPH COLORING(m) instead (cf. Section
1.2). Strikingly, such a family can be created using hypertrees on which no deterministic
algorithm can achieve a coloring without a monochromatic edge simultaneously.

» Theorem 2. Let m € N. There exists a number K(m) such that for any r < m, no
deterministic algorithm for ONLINE MAKESPAN HYPERGRAPH COLORING(m) is r-competitive,
even when restricted to hypertrees with K(m) hyperedges.

The statement of Theorem 2 is best possible in the sense that the numbers K (m) cannot
be replaced by a global K for which the incompetitiveness holds for all m (cf. Theorem 5).

The proof of Theorem 2 can be found in the full version of the paper. To showcase some
of our techniques, we sketch a proof for a similar statement for K = 3 in Section 4. We
utilize a subhypergraph on 7 nodes as a gadget and obtain a relatively compact construction,
both in terms of the hypergraph and the case distinction that we apply to analyze it.

An advantage of our approach while proving Theorem 2 is that it only features hyperforests.

More precisely, we implicitly show that for every m € N, there is a number n < (2m+1) 115
of nodes! such that no deterministic online algorithm on n nodes that uses m colors can
avoid a monochromatic hyperedge. In other words, in order to color a hyperforest with
an arbitrary number n of nodes online without monochromatic edges, we need Q(slogsn)
colors, even if the restrictions e N {1,...,j} of hyperedges e to revealed nodes are known
upon the revelation of nodes {1,...,j}. Here, the emphasis is on the additional knowledge
of partial hyperedges: This makes an adversarial revelation of hyperedges more challenging
and to the best of our knowledge, none of the previous lower bound constructions [15, 14]
are applicable under such additional information. This result addresses a completely open
problem from [15] and sets a non-constant lower bound for Online Hypergraph Coloring for
hypertrees under the knowledge of partial hyperedges.

» Corollary 3. Let n € N. There exists no o(slogsn)-competitive deterministic algorithm for
Online Hypergraph Coloring with nodes vy, ...,v, (revealed in this order) even if we restrict
to hypertrees and additionally, the subsets e N {v1,...,v;} of hyperedges e € E are known
upon the assignment of node v;.

For unit processing times, K = 3 and varying m, we further propose a 2-competitive
algorithm, which is best possible due to the lower bounds mentioned earlier. Although the
special case of unit processing times is admittedly a restriction, the result still illustrates a
contrast with the tight lower bound of m for a varying number of scenarios, which also holds
already for instances with unit processing times.

£

1 F(z)=xzM™5:= xzzm and slogg () = F_l(x).
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Table 1 Overview of the competitive ratios obtained by our results. Recall that on m machines,
any algorithm is trivially m-competitive.

m] K — 2 3 4+
2 > 1.640, < 5/3 =2 =2
3 <2 > 2, >2
=2forp;=1| =3for K>233 andp; =1
>2 <4 >2 <K +1
44 >3 =2for pj =1 | = m for K sufficiently large
and p; =1

1.2 Preliminaries

Throughout this paper, for n € N, we denote by [n] := {1,...,n} the set of numbers 1
through n. An instance I = (n, (p;) jemn)> {Sk}rek]) of ONLINE MAKESPAN SCHEDULING
UNDER SCENARIOS(m, K) (OMSS(m, K)) is parametrized by a number m € N of machines
and a number K € N of scenarios, and defined as a tuple consisting of a number n € N of jobs,
a processing time p; > 0 for each job j and job subsets Si,..., Sk C [n], called scenarios.
As we usually work with a single instance at a time, we often suppress this notation in the
sequel as well as the parameters m and K, which are often specified per section.

For a set S C [n], we denote p(S) = >_,cgp;. Our objective is to find a partitioning
J1U...UJy, of the set of jobs that minimizes maxye|x] max;cpy,) p(Ji N Sk). In other words,
we consider schedules that arise from restricting a partition to each of the scenarios, and
our goal is then to minimize the makespan of the worst-case scenario, which we also call the
makespan of the schedule. Furthermore, our instance is online in the sense that parameters
m (number of machines) and K (the number of scenarios) are known in advance, but jobs
j € [n] as well as their processing times p; and the indices k € [K] such that j € Sy are
revealed one job j at a time. Once the information of a job j is revealed in addition to
already known information about the jobs in [j — 1], the job j must be assigned to a machine
i € [m], which is an irrevocable decision.

