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—— Abstract

A dominating set of a graph G = (V, E) is a set of vertices D C V whose closed neighborhood is
V,ie., N[D] =V. We view a dominating set as a collection of tokens placed on the vertices of D.
In the token sliding variant of the DOMINATING SET RECONFIGURATION problem (TS-DSR), we
seek to transform a source dominating set into a target dominating set in G by sliding tokens along
edges, and while maintaining a dominating set all along the transformation.

TS-DSR is known to be PSPACE-complete even restricted to graphs of pathwidth w, for some
non-explicit constant w and to be XL-complete parameterized by the size k of the solution. The first
contribution of this article consists in using a novel approach to provide the first explicit constant
for which the TS-DSR problem is PSPACE-complete, a question that was left open in the literature.

From a parameterized complexity perspective, the token jumping variant of DSR, i.e., where
tokens can jump to arbitrary vertices, is known to be FPT when parameterized by the size of the
dominating sets on nowhere dense classes of graphs. But, in contrast, no non-trivial result was
known about TS-DSR. We prove that DSR is actually much harder in the sliding model since it is
XL-complete when restricted to bounded pathwidth graphs and even when parameterized by k plus
the feedback vertex set number of the graph. This gives, for the first time, a difference of behavior
between the complexity under token sliding and token jumping for some problem on graphs of
bounded treewidth. All our results are obtained using a brand new method, based on the hardness of
the so-called TAPE RECONFIGURATION problem, a problem we believe to be of independent interest.

We complement these hardness results with a positive result showing that DSR (parameterized

by k) in the sliding model is FPT on planar graphs, also answering an open problem from the
literature.
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1 Introduction

The combinatorial reconfiguration framework aims to investigate algorithmic and structural
aspects of the solution space of an underlying base problem. For instance, given an instance
of some base problem along with two feasible solutions, i.e., the source and target feasible
solutions, the goal is to determine if (and in how many steps) one can transform the source
to the target via a sequence of adjacent feasible solutions. Such a sequence is called a
reconfiguration sequence and every step in the sequence (going from one solution to an
adjacent one) is called a reconfiguration step. Reconfiguration problems arise in various
fields such as combinatorial games, motion of robots, random sampling, and enumeration.
It has been extensively studied for various rules and types of (base) problems such as
satisfiability [25, 37], graph colorings [11, 19], vertex covers and independent sets [29, 30, 34]
and matchings [12]. The reader is referred to the surveys [39, 40, 18] for a more complete
overview of the field.

An alternative view of reconfiguration problems is via the notion of so-called (re)configura-
tion graphs. Let II be a base problem and let Z be an instance of II. The configuration
graph Rz is a graph whose nodes correspond to feasible solutions of Z and in which two
solutions are adjacent if and only if we can transform the first into the second in a single
reconfiguration step. In this paper, we focus on the reachability question that asks, given
two solutions S,5” of Z, whether there exists a reconfiguration sequence from S to S’. In
other words, does there exist a path between S and S’ in the configuration graph. Other
works have focused on different problems such as the connectivity of the configuration graph
or the diameter of its connected components; see, e.g. [15, 25].

A dominating set of a graph G = (V, E) is a set of vertices D C V such that N[D] =V.
That is, the union of the closed neighborhoods of vertices of D spans V. The DOMINATING SET
(DS) problem, i.e., deciding whether a graph contains a dominating set of size at most k, is one
of the fundamental NP-complete problems [33]. By now, both the classical and parameterized
complexity of the problem are very well understood especially when restricted to sparse
graph classes and even when considering various possible parameterizations [22, 20, 2, 3]. In
particular, and relevant to this work, DOMINATING SET is fixed-parameter tractable (FPT)
parameterized by the size of the solution in nowhere-dense classes of graphs [20].

In the rest of this section, we informally state our results and put them into context.
In Section 2.1, we introduce the main problem from which we will derive our results and
state the hardness result we obtain for it. In Section 2.2, we explain the consequences of
this result for DOMINATING SET RECONFIGURATION (DSR) and in Section 2.3, we state our
main positive results.

Token jumping vs. token sliding. The main focus of this paper is to study the parameterized
complexity of reconfiguration problems restricted to sparse classes of graphs and in particular
the case of DOMINATING SET RECONFIGURATION, or DSR for short. There are three different
natural adjacency relations one can consider between dominating sets, which gave rise to
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three different models in the literature; namely the token jumping (TJ) model, the token
sliding (TS) model, and the token addition/removal (TAR) model. Since the TAR model is
known to be polynomially equivalent to the T.J model [13], we only discuss the other two.

In the token jumping model, we say that two solutions S, S’ are adjacent if both S\ S’
and S\ S have size at most one. In other words, we can remove a vertex of S and add a
vertex of S’ to transform S into S’. In the token view of the problem, we say a token jumps
from some vertex u to another (possibly already occupied) vertex v. In the token sliding
model, we additionally require that uv € F, i.e., the vertices u and v must be adjacent,
and the token is said to slide on the edge uv from u to v. We shall use TS-II and TJ-II to
denote the reconfiguration variant of problem II under the token sliding and token jumping
model, respectively. For instance, TS-DSR, corresponds to DSR in the token sliding model
and TJ-DSR corresponds to DSR in the jumping model.

TJ-DSR is known to be PSPACE-complete on split graphs, bipartite graphs [13, 27, 32],
and planar graphs of maximum degree 3 [29] and bounded-bandwidth graphs [42]'. On
the positive side, linear-time algorithms are known for trees, interval graphs, and cographs.
As for TS-DSR, the problem is known to be PSPACE-complete on circle graphs [16], split
graphs [13], bipartite graphs [13], and planar bounded-bandwidth graphs of maximum degree
three [42]. Polynomial-time algorithms for TS-DSR are known for circular-arc graphs, dually
chordal graphs, and cographs [28, 13, 16, 4].

Even though both TS-DSR and TJ-DSR are known to be PSPACE-complete restricted to
instances of constant bandwidth/pathwidth/treewidth, an exact constant above which the
problems become hard is not explicit in the hardness proofs of Wrochna [42]. Determining an
explicit upper bound for which the problems are hard has been left open for almost a decade
now, see e.g. [8, 16, 5.2 Our first main result consists in giving an explicit upper bound on
the treewidth and even the pathwidth above which the TS-DSR problem becomes PSPACE-
complete. Our proof uses a completely different approach from the one of Wrochna [42] and
is based on a new problem, namely TAPE RECONFIGURATION (TAPE-REC), we introduce
and prove to also be hard (formal definitions in Section 2.1).

» Theorem 1. T'S-DSR is PSPACE-complete even when restricted to graphs of treewidth
(resp. pathwidth) at most 12 (resp. 18).

The existence of explicit constants b and w for which (i) TS-DSR is PSPACE-complete
in graphs of bandwidth b, and (ii) TJ-DSR is PSPACE-complete in graphs of pathwidth
or treewidth at most w is also open. Unfortunately, our proof technique does not yield
such explicit constants. Moreover, it is very unlikely that a small variation of our proof
technique can provide such constants since this would almost automatically imply that the
problems (parameterized by dominating set size k) are also XL-complete when restricted to
the aforementioned graph classes, which is in contradiction with known results [18]. This
follows, in part, from the fact that our reductions construct instances in which the dominating
set size is negligible with respect to n.

We note that the constants 12 and 18 are probably not optimal. In particular, the
complexity status of both TJ-DSR and TS-DSR in outerplanar graphs (which are graphs
of treewidth at most 2) is still open. We will discuss in more detail the proof technique in

! Bandwidth is a very restricted subclass of pathwidth which, in turn, is a restriction of treewidth. That
is bandwidth(G) > pathwidth(G) > treewidth(G).

2 The question is open for a wealth of reconfiguration problems including INDEPENDENT SET RECONFIG-
URATION, VERTEX COVER RECONFIGURATION, SHORTEST PATH RECONFIGURATION, and DOMINATING
SET RECONFIGURATION.
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Section 3, but note that the proof technique of Theorem 1 is drastically different from the
one of Wrochna [42] since the size of the dominating set is linear in the size of the graph
in [42] while it is independent from n = |[V(G)| in our proof. This, in turn, allows us to
derive the non-existence of parameterized algorithms which was completely out of reach with
the techniques of [42].

Parameterized complexity and the mysterious case of token sliding. A systematic study
of the parameterized complexity of reconfiguration problems was initiated by Mouawad et
al. [38]. This was followed by a long sequence of results trying to push the tractability
boundary of many reconfiguration problems (see [18] for a survey which mainly focuses on
dominating set and independent set reconfiguration results).

On general graphs, TJ-DSR and TS-DSR are W[2]-complete parameterized by the
dominating sets size k plus the length of a reconfiguration sequence ¢ [38, 10]. For the
parameter k alone, it was shown by Bodlaender et al. [10] that both problems are XL-
complete? if ¢ is not given, XNL-complete if £ is given in binary, and XNLP-complete if £ is
given in unary as part of the input. The constructions of Bodlaender et al. [10] result in
heavily dense graphs that contain all possible subgraphs H as subgraphs. In particular, it
was left as an open problem whether the token sliding and token jumping variants of the
problems behave the same on H-free graphs?.

When parameterized by ¢ alone, both TJ-DSR and TS-DSR are FPT on any class of
graphs where first-order model-checking is FPT, e.g., nowhere dense classes [26] and classes
of bounded twinwidth [14] (assuming a contraction sequence is given as part of the input).
Indeed, for the parameter ¢, we can find a fixed sentence expressing the existence of a
reconfiguration sequence of length £.

Unfortunately, the approach via first-order model-checking does not help us deal with the
parameterization by k since reconfiguration sequences might be arbitrarily long compared to k.
It is not possible to state the existence of such a sequence in first-order logic with a bounded
length sentence. Instead, the key tool to tackle TJ-DSR parameterized by k alone is based
on the notion of domination cores [20]. In fact, the complexity of TJ-DSR parameterized
by k is quite well understood for sparse classes of graphs. The problem is known to be
FPT parameterized by k for biclique-free graphs and semi-ladder-free graphs [35, 24] (classes
encompassing nowhere dense and degenerate graphs). In particular, it restricts quite a lot
the type of graph on which TJ-DSR might be XL-complete.

On the other hand, the parameterized complexity of TS-DSR remains open even when
restricted to very simple graph classes such as bounded pathwidth or treewidth graphs®
or planar graphs. This difference of knowledge between the sliding and jumping variants
is also observed for other problems such as INDEPENDENT SET RECONFIGURATION (ISR)
where the token jumping version is known to be FPT (parameterized by k) on K/ ,-free
graphs while its sliding counterpart is only known to be FPT on planar graphs and is open
beyond [18]. Bodlaender et al. [10] mentioned that “it would be interesting to investigate

XL is a complexity class that contains the W-hierarchy and which naturally contains most of the
reconfiguration problems. In particular, when a problem is XL-complete it is very unlikely that it is
FPT.

A graph G is H-free if it does not contain H as an induced subgraph. That is, there is no subset of
vertices in G whose induced subgraph is isomorphic to H. A graph G is H-minor-free if it does not
contain H as a minor. That is, H cannot be formed from G by deleting vertices and edges and by
contracting edges.

Note that the parameterized complexity status of TS-DSR on bounded bandwidth graphs is trivially
FPT since the number of vertices is upper bounded by a function of the bandwidth and the domination
number.
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for which graph classes switching between token jumping and token sliding does affect the
parameterized complexities”. The second goal of this paper is to study this question via the
lens of DOMINATING SET RECONFIGURATION.

In the token sliding case, apart from the few polynomial results on very restricted classes,
no FPT algorithm parameterized by k is known. The existence of such an algorithm is
conjectured in several papers including [18, 36, 8] or the recent survey [18]. The second main
contribution of this article makes a step towards closing this gap by proving the following
theorem:

» Theorem 2. TS-DSR parameterized by k is XL-complete when restricted to graphs of
treewidth at most 12 and pathwidth at most 18. Moreover, it remains XL-hard when paramet-
erized by k plus the feedback verter set number.

A feedback vertex is a subset of vertices whose deletion leaves an acyclic graph. The
feedback vertex set number is the minimum size of a feedback vertex set. The first hardness
result of Theorem 2 (for pathwidth and treewidth) is again a consequence of the hardness
of the TAPE-REC problem. The second hardness result is also based on the hardness of
TAPE-REC but the proof is more technical since we need to maintain a small feedback vertex
set number. One can wonder if we can strengthen the result of Theorem 2 by replacing
feedback vertex set number by vertex cover number. The answer is negative. A vertex cover
is a subset of vertices whose deletion leaves an independent set. Recall that given a simple
undirected graph G, a set of vertices I C V is an independent set if the vertices of I are
pairwise non-adjacent. The vertex cover number is the minimum size of a vertex cover. We
note that TS-DSR parameterized by k plus the vertex cover number is trivially FPT. This
follows from the fact that given a vertex cover C, we can partition R =V \ C into classes
such that two vertices belong to the same class if and only if they have the same neighbors in
C'. All classes consist of independent sets (since C' is a vertex cover) and any class containing
more than k vertices can be reduced since no more than k vertices can be used from a class
(and all vertices of a class are “equivalent”). Hence, we obtain an instance with at most
|C| + 2€1k vertices (assuming no isolated vertices).

Theorem 2 answers, as mentioned before, a problem that has been left open in several
previous articles [18, 36, 8, 18]. The result ensures that, even in very restricted sparse graph
classes, TS-DSR and TJ-DSR behave completely differently. To our knowledge, it is the first
time the token sliding and token jumping models behave differently for a reconfiguration
problem on a class of bounded treewidth (and even nowhere dense)®. Actually, it is, as
far as we know, the first reconfiguration problem that is not FPT on bounded treewidth
graphs. It also ensures that TS-DSR and TS-ISR behave very differently on nowhere dense
classes of graphs (since an easy applications of the lemmas of [8] ensures that TS-DSR is
FPT parameterized by k plus the feedback vertex set number). Moreover, our results provide
the first (and infinite) collection of graphs (any supergraph of a large enough biclique) for
which T'S-DSR is XL-complete parameterized by k& while TJ-DSR is FPT, which partially
answers the question of [10].

To sum up, our results make progress in three directions by showing that:

1. TS and TJ do not necessarily behave the same on graphs of bounded treewidth (and
below);

2. ISR and DSR do not behave the same on nowhere dense graph classes; and

3. TJ-DSR and TS-DSR behave differently on infinitely many H-free graphs.

8 For sparse graphs, such a difference has already been observed for bounded degeneracy graphs for
instance [18]

29:5

ESA 2025



29:6

The Tape Reconfiguration Problem

We complement our negative results by positive results proving that TS-DSR is FPT on
planar graphs (and actually beyond), answering a problem left open in [18].

» Theorem 3. T'S-DSR parameterized by k is FPT on planar graphs.

To obtain the positive result, we adapt the strategy used in the token jumping model
via domination cores to handle the case where the size of a forbidden minor is not too
large (namely K4 -minor-free graphs). However, while the proof is almost direct in the
token jumping variant whenever domination cores exist, the proof gets more technical
here as connectivity matters. Note that this method cannot be generalized much further
since we prove that TS-DSR is XL-complete for graphs of treewidth at most 12, and when
parameterized by k plus feedback vertex set number. However, it would be interesting to
understand the limit between tractability and intractability on H-minor free graphs.

Reconfiguration of connected dominating sets. Our proof techniques are actually strong
enough to be generalized further to the CONNECTED DOMINATING SET RECONFIGURATION
problem (CDSR). