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Abstract
We consider algorithmic problems motivated by modular robotic reconfiguration in the sliding square
model, in which we are given n square-shaped modules in a (labeled or unlabeled) start configuration
and need to find a schedule of sliding moves to transform it into a desired goal configuration,
maintaining connectivity of the configuration at all times. Recent work has aimed at minimizing
the total number of moves, resulting in fully sequential schedules that can perform reconfiguration
in O(n2) moves, or O(nP ) for arrangements of bounding box perimeter size P .

We provide first results in the sliding square model that exploit parallel motion, performing
reconfiguration in worst-case optimal makespan of O(P ). We also provide tight bounds on the
complexity of the problem by showing that even deciding the possibility of reconfiguration within
makespan 1 is NP-complete in the unlabeled case. In the labeled variant, we note that deciding the
same for makespan 2 is NP-complete, while makespan 1 is straightforward.

2012 ACM Subject Classification Theory of computation → Computational geometry; Computing
methodologies → Motion path planning

Keywords and phrases Sliding squares, parallel motion, reconfigurability, motion planning, multi-
agent path finding, makespan, swarm robotics, computational geometry

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.28

Related Version Full Version: https://arxiv.org/abs/2412.05523 [5]

Funding This work was partially supported by the German Research Foundation (DFG), project
“Space Ants” (FE 407/22-1) and grant 522790373, by the National Science Foundation (NSF), grant
CCF-2348067, and by a fellowship of the German Academic Exchange Service (DAAD).

1 Introduction

Reconfiguring an arrangement of geometric objects is a fundamental task in a wide range
of areas, both in theory and practice. A typical task arises from relocating a (potentially
large) collection of agents from a given start into a desired goal configuration in an efficient
manner, while avoiding collisions between objects or violating other constraints, such as
maintaining connectivity of the overall arrangement. In recent years, the problem of modular
robot reconfiguration [9, 28, 30] has enjoyed particular attention [1, 2, 3, 4, 6] in the context
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28:2 Sliding Squares in Parallel

of Computational Geometry: In the sliding square model introduced by Fitch, Butler,
and Rus [19], a given start configuration of n identical modules, each occupying a square grid
cell, must be transformed by a sequence of atomic, sequential moves (shown in Figure 1(a))
into a target arrangement, without losing connectivity of the underlying grid graph.

(i) (ii)

(a) Two types of move can be performed by indi-
vidual modules: (i) Slides and (ii) convex transitions.

(b) Some moves can be performed in parallel
transformations, as shown here.

Figure 1 Our model allows for two types of moves to occur in parallel, collision-free transformations.
In this paper, we show the symmetric difference of a transformation using turquoise and yellow.

Aiming at minimizing the total number of moves, previous research has resulted in
considerable progress, recently establishing [2] universal configuration in O(nP ) moves for a
2-dimensional arrangement of n modules with bounding box perimeter size P , and O(n2) in
three dimensions [1, 22]. However, the resulting schedules are purely sequential, not optimally
minimizing the overall time until completion, called makespan. With parallel motion, much
lower makespan can be achieved – which is also a more challenging objective, as it requires
coordinating the overall motion plan, not just at the atomic level (see Figure 1(b)), but also
at the global level to maintain connectivity and avoid collisions.

1.1 Our contributions
We provide first results for parallel reconfiguration in the sliding squares model with no
restriction on the input. We achieve tight outcomes, both on the negative and the positive side.

1. We prove that even deciding the existence of a schedule with the smallest possible
makespan of 1 is NP-complete in the parallel reconfiguration model, as well as APX-hard.

2. We give an in-place algorithm that achieves makespan O(P ), where P is the perimeter of
the union of the bounding boxes of start and target configurations. We show that this is
asymptotically worst-case optimal.

Due to limited space, we only provide high-level descriptions here and refer to the full
version [5] for the majority of our proofs and full technical details. Additionally, we extend
our results to the labeled variant: When individual robots are distinguishable, deciding
makespan 2 is NP-complete, while makespan 1 is easy. Moreover, asymptotically worst-case
optimal schedules can still be computed in polynomial time with a relaxation of the in-place
requirement. For precise definitions and the problem statement, see Section 2.

1.2 Related work
On the theoretical side, algorithmic methods for coordination the motion of many robots
can be traced back to the classical work of Schwartz and Sharir [29] from the 1980s. On the
practical side, [20] presented an architecture for modular robots, followed by a wide spectrum
of work that often used cuboids as elementary building blocks; see [32] for a survey.

Of particular interest for the algorithmic side is the sliding cube model (or square) by Fitch,
Butler, and Rus [19], introduced in the context of a modular robotic hardware [9, 28, 30].
Recent work [1, 4, 13, 22] has studied algorithmic methods for sequentially sliding squares
and cubes, with typical schedules requiring a quadratic number of moves. Also related are
models with slightly different types of moves, such as “pivoting”, see [2, 3, 10, 24].
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In [24] the authors claim an algorithm for connectivity-preserving reconfiguration of sliding
squares in O(n) parallel steps. Unfortunately, this is incorrect for general input. Nevertheless,
if the input configurations are guaranteed to not contain a specific “forbidden” local pattern
(a 2 × 2 arrangement with only two diagonally adjacent squares), then their algorithm is
correct. Similar models of parallel sliding squares have been investigated experimentally [31].
However, this still leaves the existence of linear-time parallel protocols unresolved.

While the previous work on sliding squares focuses on minimizing the number of moves,
a different line of research aims at minimizing the total time until completion. In [21], the
authors study parallel distributed algorithms for a less restrictive model of sliding squares,
obtaining O(n) makespan. They show how to obtain the same result in the standard sliding
square model using meta-modules, small groups of cooperating modules that behave like a
single entity. This, however, imposes extra constraints in the input. Algorithmic research
on meta-modules was considered in [6, 27]. In [7, 12], the authors considered coordinated
motion planning in a less constrained model (see discussion in Section 2) for labeled robots to
minimize the makespan, aiming for constant stretch, i.e., a makespan within a constant factor
of the maximum distance for a single robot. This was extended to preserve connectivity for
unlabeled [8, 16] and labeled robots [18], and between obstacles [17].

Scaffolding and Meta-modules. Computing reconfiguration paths is not a simple task and,
for many models, it is computationally intractable (even PSPACE-complete [3]). Scaffolding
(proposed independently by [23] and [26]) aims at making reconfiguration simpler by restricting
the scope to configurations containing a regular substructure (the scaffold) that remains
connected between moves (thus removing complexity from the connectivity constraint) while
having enough empty positions to allow modules to move through the scaffold (thus removing
complexity from the free space constraints). They obtain a scaffold by using meta-modules,
groups of modules that cooperate to move as a higher-level functional unit. Previous work has
used these to translate algorithms for a particular model to another (see, e.g., [21, 27, 28]).

The drawback of these techniques is that their input must belong to the subset of
configurations where modules are already organized into meta-modules (the scaffold exists in
both the initial and target configuration). The authors of [8, 16] proposed an algorithm that
first builds the scaffold from an arbitrary scaled configuration. They achieve constant stretch,
i.e., a makespan within a constant factor of the maximum minimum distance for a single
robot (based on previous work [7, 12]). This was extended for labeled modules [18], and
between obstacles [17]. Although their techniques apply to a wider range of configurations,
there are still restrictions on the input. The algorithm presented in this paper also makes
use of scaffolding and meta-module techniques. To the best of our knowledge, our algorithm
is the first universal one to build the scaffold and meta-modules (i.e., from arbitrary input).

Model comparison. Our model is more constrained than existing models for parallel
reconfiguration under connectivity constraints [15, 16, 18, 21, 24]. Michail, Skretas, and
Spirakis [24] do not explicitly require the connected backbone constraint, and do not explicitly
define the collision model. The models in [16, 18] do not require the connected backbone
constraint, and allow modules to enter and leave cells simultaneously, even in orthogonal
directions. Similarly, [21] relaxes the free-space constraint of the convex transition move,
allowing a module to move through two diagonally adjacent static modules. However, the
authors disallow chain moves as shown in Figure 1(b), so that the cells involved in individual
slide moves in the same transformation are disjoint. The same is true for [14, 15] where the
paths of transformations at any given time stamp must be disjoint.

ESA 2025



28:4 Sliding Squares in Parallel

2 Preliminaries

We study the connected reconfiguration of squares in the infinite, two-dimensional integer
grid by sliding moves in a parallel variant of the sequential sliding squares model, as follows.

Configurations. Each simple 4-cycle of edges in the infinite integer grid Z2 bounds a unit
cell c, which is uniquely identified by its minimal integer coordinates x(c) and y(c). Two
such cells are edge-adjacent (resp., vertex-adjacent) if their boundary cycles share an edge
(resp., vertex). A configuration C of n square modules is defined by the set of occupied cells,
each containing a single module. We say that C is valid if and only if its dual graph, defined
by edge-adjacency, is connected, and denote by B the unique axis-aligned bounding box of
minimal perimeter P that contains C; see Figure 2 for illustrations.

n

w e

s

nenw

sw se

y

x

(a) The integer grid Z2. (b) A configuration C of 10 modules, its dual graph, and bounding box B.

Figure 2 We illustrate the relation of the integer grid and configurations.

Moves. Individual modules can perform two types of move into an unoccupied edge-adjacent
or vertex-adjacent cell, slides and convex transitions, as illustrated in Figure 1(a). We denote
a move by its start and target cells, e.g., u⇝ v. In our model, both moves take an identical
(unit) duration to complete, which allows us to easily extend the existing notion of move
counting in sequential models [4, 13, 15, 25] to the parallel setting. Note that in our figures,
the path denoting a convex transition is shown containing a circular arc for clarity. Such a
path would be accurate if the corners of modules were rounded.

Transformations. The parallel execution of moves constitutes a transformation, which we
denote by the initial and resulting configurations, e.g., C1 → C2. A transformation is valid
only if it (i) preserves connectivity and (ii) does not cause collisions.

As in a number of existing models for both sequential and parallel reconfiguration of
squares in the grid [1, 4, 22, 31], connectivity is determined by the existence of a connected
backbone: Given a configuration C, we call a subset M of modules free if C \ M ′ is a valid
configuration for any M ′ ⊆ M . Let M ⊂ C1 refer to all moving modules during C1 → C2.
Then there exists a connectivity-preserving backbone if and only if M is free both in C1 and
in C2. A module m is free if {m} is free. In Figure 3, both transformations are illegal as
they attempt to move modules that are not free (conflicts are marked in red).

Figure 3 Moving non-free modules causes disconnections and makes transformations illegal.

Secondly, a transformation is collision-free exactly if all modules can move along their
designated path at a constant rate, completing it in unit time without overlapping with any
other module in the process. We illustrate a partial selection of collisions in Figure 4. Similar
to the sequential variant, the defined moves and transformations are reversible, i.e., if for
any transformation C1 → C2, there exists an inverse transformation C2 → C1.
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(a) (b) (c) (d)

Figure 4 Collisions: (a) Modules cannot swap places or (b) enter the same cell simultaneously,
(c) moves cannot meet at endpoints orthogonally, and (d) speed mismatches must be avoided.

Problem statement. The Parallel Sliding Squares problem, asks for the connected
reconfiguration of modules in the infinite integer grid by legal transformations, with an
instance I being composed of two configurations (C1, C2) of n modules. A schedule is feasible
for I if and only if it transforms C1 into C2. The makespan of a schedule is the number of
transformations in it. The decision problem for Parallel Sliding Squares asks, given an
instance I and k ∈ N+, whether there is a feasible schedule for I with makespan at most k.

Labeled problem variant. In the case of distinguishable (or labeled) modules, we speak of
the Labeled Parallel Sliding Squares problem. This variant uses the exact same move
set and collision constraints as the unlabeled variant, but configurations are now mappings
between [n] and Z2 rather than subsets thereof. This allows us to specify individual target
positions and track the movement of individual modules across transformations.

Useful notation. Throughout this paper, we make use of cardinal and ordinal directions.
In particular, the unit vector (1, 0) points east, (0, 1) points north, and their opposite vectors
point west and south, respectively. For an illustration, see Figure 2(a). Throughout this
paper, we use B1 and B2 to denote the bounding boxes of C1 and C2, respectively. We
assume, as in the literature [25], that B1 and B2 share a south-west corner at (0, 0).

We define the (open) neighborhood N(c) of a cell c as the set of cells that are edge-
adjacent to c, and the closed neighborhood N [c] as N(c) ∪ {c}. We abuse notation to express
neighborhoods of sets of cells as N [S] =

⋃
c∈S N [c] and N(S) = N [S] \ S. Analogously,

define N∗(S) (resp., N∗[S]) as the open (resp., closed) neighborhood using vertex-adjacency.
A feasible schedule for I is (strictly) in-place (as defined in [4, 25]) if and only if no

intermediate configuration exceeds the union B1 ∪B2 by more than one module. We relax this
constraint slightly and say that a schedule is weakly in-place if no intermediate configuration
exceeds the union B1 ∪ B2 by more than a constant number of units. Note that we do
not restrict the number of modules located outside the union, only their distance to it.
This corresponds to a slightly more restricted variant of the definition used in [1].

3 Computational complexity

We provide a number of complexity results for Parallel Sliding Squares, which are
complementary to the NP-completeness result obtained by the authors of [4] for the sequential
variant of this problem. This highlights a previously unrecognized gap in complexity, compared
to closely related models for parallel, connected reconfiguration without the connected
backbone constraint. In particular, in the related model studied in [16, 18], deciding the
existence of schedules of makespan 2 is NP-complete, while makespan 1 is in P. We give a
high-level description of our construction for the unlabeled case and refer to the full version [5]
for technical details, as well as the labeled problem variant.

▶ Theorem 1. Let I be an instance of Parallel Sliding Squares. It is NP-complete to
decide whether there exists a feasible schedule of makespan 1 for I.

ESA 2025



28:6 Sliding Squares in Parallel

We reduce from the NP-complete problem Planar Monotone 3Sat [11], which asks
whether a Boolean formula in conjunctive normal form is satisfiable. Each clause consists of
at most 3 literals, all either positive or negative, and the clause-variable incidence graph must
admit a plane drawing where variables are mapped to the x-axis, positive (resp., negative)
clauses are mapped to the upper (resp., lower) half-plane, and edges do not cross the x-axis.

Our reduction starts with a rectilinear embedding of the clause-variable incidence graph
of an instance φ of Planar Monotone 3Sat and constructs an instance Iφ of Parallel
Sliding Squares using variable and clause gadgets. We then argue that φ can be satisfied
if and only if there is a single parallel transformation that solves Iφ. For a formula φ over
m variables with k clauses, we create m copies of the variable gadget in a horizontal line,
directly adjacent to one another. The literals in each monotone positive (negative) clause are
then connected to by a clause gadget placed above (below) the horizontal line of variables.
A simple example of our construction is depicted in Figure 5(a).

pos

neg

x1 x2 x3 x4

(a) Our construction for φ = (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4). The depicted
transformation represents the satisfying assignment α(φ) = (true, false, false, false).

pos

neg

(b) Variable gadget (blue/red ≡ true/false). (c) Clause gadget.

Figure 5 An overview of our hardness reduction and the two types of gadget used.

Variable gadget. The variable gadget consists of two cycles of 12 modules each, the left
containing an additional module in its interior, see Figure 5(b). These circles are connected by
a solid, horizontal assignment strip of height 2, to which individual clause gadgets (blue) are
connected. In the target configuration, the extra module is located in the other circle. There
are two feasible transformations, each representing either a true or false value assignment.

Clause gadget. The clause gadget consists of a thin horizontal strip that spans the gadgets
of variables contained in the clause, and (up to) three vertical prongs that connect to the
assignment strips of the incident variable gadgets. No squares move here, see Figure 5(c).

Due to the way in which both configurations are connected, the schedules depicted
in Figure 5(b) locally sever the direct connection between the variable gadget and either all its
positive or negative clauses. Thus, a satisfying assignment maps to a feasible transformation.

▶ Corollary 2. Parallel Sliding Squares is APX-hard and cannot be approximated within
a factor better than 2 in polynomial time unless P = NP.
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4 A worst-case optimal algorithm

In this section, we introduce a three-phase algorithm for efficiently reconfiguring two given
configurations into one another. Our approach computes reconfiguration schedules linear in
the perimeter P1 and P2 of the bounding boxes B1 and B2 of C1 and C2, respectively.

▶ Theorem 3. For any instance I of Parallel Sliding Squares, we can compute a
feasible, weakly in-place schedule of O(P1 + P2) transformations in polynomial time.

Our algorithm consists of three phases as depicted in Figure 6: In Phase (I), we identify
a subconfiguration used as a “backbone” (similar to [21]), and gather Θ(P1) many modules
around a piece of this backbone, thereby enhancing its connectivity (as in [4]). We use the
flexibility of this piece to construct a sweep-line structure out of meta-modules in Phase (II),
that is then used in Phase (III) to efficiently compact and transform the remaining modules
into grid-aligned 3 × 3 squares, creating a 3-scaled configuration. In general, a configuration
is c-scaled exactly if it is composed of c × c squares that are aligned with a corresponding
c × c integer grid. By generalizing techniques from [16], we can reconfigure these efficiently:

▶ Theorem 4. For any 3-scaled instance I of Parallel Sliding Squares, we can compute
a feasible, in-place schedule of O(P1 + P2) transformations in polynomial time.

(a) (b) (c)

(d) (e)

Figure 6 The high-level overview of our approach. (a) Initial configuration and (b), (c) and (e)
are the result of Phases (I–III), respectively. (d) shows an intermediate configuration in Phase (III).

To reach our target configuration, we then simply apply Phases (I-III) in reverse. Although
several of our techniques are inspired by previous work, they differ substantially in our context
of parallel reconfiguration and considerable changes were needed.

▶ Lemma 5. The bounds achieved in Theorem 3 are asymptotically worst-case optimal.

Proof. Assume that n is even and consider two configurations C1, C2 contained in an n/2×n/2

bounding box B. Define C1 to contain the n − 1 modules adjacent to the left and bottom
edges of B and a module at (1, 1). Define C2 to contain the n − 1 modules adjacent to the
top and right edges of B and a module at (n/2 − 1, n/2 − 1). Then, the minimum bottleneck
matching between full cells in C1 and C2 has bottleneck Ω(n), implying that a module must
make Ω(n) moves. The makespan is then Ω(n) = Ω(P ), where P is the perimeter of B. ◀

ESA 2025



28:8 Sliding Squares in Parallel

4.1 Phase (I): Gathering squares
In Phases (I) and (II), we use an underlying connected substructure (called skeleton) of the
initial configuration to guide the reconfiguration. Intuitively (formal definitions below), this
tree-like skeleton functions as a backbone around which we move modules toward a “root”
module, making a subtree “thick” (where the cells in the neighborhood of part of the skeleton
are all full). This “thick” subskeleton is more “manipulable”, making it easier to mold it
into a sweep line in Phase (II). Moving modules around a tree is an idea also used by the
authors of [21]. This type of strategy becomes complicated when the tree creates bottlenecks
where potential collisions happen, which they solve by strengthening the model and allowing
modules to “squeeze through” bottlenecks. We achieve a stronger result in the classic sliding
model via careful definition of the tree-like structure and movement schedules.

Skeleton. We define the skeleton of a configuration C as a valid subconfiguration S such
that: C ⊂ N [S] (every module of C is either contained in S or edge-adjacent to a module
of S); and cycles in the dual graph of S are pairwise disjoint with length at most 4. We call a
module in S (resp., not in S) a skeleton (resp., nonskeleton) module. In Figure 6(a), skeleton
modules are highlighted with an internal square and the perimeter of the skeleton is shown
in red. Note that any set of nonskeleton modules is free.

On a high level, we can compute a skeleton S of a given configuration C as follows. Think
of S as a subset of C, initialized as the empty set. Modules of C are then algorithmically added
to S until it satisfies the definition of a skeleton. First, all modules with even x-coordinate
are added to S, then all modules with odd x-coordinate with no east and west neighbors.
Next modules are added to S until it is a connected subconfiguration of C (see magenta
squares in Figure 6(a)). This might introduce large cycles (greater than length 4) to S.
These cycles are broken via removal of modules from S or exchanging adjacent modules.
We show that careful execution of these steps will build S into a skeleton of C.

Equipped with a skeleton S, we now consider its dual graph. Contracting every cycle
in the dual of S to a single vertex renders a max-degree-4 tree where each node is either
a cell or a 4-cycle. We refer to the nodes of this tree as nodes of S and abuse notation by
referring to S as a tree. Let r be the root node of S, arbitrarily chosen. For every nonskeleton
module, we assign an adjacent module of S as its support. We define the subskeleton rooted
at c (denoted Sc) as the subconfiguration containing c and its descendant nodes. The set S∗

c

contains the modules in Sc and the nonskeleton modules supported by modules in Sc. The
weight of a subskeleton Sc is defined as |S∗

c |. By definition, S∗
r = C and |S∗

r | = n.

▶ Lemma 6. Given a rooted skeleton S and an integer 1 < w ≤ n, there exists a node c of S

such that w ≤ |S∗
c | ≤ 3w.

Using this, we locate a module h ∈ S (highlighted with a red marker in Figures 6(a) and 6(b))
such that |S∗

h| ∈ Θ(P ). Afterwards, we “thicken” S∗
h into a structure called the exoskeleton.

Exoskeleton. An exoskeleton is made from three types of modules: core, shell, and tail
modules; depicted respectively in dark gray, purple and pink in the figures. Recall that
we wish to make the neighborhood of Sh is full. The core modules occupy the positions
originally occupied by the skeleton Sh, the shell modules are the ones “coating” the skeleton,
and the tail modules are “leftover” modules in the neighborhood of a leaf. We recursively
thicken Sh by applying this process to its smaller subtrees, effectively converting tail or core
modules at the leaves into a shell module near the root. If the core modules cover the entire
subtree of Sh, it may take a linear number of transformations to move a module from a leaf
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to the root. Instead, we allow empty positions inside the exoskeleton which permits us to
“teleport” a module from a leaf to the root in O(1) transformations. Although some of the
positions are empty, the structure remains connected due to its shell and the fact that these
empty positions are well separated (in tree metric along Sh, see Property 4 below).

Formally, we define an exoskeleton Xc as follows. The core Xc of Xc are positions in
the lattice (not necessarily full) that form a subtree of Sc containing c (since we recursively
“shave off” leaves to make material for the shell). Note that Xc, unlike Sc, is not a subgraph
of the configuration’s dual graph because of the empty positions. In our figures, we highlight
core cells with an internal circle. Let L be the set of positions corresponding to the leaves
of Xc. We call N∗(Xc \ L) \ L the shell of Xc (recall N∗(S) is the open neighborhood under
vertex-adjacency). The following must hold:
1. All modules in Xc are in the neighborhood of its core. (|Xc| ≥ 2, and Xc ⊂ N∗ [

Xc

]
.)

2. The leaves are occupied. (L ⊂ Xc.)
3. All cells in the shell are occupied. (N∗(Xc \ L) \ L ⊂ Xc.)
4. The depth (in Xc) of every empty cell is congruent to k (mod 4) for a fixed k ∈ {0, 1, 2, 3}.

(a) (b)

Figure 7 Visualizing an exoskeleton. (a) Skeleton and core cells are highlighted with an inner
square and circle, respectively. (b) Highlights the core; the root is highlighted with a red circle.

The modules that are in N∗(ℓ), for a leaf ℓ ∈ L, and not in the shell or core of Xc are
called the tail modules of ℓ. By definition, a module in Xc is either in the shell, in the core,
or is a tail module. Shell modules protect the connectivity of Xc, allowing us to place empty
positions in the core wherever necessary to expand the exoskeleton constant time.

We show that Sh can be reconfigured into an exoskeleton Xh in O(P ) transformations,
thereby inductively establishing Lemma 9. To this end, we first prove Lemma 7, demon-
strating how small skeletons (lighter than 9) are turned into exoskeletons. In doing so, we
obtain Corollary 8, which settles the base case of our induction. Lemma 7 will also be pivotal
in the inductive step. All that this lemma does is take a subskeleton of weight ≤ 9 and
transform it into a 3 × 3 square, a minimal instance of an exoskeleton (|Xc| = 2).

▶ Lemma 7. Let C be a configuration with skeleton S in which potentially some of its
subskeletons were reconfigured into exoskeletons. Let c be a skeleton node, with parent node d,
such that Sc is not yet part of an exoskeleton and |S∗

c | ≤ 9. Let M be the set of modules
in S∗

c that are not contained in exoskeletons. Then, in O(1) transformations, M can be
reconfigured so that:

if deg(d) = 2, either N∗[d] is full or M ∩ (N∗[c] \ N∗[d]) is empty (i.e., the modules in M

are all contained in the neighborhood of d if this region is not full);
if deg(d) > 2, either N∗[d] ∩ N∗[c] is full or M ∩ (N∗[c] \ N∗[d]) is empty (i.e., the
modules in M are all contained in the intersections of the neighborhood of d and c if this
region is not full).

ESA 2025
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(c)

Figure 8 Illustration of Lemma 7. Modules d and c are highlighted with inner red and blue
squares. The boundaries of N∗[d] and N∗[c] are shown with dashed red and blue lines.

At first glance, the lemma might seem overly complicated, since without any obstacle,
modules can freely move along the perimeter of S (see Figure 8(a)). However, nonlocal
pieces of the skeleton (connected subsets S1 and S2 of S are local if S ∩ N∗(S1 ∪ S2)
is connected) previously converted to exoskeletons can interfere when processing later
subskeletons. Figures 8(b) and 8(c) show a configuration before and after two nonlocal pieces
of the skeleton were converted into exoskeletons. Modules in the working subskeleton Sc might
be part of the shell of another exoskeleton, making their movement dangerous (potentially
disconnecting the nonlocal exoskeletons). We try to leave such modules in their place,
changing their membership from S∗

c to the shell of the exoskeleton.
By applying Lemma 7 a constant number of times in appropriate subskeletons, we

eventually obtain a solid 3 × 3 square from which we can construct an exoskeleton.

▶ Corollary 8. Given a subskeleton Sc with 9 ≤ |S∗
c |, we can reconfigure S∗

c transforming
one of its subskeletons into an exoskeleton in O(1) many transformations, without changing
other exoskeletons or modules not in S∗

c .

Corollary 8 provides the base case of our induction for Lemma 9. We now establish
some routines for the inductive step. We assume there is a module d ∈ Sh so that for every
child c of d, S∗

c was reconfigured to an exoskeleton Xc satisfying Property 4 with k = 0.
If N∗[d] is full, we can finish by making d the root of the exoskeleton, effectively merging
the children exoskeletons. Note that this will necessarily happen if d had degree 4 and is
not part of a 4-cycle. Thus, assume that there is an empty position e ∈ N∗[d]. We apply
a routine Inchworm-Push that fills e with local moves, using a module initially in the
core of the exoskeleton Xc (making that cell empty). The routine Inchworm-Pull then
moves core modules higher (in tree metric) pushing empty positions deeper until they
“exit” the exoskeleton at leaves. Again, ignoring nonlocal interactions, these operations are
straightforward. However, in the general case, these interactions mandate extra care.

Inchworm-Push: Let c be a child of d, and p be the parent of d. Require that N∗[c]
is full. We branch into cases. (i) If c, d, and p are collinear, there is a path π in N∗(d)
from c to e going through only occupied cells, see Figure 9(a); (ii) If c, d and p form a
bend, there is a path π in N∗[d] from c to e going through d and at most one nonskeleton
module, see Figures 9(b) and 9(c); (iii) In analogous cases to (i–ii), if a node in {c, d, p} is
a 4-cycle, there is a path π in N∗(d) from a module in c to e going through one module in
the shell of Xd, depicted in Figure 9(d). For all cases, move the modules along π making
e occupied and c empty. This requires at most two transformations since there is at most
one collision along π and we can decompose π into two paths with no collisions.
Inchworm-Pull: The operation consists of four stages, each involving at most two
transformations. For every empty cell p in the core, select one of its children q arbitrarily,
and let x(q) be its x-coordinate. Move the module from q to p in stage j ∈ {1, 2, 3, 4} if
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(a)

...

. . .

(b) (c) (d)

Figure 9 Inchworm-Push. Module c is colored turquoise, cell e is yellow, and d is highlighted
with an inner triangle. The red curve encloses a subconfiguration around the moves that remains
connected guaranteeing that the transformations do not disconnect the configuration.

x(q) ≡ j (mod 4). Figure 10(a) gives two examples, in one of which p is a 4-cycle (that
takes two transformations). If q is a leaf, if there is a tail module of q that is originally
in S∗

c and not in another exoskeleton, move such a module to q, visualized in Figures 10(b)
and 10(c). If there are no more tail modules we can update Xc by deleting q which causes
the tail module that just moved to become a shell module, see Figure 10(b), or causes
two shell modules to become tail modules as in Figure 10(c).

. . .

(a) (b)

(c)

...

. . .

(d)

Figure 10 Inchworm-Pull. Module q is colored turquoise and empty cell p is yellow.

The reason we stagger the moves into four stages in Inchworm-Pull is to guarantee that
the configuration contains enough static modules around a move. Otherwise, performing all
moves in a single transformation might disconnect the configuration, as shown in Figure 10(d).
In the full version [5], we argue that Inchworm-Push and Inchworm-Pull preserve
connectivity and require only O(1) transformations. To establish local connectivity of the
static modules in the neighborhood of each move, we rely on Properties 3–4.

▶ Lemma 9. Given a configuration C with skeleton S, and a skeleton node d with |S∗
d | ≥ 9,

O(|S∗
d |) transformations are sufficient to reconfigure Sd into an exoskeleton Xd.

Proof. If a subskeleton of Sd does not contain an exoskeleton, we can apply Corollary 8.
If, after that, Sd is not the core of an exoskeleton Xd, we apply induction. Let Q be the set
containing the children of d. For every child c ∈ Q with |S∗

c | ≥ 9 we can get an exoskeleton Xc

in O(|S∗
c |) transformations by inductive hypothesis. For every child c ∈ Q with |S∗

c | < 9,
we apply Lemma 7 that either results in an exoskeleton Xc, or results in deleting c from S

“compacting” all its modules in N∗[c] ∩ N∗[d]. If after that N∗[d] is not full, N∗[d] contains
at most three empty cells if d is a degree-2 bend in S, at most two empty cells if d is a
“straight” degree-2 in S, or at most 1 empty cell if d has degree 3. (Note that if d has degree 4
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and is not a 4-cycle, then N∗[d] is full.) For each of these empty cells, we can fill them by
applying Inchworm-Push followed by at most four applications of Inchworm-Pull to
ensure that N∗[c] is full for all children c of d while maintaining Property 4. This takes at
most O(1) transformations. When N∗[d] is full, the configuration contains an exoskeleton Xd

except for the “4-arity” of the empty positions (Property 4). That can be resolved by applying
Inchworm-Pull to Xc at most three times for each child c of d. ◀

By Lemma 6, we can choose an appropriately heavy node d of S to obtain:

▶ Corollary 10. Let C be a configuration with bounding box perimeter P . We can reconfig-
ure C so that it contains an exoskeleton Xh with ≥ 36P modules in O(P ) transformations.
All modules stay within O(1) distance from the bounding box of C.

4.2 Phase (II): Scaffolding
Phase (I) of our algorithm recursively constructed a sufficiently large exoskeleton Xh that
is now reconfigured in Phase (II). The goal of this reconfiguration is to create a ⊣ -shaped
exoskeleton, with its vertical segment precisely aligned along the right boundary of the
bounding box. This vertical edge will serve as the sweep line in Phase (III).

Phase (II) of our approach consists of the following three steps:
1. First “compact” Xh so that its core contains no empty cells.
2. We then choose a rightmost node c in the core of Xh and use Inchworm-Push and

-Pull to grow a horizontal path from c rightward, until a 3 × 3 square is formed outside
the bounding box, see Figures 11(a)–11(f).

3. Use Inchworm-Push and -Pull to grow the path upwards until it hits the top of the
bounding box, then grow a path downwards until it hits the bottom of the bounding box,
see Figures 11(f)–11(h).

We make sure that Xc always contains h so that it maintains connectivity with the subset
of S that was not transformed into an exoskeleton. We can show that the connectivity
properties of exoskeletons allow us to “go through” obstacles (sections of S that remained
untouched in Phase (I)), see Figures 11(a)–11(f). That may require some extra moves as
shown in Figure 11(b), where an Inchworm-Push would move the cut vertex marked with a
red ×. In such cases, we sequentially fill in up to two cells in the neighborhood of Xc (yellow
in Figure 11(b)), making all modules in π (from the definition of Inchworm-Push) noncut.

4.3 Phase (III): Creating scale
Once Phase (II) concludes, we are left with an intermediate configuration that contains a
scaffold structure along its east boundary, recall Figure 11(h). In the remaining phase, we
use this scaffold to obtain a 3-scaled configuration that can be arbitrarily reconfigured due
to Theorem 4. To build squares in an efficient manner, we modify part of the exoskeleton
structure created during Phase (II), creating a vertical line of 3 × 3 meta-modules.

Sweep line. We define a scaffold structure composed of meta-modules, each consisting
of eight modules occupying the open vertex-neighborhood of a common center cell v, i.e.,
one in every cell of N∗(v) as shown in Figure 12(a). A sweep line ℓ ⊂ C is then a valid
subconfiguration formed by the union of h disjoint meta-modules M1, . . . , Mh with identical
x-coordinates such that ℓ spans the full height of the bounding box of C \ ℓ. Let vi now refer
to the center cell of Mi, such that y(vi) < y(vj) exactly if i < j, see Figures 12(b) and 12(c).
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Figure 11 Building the scaffolding; bounding box of the initial configuration is shown in yellow.

For each meta-module M in a sweep line ℓ ⊆ C, we define as its east and west strips
as the cells which share a y-coordinate with one of its modules and are located within the
bounding box of the full configuration C. We denote these by e(M) and w(M), respectively,
and refer to their union for ℓ, e.g., w(ℓ). We use these to define the following characteristics.

A sweep line ℓ is clean exactly if every meta-module Mi either has an empty center
cell vi, or its respective west strip is fully occupied, i.e, w(Mi) ⊆ C. See Figure 12(b) for an
illustration. Analogously, we call ℓ solid if all center cells of its meta-modules are occupied.

Furthermore, we say that is ℓ a separator if for every meta-module Mi in ℓ:
1. The east strip e(Mi) does not contain modules unless all cells in w(Mi) are full.
2. The modules in e(Mi) are located in its x-minimal cells, thus forming a 3 cell tall rectangle

with at most two additional “loose” modules.

v e(M)w(M)

(a) A meta-module M .

v2

v1

(b) A clean sweep line (red).

v2

v1

(c) A separator sweep line (red).

Figure 12 Sweep lines are formed by vertical stacks of meta-modules.
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We start by transforming part of the exoskeleton from Phase (II) into meta-modules that
form a sweep line at the eastern boundary of B.

▶ Lemma 11. The vertical portion of the “⊣-shaped” exoskeleton in C can be made into a
separator sweep line in O(1) transformations.

This gives us a separator sweep line ℓ that is not necessarily clean or solid, located at the
east edge of the configuration’s bounding box B. Our goal is to move ℓ towards the west
edge of B while maintaining its separator property, compacting all encountered modules into
3-tall strips in the process. We define two procedures that suffice to reach this goal.

Intuitively, the Advance operation provides a schedule that translates a sweep line by
one unit to the west, and the Clean operation replaces a given sweep line with a clean one.
To efficiently parallelize these operations, we split the sweep line into leading and trailing
meta-modules such that Mi is trailing exactly if i is odd, and leading otherwise. At any
given time, either the leading or the trailing meta-modules are active, but never both.

By repeatedly alternating between the Advance and Clean operations, we create a con-
figuration with a clean separator sweep line that has an empty west half-space, see Figure 13.

⋆
Advance

⋆
Clean

⋆
(. . .)

⋆
(. . .)

Figure 13 We alternate between the Advance and Clean operations until w(ℓ) ∩ C = ∅.

We first argue the Clean operation can be performed in constantly many transformations.
Let Mi be an active meta-module with an occupied center cell. On a high-level, we consider
a rectangle induced by occupied cells in west direction within its strip. It is easy to see that
we can fill an empty position immediately adjacent to this rectangle, while also cleaning the
center cell of Mi by at most two subsequent transformations. By doing this for leading and
trailing meta-modules separately, we conclude the following lemma.

▶ Lemma 12. A configuration C with a sweep line ℓ can be cleaned by 4 strictly in-place
transformations, without moving any modules east, or exceeding the bounding box B of C.

It remains to argue that the same is true of the Advance operation. For this, we consider
the three positions immediately west of an active meta-module, and distinguish eight cases
based on occupied and empty cells. For all of them, we define local transformation schedules
that enable us to move a meta-module one step to the east. Thus, we obtain:

▶ Lemma 13. A configuration C with a clean separator sweep line ℓ can be advanced into a
clean separator sweep line by O(1) strictly in-place transformations if C ∩ w(ℓ) ̸= {∅}.

After no more than O(P ) many iterations consisting of Clean+Advance, we obtain a
state in which w(ℓ) ∩ C = ∅. The separator property implies that the modules in e(ℓ) form
3-wide, horizontal stacks. It remains to show that we can make this configuration 3-scaled.

To simplify our arguments, assume that n is a multiple of nine. In the general case, n can
exceed a multiple of nine by at most 8 modules. We can place these at the south-west corner
of the extended bounding box B′ and locally ensure the existence of a connected backbone
during each transformation.

▶ Lemma 14. Let C contain a clean separator sweep line ℓ with an empty west half-space.
Then C can be transformed into a 3-scaled configuration in O(P ) transformations.
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On a high level, we achieve this by filling the center cells of all meta-modules and balancing
the remaining modules between their east strips such that each contains a multiple of nine.
Having constructed a 3-scaled configuration, we can arbitrarily reconfigure due to Theorem 4
before applying Phases (I-III) in reverse to obtain our target configuration.

5 Conclusions and future work

We have presented several new results for reconfiguration in the sliding squares model, making
full use of parallel motion. In particular, we showed that deciding whether there exists a
single transformation that reconfigures one configuration into another is already NP-complete.
Additionally, we provided algorithmic results for the unlabeled variant, including a polynomial-
time algorithm that performs in-place reconfiguration in O(P ) transformations, where P

denotes the perimeter of the union of the configurations’ bounding boxes.
We note that this algorithm can easily be adapted to the labeled setting by “sorting”

the modules in the xy-monotone configuration using O(P ) transformations. However, this
requires a relaxation of the in-place requirement. Furthermore, deciding whether a schedule
of makespan 1 exists in the labeled setting is straightforward, while the problem becomes
NP-complete for a makespan of 2. Details on these results are provided in the full version [5].

Our algorithmic results are only worst-case optimal, and there are a number of possible
generalizations and extensions of the setting. Previous work in the sequential setting
has progressed from two dimensions to three. Can our approach be extended to higher
dimensions? We are optimistic that significant speedup can be achieved, but the intricacies
of three-dimensional topology may require additional tools.

Another aspect is a refinement of the involved parameters, along with fixed parameter
tractability. Our hardness proofs show that the investigated problems are not FPT when
parameterized by the number of transformations in the output. The number of modules in
the input configuration is not a suitable parameter since it is the input size. Are there other
parameters for which these problems are FPT? An interesting candidate would be the size of
the symmetric difference between the two input configurations. In our hardness proofs, the
size of the symmetric difference is linear on the size of the SAT instance.
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