In our analyses and arguments, we use the notion of a completion time of a job j. In
classical scheduling, this is defined as the sum of processing times preceding (including) j
that are on the same machine as j. In our setting, the restricted schedules are evaluated
without idle times, meaning that such completion times might be different for different
scenarios. Accordingly, we define the completion time of job j € J; N Sk in scenario Sy as
C’j’-c = Zj'eJmSm[j] pjr and the completion time as Cj == maxye[x] jes, C’f.

Online algorithms are often analyzed by their performance compared to the best possible
outcome under full information. In existing literature, this comparison is quantified by the
competitive ratio. An algorithm is said to have competitive ratio p if for every instance, it is
guaranteed to output a solution that has an objective value which deviates from the value of
an optimal solution under full information by at most a factor of p.

We also consider the special case of unit processing times p; = 1. In this special case,
we may view our jobs as nodes, our scenarios as hyperedges containing a subset of the
nodes and the partition J1U...UJ,, as a coloring c: [n] — [m] of the nodes. Then, our
problem can be formulated as an online hypergraph coloring problem, in which we color
a hypergraph H = (V, E) with a fixed number of colors 1,...,m and seek to minimize
max;c(m,ecr [{¢71 (i)} Ne|. The nodes j € [n] are revealed one at a time in increasing order
along with partial hyperedges e N [j] (e € E,j € [n]).? We shall name this problem ONLINE
MAKESPAN HYPERGRAPH COLORING(m) (OMHC(m)) and address it in Section 4.

2 According to this definition, hyperedges can have size 1, although such hyperedges can and will be
omitted as they pose no difference with respect to the objective function.
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1.3 Related Work

The problem that we introduce in this paper lies in the intersection of several well-known
problems, which we would like to mention briefly.

Optimization under Scenarios. In recent years, scenario-based models have received sig-
nificant attention. An instance of a scenario model over a discrete optimization problem
is often given as an instance of the underlying problem; and in addition, subsets of the
underlying instance (called scenarios) are specified. The objective function involves the
objective values that are attained restricted to each scenario; e.g., the maximum of these
values over scenarios or their average.

Although a significant portion of the literature is rather recent, some well-known problems
have been scenario-based problems in disguise. For instance, the famous exact matching
problem ([16]), which asks whether a given graph whose edges are colored blue or red has
a perfect matching with exactly k blue edges for a given k, is equivalent to the matching
problem under two scenarios, whereas a stochastic scenario-based model for matchings has
recently been studied in [4]. Other examples include bin packing ([7, 5]), metric spanning
tree ([3]) and the traveling salesperson problem ([24]).

Among the scenario-based problems with the widest array of studies is machine scheduling
with its many variations, see [21] for an extensive overview. The closest to our problem is
[10], in which the worst-case makespan is being minimized for parallel machine scheduling
on two machines and a variable number of scenarios. Although an instance under a variable
number of scenarios is not approximable with a ratio better than the trivial bound of 2, a
constant number of scenarios allows a PTAS.

In some variants of scenario scheduling, e.g., in [6], a complexity gap is observed between
two and three scenarios. Interestingly, we obtain a distinction between two and three scenarios
as well, at least when we restrict to the special case of two machines.

Online Scheduling. As it is impossible to capture the vast amount of literature on all online
scheduling problems, let us restrict to online parallel machine scheduling with the objective
of minimizing the makespan. This is precisely the special case K = 1 of our problem.

The problem was first addressed in Graham’s seminal work [13] from which we also draw
inspiration in multiple ways. The competitive ratio of 2 — 1/m for m machines was not beaten
for three decades, until it was improved slightly in [12]. Graham’s List Scheduling Algorithm
is evidently best possible for m = 2, and it was observed to be best possible for m = 3 as well
[9]. In the following years, a stream of research narrowed the gap between upper and lower
bounds for competitive ratios depending on m ([2, 17, 1]), although for m > 4, still no tight
bound is known. The state-of-the-art results are Fleischer and Wahl’s 1.9201-competitive
algorithm ([11]) and an asymptotic lower bound of 1.88 due to Rudin IIT ([18]). For m = 4,
the best known lower bound is v/3 ~ 1.732, due to Rudin IIT and Chandrasekaran ([19]).

Discrepancy Minimization, Hypergraph Coloring. A problem similar to ONLINE
MAKESPAN HYPERGRAPH COLORING, often called Online Hypergraph Coloring, has been
studied extensively over the years. In this problem, the objective is to use the smallest
number of colors while avoiding a monochromatic hyperedge, i.e., a hyperedge whose nodes all
attain the same color. For hypertrees with n nodes, an O(log(n))-competitive algorithm is
known to be best possible ([14]), while for general graphs with n nodes, no o(n)-competitive
algorithm can exist ([15]). However, this standard model differs from ours, as a hyperedge is
revealed only once all of its nodes have been revealed. This nuance deems it much easier
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to construct families of instances to achieve lower bounds. Moreover, due to differences in
their respective objective functions, this problem does not seem to have a direct relation
to ONLINE MAKESPAN HYPERGRAPH COLORING. However, our approach has implications
for a variant of Online Hypergraph Coloring in which partial hyperedges are known (see
Section 1.1).

The reader may also notice similarities to the well-known discrepancy minimization
problem (see e.g. [23, 8]): Indeed, in the usual setting of discrepancy minimization, we have
m = 2 and the objective is to minimize the difference max.cx |[|[{c™1(1)} Ne| — [{c71(2)} Nell.
If all hyperedges e € E have the same size, this objective function is even equivalent to
ours. In this regard, the problem that we study generalizes the £,, norm online discrepancy
minimization [22] in uniform set systems as well.

2 Extending Graham’s List Scheduling

Our first observation is a simple algorithm that generalizes Graham’s List Scheduling
Algorithm for OMSS(m, K) and performs well when there are too many machines to force
the schedule to create significant discrepancy. Our algorithm beats the trivial bound of m if
m > K +1.

We first observe that if the number m of machines is large enough, we can apply the
pigeonhole principle to find a machine that is not among the most loaded machines of any
scenario. For s € [m — 1] and k € [K], we call a machine i s-favorable with respect to the
k-th scenario if there are at least s distinct machines ¢' # 7 that each have at least the load
of machine 7 in the k-th scenario, i.e., p(Jy N Sg) > p(J; N Sk).

» Observation 4. There exists a machine i that is ([%1 — 1)-favorable with respect to every
scenario k € [K].
Proof. There are at most s machines per scenario that are not s-favorable. Let s = {%] —1.

Since m > s - K, there must be a machine ¢ which is not non-s-favorable with respect to any
scenario. <

In light of this observation, we propose the following algorithm: Upon the assignment of
each job j, we find a machine ¢ that is ([m/Kx| — 1)-favorable with respect to all scenarios k
with j € S; and assign the job j to the machine .

» Theorem 5. The above algorithm is (% + 1) -competitive for m > K.
K
Notice that the aforementioned competitive ratio is strictly smaller than K + 1.
This algorithm is also applicable in the special case where every job appears in at most k
scenarios for a fixed k € N, yielding a ratio of (m=1)/[=] 4 1. Furthermore, plugging in K =1
yields the well-known competitive ratio of 2 — 1/m of Graham’s List Scheduling Algorithm.

3 Near-Tight Bounds for m = 2 Machines

When the partitioning is among two machines, a clear line can be drawn: Any algorithm is
trivially 2-competitive, and if we have at least 3 scenarios, this is best possible.

» Observation 6. For m = 2 and K > 3, there exists no r-competitive algorithm for any
r < 2, even for the special case of unit processing times.
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Proof. For all jobs j below, we assume p; = 1. The first instance Z; is given as follows:
n=m+1,5 ={1,3,....m+1}, S2={2,3,...,m+ 1}.

We consider an arbitrary algorithm that places the first jobs 1 and 2 to two distinct
machines, without loss of generality, to the first and second, respectively. In this case, the
makespan at the end must be 2, as two jobs (4,j') # (1,2) must be assigned to the same
machine. However, the following assignment, which places the first two jobs together would
have yielded a completion time of 1: J; = {1,2},J; = {i + 1} for 2 < i < m. Hence, no
algorithm that places two unit weight jobs in S; \ Sz resp. Sz \ S1 to two separate machines
can attain a competitive ratio better than 2.

In light of this, we consider another instance Z,, on which assigning the first two
jobs to the same machine leads to a failure. It is given by n = m + 2, S; = {1,3},
Sy =1{2,4,5,6,...,m+2}, S3={3,4,5,...,m+ 2}. The first two jobs are indeed identical
to those of Z.

By our considerations about the instance 7Z;, we may assume that the first two jobs
are assigned to the same machine, the first one without loss of generality. However, any
assignment that places the first two jobs to the same machine admits makespan 2: Otherwise,
due to the third scenario, the jobs {3, ..., m + 2} must occupy one machine each. The job j
that is placed to the first machine has a common scenario with either job 1 (if j = 3), or
with job 2 (otherwise). <

On the other hand, this statement cannot be extended to K = 2. To show this, we
present a minimalistic yet insightful algorithm (Algorithm 1) for makespan scheduling under
K = 2 scenarios and m = 2 machines. Our general idea is to fix a simple rule for assigning
double-scenario jobs, i.e., jobs in S1 NSy, and partition the single-scenario jobs j € S1/AS3 so
that the machines are reasonably balanced even after upcoming hypothetical double-scenario
jobs.

» Rule 7. If j € 51 NSy, then assign the job j to a machine i such that the makespan of
the schedule was previously attained by the other machine 3 —i. In case of a tie, select the
machine that received the job j — 1 (j =1 is assigned to the first machine if applicable).

Throughout our analysis, we only use two types of lower bounds for the offline optimum:
Processing times p; of selected jobs j whose completion times equal the makespan, and the
average load of a selected scenario Sj. Hence, while searching for the worst-case sequence of
the upcoming double-scenario jobs, we may replace the actual definition of competitiveness
with that of a proxy one:

» Definition 8. We define the proxy competitive ratio of a schedule as
max; peq1,2} P(Sk N Jy)

S
max {mane{LQ} {p(2k) } ) maxje[n]ﬁargmaxje[n]{Cj}{pj}}

)

p:

where C; denotes the completion time of the job j.

The proxy competitive ratio is an upper bound on the competitive ratio. The lower
bounds that we use are already well-known; e.g., Graham’s List Scheduling Algorithm is
analyzed by bounding the proxy competitive ratio from above. We take this approach,
however, one step further and restrict ourselves to analyzing only some instances that attain
the largest possible proxy competitive ratio (see next Observation). This is significantly
more difficult for the competitive ratio in the usual sense, as a witness to having good or bad
offline optima highly depends on how the processing times of jobs fit together numerically.
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J1 NSy

J1 NSy :

JoN Sy n—1 | E w ‘
JQQSQ n—1 ! w ‘

Figure 1 Illustrative description of Observation 9. Processing times p; are given by the widths.
Given the dark blue schedule, a worst outcome turns out to be the light blue job n — 1 with a
processing time p,_1 such that C,,_1 = C}, followed by the light red job n with p, = p(S1 N [n—1]).

» Observation 9 (cf. Figure 1). Let A be an online algorithm for OMSS(2,2) obeying Rule
7. Assume that A has a proxy competitive ratio of at most % on instances where
(i) ne S1NSs, and
(i) A outputs a schedule with the following property: If j € [n] is the largest index with
J € 51A52, then Cj =Cp_1.

Then, A is g—competitive.

The above observation motivates the following parameter of significant value.

» Definition 10. Consider a schedule where, without loss of generality, the makespan is
attained at S1 N J1. The anticipation « of this schedule is given by the ratio

(Jlﬁsl) .
Q= {max{p(Jmsz),p(mesl)+p(Jlmsl)p(szsz)} if p(J2 1 S2) > p(J2 N S1),
0 else.

By convention, we assume % =1.

In Figure 1, we have p(JoN.S2 N [n —2]) > p(J2NS;N[n—2]) and the second term of the
denominator corresponds to the load p(J2 NSy N [n — 1]), i.e., the load of Jo N Sy after the
(n — 1)-st job is assigned. In general, anticipation measures the minimum discrepancy of a
machine with respect to different scenarios after machine 2 is loaded with double-scenario jobs
just enough to attain the makespan of the schedule together with machine 1. In our algorithm,
one of the goals is to keep a < 2 in order to brace ourselves for upcoming double-scenario
jobs. The invariant which we maintain to this end is the following.

» Invariant 11. The schedule satisfies the following assertions:
(i) Its prozy competitive ratio is bounded by p < 5/3.
(ii) The schedule has anticipation bounded by o < 2.
(iii) Let k,i be given so that J; N Sk admits the makespan in the schedule. If the schedule is
dominated by the i-th machine, i.e., p(J; N Sg) > p(J3—; N Skr) for all K’ K" € {1,2},
then we have p(J; N Sg) < 2p(J; N S3_k).

The last property might appear somewhat unnatural at the first glance, though it is
crucial for bounding the anticipation o < 2 in the subsequent iterations.

Algorithm 1 shows how a single job j is assigned given a schedule of the first j — 1
jobs where Invariant 11 is maintained. To analyze the algorithm, we prove that instances
satisfying the properties in Observation 9 are always assigned so that the first n — 1 jobs
maintain Invariant 11 and the last job results in a proxy competitive ratio of at most 5/3.
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Algorithm 1 The assignment of a single job j given a g-competitive schedule that satisfies

Invariant 11.

Rename machines and scenarios so that (J; N.S7) is maximal
lf] €5 \SQ then
return 2
end if
lfj S SQ\Sl then
if assigning j to the first machine satisfies Invariant 11 then
return 1
else
return 2
end if
: end if
. if j € §1N S5 then
return argmin,_; , maxg—1 2{p(J; N Sk)}
end if

e el
Ll T

A significant portion of the analysis is focused on proving that if line 9 is executed,
Invariant 11 is indeed maintained. We refer the reader to the full version of the paper for
further details.

In spite of the restrictions that arise from both the fixed double-scenario rule and how we
evaluate lower bounds, we find out that our algorithm in the previous subsection is not far
from being best possible.

» Theorem 12. For m = 2 and K = 2, there exists no deterministic algorithm with
competitive ratio strictly smaller than g%m ~ 1.640.

Proof. To ease the notation once again, let X := 3 + /17.

The first four jobs are given by 1,2 € S1\ Ss, 3,4 € Sy \ S1, p1 = p2 = p3 = p4. Any
algorithm with competitive ratio better than 2 must assign these jobs so that the makespan
equals 1 at the end; otherwise, we may stop revealing further jobs so that the offline optimum
equals 1, while the makespan equals 2.

The fifth job fulfills 5 € S; \ S2 and ps = X. Without loss of generality, it is assigned to
the first machine.

The sixth job is given by 6 € Sy \ S1, pg = % Now there are two options:

(i) If the sixth job is also assigned to the first machine, we reveal the seventh job with
7€ S3\ 51 and p; = X. This job cannot be assigned to the first machine, as the
makespan would then be 1 + %7 while the offline optimum is X. Indeed, this would
imply a ratio of at least

L+ ST 94 VIT
3+ V1T 8

In particular, we obtain p(S1 N J1N[7]) =p(SaNJ2N[7]) =1+ X.
(ii) If the sixth job is assigned to the second machine, we reveal the seventh job as 7 € S1N.S5

and py = % Due to similar reasoning to the other case, the seventh job must be assigned
to the second machine and we again have p(S1NJ1 N[7]) =p(Se N N[7]) =1+ X.
See Figure 2 for the first seven jobs in each of the cases.
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Jins |1 5 \ 1 5 \
Ji NSy 2 6 l

LS [3] 3| 7

JonS, |4 7 | 4] 6 7]

Figure 2 The first seven jobs in cases (i) and (ii) of the proof of Theorem 12, respectively. In both
cases, an eighth job 8 € S; NSy forces the schedules to the desired lower bound of competitiveness.

In both of these cases, we reveal the eighth job with 8 € S; NSy and pg = 2 + % No

matter where this job is assigned, the makespan is 3 + %, whereas the optimal solution
{1,...,7}U{8} achieves a makespan of 2 + 3X. Therefore, the competitive ratio is bound to
be at least

3+ 55 6+5B+VIT)  9+V1T7

2+ 3% 44303+ V17) g 7
as desired. <

Notice that the aforementioned family of instances fails to achieve small competitive ratios
for reasons similar to those that require Property (iii) in Invariant 11.

It can also be shown through a simple array of instances that, no algorithm that satisfies
Rule 7 can beat the bound of 5/3, for which we refer the reader to the full version of the

paper.

4 Tight Bounds for Sufficiently Many Scenarios

One of our main results (Theorem 2) states that for any number m € N of machines, there
exists a number K of scenarios such that no deterministic algorithm for OMSS(m, K) can
have a competitive ratio less than the trivial upper bound m, even for unit processing times.

Due to space constraints, we merely sketch a proof for the special case of m = 3. While
doing so, we showcase key ideas of the general argument, although we forfeit the restriction
onto hypertrees for the sake of a more clearly structured description. In the context of
scheduling, this is indeed not a significant change.

» Theorem 13. For OMHC(3), there exists no r-competitive online algorithm for any r < 3,
even when restricted to instances with at most 233 hyperedges of size at most 3 each.

The problem OMHC(m), which we formulated in Section 1.2, is equivalent to the unit
processing time case of OMSS(m, K) with K part of the input, so that the lower bounds
are immediately implied for the latter as well.

To prove Theorem 13, we provide a family of instances on which any online algorithm is
forced to output a monochromatic hyperedge of size 3. For each of the instances, we also
maintain (offline) colorings c: [j] — {blue, red, yellow}, with the property that if two nodes
v, v’ are contained in a common hyperedge, we have ¢(v) # ¢(v’). The latter coloring suggests
an offline optimal value of 1 for each of the instances, implying the competitive ratio of 3
immediately. The main difference between the online and offline colorings is, as expected,
that we may change the offline coloring completely at all times as long as its makespan equals
1. Among other modifications, we often employ a permutation 7: {red, blue, yellow} —
{red, blue, yellow} on connected components to realize this possibility. We must trace
the offline coloring simultaneously because the hyperedges are often defined adversarially
according to both colorings of the current hypergraph.
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To differentiate between the online and offline colorings, we denote by J; C V' the subset
of nodes assigned to the online color ¢ for i € {1, 2,3}. Right before the revelation of a node
j, we implicitly mean J; N [j — 1] whenever we mention J; for some ¢ € {1,2,3}. Inspired by
our original scheduling problem, we call the objective value maxcec g max;e (i 2,3y [e N J;| of
an instance its makespan. Without loss of generality, we truncate an instance as soon as the
online solution is forced to obtain a makespan of 3.

Our gadget: Seven-node subhypergraph S. Initially, we study a subhypergraph S that
we use as a building block throughout our construction. The hypergraph S is given by the
nodes V(S) = {1,...,7} and hyperedges

E(S) = {{1,2},{1,3},{2,3},{1,2,3},{2,4}, {4,5}, {2,5}, {2, 4,5},
{4,6},{6,7},{4,7},{4,6,7},{3,6},{3,7} }.

The hyperedges have size at most 3 and the set E(S) is closed under taking subsets of size
at least 2, ie., if e € E(S), le] =3 and ¢’ C e with |¢’| = 2, then ¢’ € E(S). The hypergraph
S together with the maximal hyperedges eq,...,es5 is given in Figure 3.

(=)
88>
aUaa

Figure 3 The hypergraph S with the maximal hyperedges e1, ..., es.

We first assume that the seven nodes in V'(S) are assigned to exactly two out of the three
online colors. Since the online colors are initially symmetric, let us assume that we use the
online colors 1 and 2. By a careful case distinction, we may observe:

» Proposition 14. For any partitioning V(S) = J1UJy of the nodes that admits a makespan
of at most 2, there exists a node coloring c: V(S) — {blue,red, yellow} such that there are
two hyperedges e € E(S[J1]),e’ € E(S[Jz]) with c(v) € {red,blue} (or another subset of
{blue, red, yellow} of size 2) for allv € eUe’.

In other words, we have induced monochromatic hyperedges of size 2 with two different
colors, both with respect to the online coloring. Applying this repeatedly, we can further
force the algorithm to a monochromatic hyperedge of size 3, which we show next.

Pigeonholing the two-color case. In our construction, we would like to create copies of
the graph S successively, which we denote by S(t) for incrementing ¢ € N.

A straightforward application of the pigeonhole principle yields that, if we have seven
subhypergraphs S(1),...,5(7) that are each partitioned onto two online colors, at least
three of them (without loss of generality S(1), §(2), S(3)) must be partitioned onto the
same two online colors. Again without loss of generality, these two online colors are 1 and 2.
Considering Proposition 14, we can permute the colorings of the three copies S(1), S(2) and
S(3) each offline so that for any offline color u € {blue, red, yellow}, there exists a copy S(¢)
with two (online) monochromatic hyperedges e! € E(S(t)) (i € {1,2}) of size 2 avoiding the
color u. The hypergraph in Figure 4 restricted to nodes of the form ;i illustrate these edges.
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J1

Jo

J3

Figure 4 All fifteen relevant nodes together with the hyperedges within them. The heights of the
vertices encode their online color (Ji, J2, J3), while their printed colors denote their offline color.
Any assignment of the node x3, given the other nodes and induced hyperedges, leads to a makespan
of 3.

Once the six edges in question are found, one can insert nodes x1, x2, x3 in this order,
revealing hyperedges as depicted in Figure 4. To avoid a monochromatic edge, both z; and
x9 must be assigned the third online color. Keeping this in mind, it follows that x3 cannot be
assigned an online color without creating a monochromatic edge with respect to the online
coloring. Together with the fact that the offline coloring indeed has makespan 1, we obtain:

» Lemma 15. Any algorithm that assigns at least 7 copies of S to at most two online colors
each is no better than 3-competitive.

Subhypergraph & on Three Online Colors: The Palettes. It remains to consider the case
where copies of the subhypergraph S are partitioned among the three colors, i.e., its nodes
{1,...,7} are partitioned in nonempty sets JUJoUJ3.

» Lemma 16. For every online coloring J1UJ2UJs of the nodes V(S) = {v1,...,v7} for
nonempty sets J1UJoUJs, there is an offline coloring c: V(S) — {red, blue, yellow} such that
two vertices exist with different online colors but the same offline color.

In our construction, we exploit this property as follows: Let us consider a copy S(t) and
fix two of its nodes v;(t) € J;, vi/(t) € Ji» provided by Lemma 16 as well as a third node
v (t) € Jyr, where i ¢ {i,4'}. By their choice, the nodes v;(t) (i € {1,2,3}) admit at most
two offline colors and avoid a third offline color C' € {blue, red, yellow}.

In this case, the subhypergraph S(t) is called a C' palette (i.e., yellow palette, blue palette
or red palette) and the corresponding nodes v;(t) are called palette nodes. In particular,
c(vi(t)) # C holds for the palette nodes of a C' palette. The choice of the name is motivated
by the fact that, if we connect a new node w to e.g. yellow palette nodes, we are still allowed
to extend the offline coloring by c¢(w) = yellow, while maintaining that the makespan of the
offline coloring is 1.

The Construction. Below is a summary of our construction for the case where Lemma 15 is
not applicable. Essentially, we create copies of the subhypergraph & which we connect with
the existing hypergraph. The online color of the node v is denoted by ¢(v) and its (current)
offline color by c(v).

(i) We create up to 13 copies of the subhypergraph S. By Lemma 15, we may assume that
at least 7 of the copies are assigned to all three online colors (we truncate this step as
soon as 7 such copies can be found). We handpick 7 such copies of S, calling them
S(1),...,8(7).
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J3 | Ji
@, 5(4)
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Figure 5 An example constellation of the three palettes together with the nodes wp:. The y-axis
in the palettes denote the online colorings of the palette nodes respectively. The offline colors of
the palette nodes might look differently, but they are never the same color as the palette, which is
depicted as the color of the rectangles. The online coloring of the nodes wpg; are not yet known.

(ii)
(iii)

(iv)

(v)

(vi)
(vii)

We permute the offline coloring on each copy of S so that S(1), S(4) and S(7) are
yellow palettes, S(2) and S(5) are blue palettes, and S(3) and S(6) are red palettes.
We reveal a node w4 which is connected to palette nodes v;(1) € V(S(1)) N J; for
i € {1,2,3}. The assignment to the online color p(w4) leads to a monochromatic
hyperedge {vy(w4)(1), wa} of online color ¢(w.4). We define v4 = vy ) (1).

We reveal three nodes wpi, wps and wgs that are connected by the hyperedge
{wp1,wpse, wps} to each other. Moreover, for each s € {1,2,3}, the node wgs is
connected to the palette nodes v;(s + 1) for ¢ € {1,2,3}. There is an i # @(w4) such
that {v;(s+1),wps} is a monochromatic edge of online color ¢ for a suitable copy S(s),
s € {1,2,3}. For this s, we define vg := v;(s + 1) and wp = wgs.

We reveal further copies of S together with edges described below, until a copy C is
assigned to all three online colors. In the copy C, we denote the nodes v;(t) by wey
for clarity. The nodes we; of the copy C are connected to the palettes S(5), S(6),
S(7) by edges depending on their offline colors, in that nodes we; with ¢(we) = C
are connected to the palette nodes v;(s) for all ¢ € {1,2,3} and s € {5,6, 7} such that
S(s) is a C palette, see Figure 6. As the nodes we; are assigned to all three online
colors, a makespan of 2 is also achieved in the online color i ¢ {¢(w4), ¢(wg)}. More
precisely, there exists a monochromatic edge {v;(s),wc;} of the online color i. We
rename ve = v;(s) and we = wey.

We permute the offline coloring in each of the connected components created in (iii),
(iv) and (v) again, so that ¢(v;) = blue and c(w;) = yellow for j € {A,B,C}.

We add a final node v,, together with hyperedges {v,,v;, w;} for each j € {A,B,C}.
Now, the online color ¢(v,,) that this node is assigned to admits a makespan of 3,
while extending the offline coloring by ¢(v,) = red maintains an offline coloring with
makespan 1.

Notice that we have maintained an offline coloring of the nodes with makespan 1 so
far up to the very last node, and the last node n neighbors only blue and yellow nodes by
construction and therefore the offline assignment ¢(n) = red does not increase the makespan.
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N1
B S(O)

| J3
Iy Ji
b S() S(6) I
I J

Figure 6 Partial sketch of subinstance C.

In total, this yields that the offline optimal value is 1. A careful enumeration of introduced
hyperedges reveals that 233 hyperedges suffice to create a monochromatic hyperedge for any
of the cases demonstrated, which proves Theorem 13.

A Note on Theorem 2. Here, we abstain from presenting a proof of Theorem 2. Our
construction in this general case is also based on incrementally creating monochromatic edges
of each online color. However, we are faced with two fundamental challenges:

(i) The monochromatic hyperedges increase in size rather slowly, yet unless they have size
of m — 1, they are not strong enough to act as a palette for other hyperedges in the
same sense as here.

(ii) To use our construction for Corollary 3, we restrict to hypertrees. This is a significant
constraint, as it roughly implies that every palette may be used at most once.

Therefore, we include a more intricate recursive construction with much larger hypergraphs
in the full version of the paper.

5 Tight Bounds For K = 3 and Unit Processing Times

In the previous section, we have established that for large enough K, there is no better-than-
3-competitive algorithm for OMSS(3, K), even for unit processing times. Let us reverse the
parameters and ask: How competitively can we solve OMSS(m,3)? This is not an easy
question, indeed, even for OMSS(m, 1), m > 4, a tight bound is not known. Restricting to
the unit processing time case (p; = 1), we again obtain a tight bound, which is the smallest
possible ratio (due to Theorem 5):

» Theorem 17. For all m € N, there is a 2-competitive algorithm for the special case of
OMSS(m, 3) where the jobs have unit processing times.
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The algorithm in question employs an adapted round-robin method which assigns jobs
to machines according to the scenarios they appear in. Essentially, we try to assign jobs
j €51\ (S2U85) and j € (S2 U S3) \ S7 in a similar manner, and analogously for cyclic
permutations of the indices ¢ € {1,2,3}. This gives a partition of jobs j € [n]\ (S1N.S2N.S3)
in three categories. The round robin assignments for each category are translated by roughly
m/3, and jobs j € S N Sy N S3 are handled separately.

The algorithm is best visualized by drawing an analogue to a bingo card, for which we
refer the reader to the full version.

6 Conclusion and Outlook

Throughout, we have established several competitiveness results for Online Makespan Schedul-
ing under Scenarios. The first main takeaway from our work is a competitiveness gap between
two and at least three scenarios when we consider m = 2 machines. This result draws a
parallel to the known tractability results of several other problems, in which the line between
easy and hard was drawn between two and three scenarios. Surely, the fact that the subsets
of {1,2,3} are not laminar, has been a deciding factor in our simple non-competitiveness
result, as has been in several of the well-known results. Interestingly, restricting to the proxy
competitive ratio as well as fixing the method of assigning double-scenario jobs essentially
reduced the existence problem to the description of a polyhedron. We believe that similar
techniques might prove useful for other cases and related problems as well.

We have further compared the behavior of competitiveness for increasing number K of
scenarios and increasing number m of machines. In the special setting of unit processing
times and m = 3 machines, the contrast is evident: On one hand, there is a 2-competitive
algorithm for three scenarios and m machines for all m € N, which matches the lower bound
obtained readily for m = 2. On the other hand, for K sufficiently large, the trivial upper
bound of 3 cannot be beaten. That being said, K + 1 is a strict upper bound as well for
a problem on K scenarios. To summarize, for large values of m and small values of K, we
would expect the possibilities for competitive ratios to be dominated by K.

In light of our results, we may raise several open questions: In addition to the obvious task
of finding tight bounds for all possibilities (m, K) of the numbers of machines and scenarios,
exploring the competitiveness as m approaches to infinity in the weighted processing time case
remains interesting. However, these problems have not been resolved even for K = 1, whence
it is fair to assume challenges in further progress. Another interesting research direction is to
introduce migration, as seen in e.g. [20]. In this model, we are allowed to revoke a bounded
size of decisions in hindsight. Similarly, instead of minimizing the worst-case scenario, one
could look into minimizing the average scenario or maximum regret.
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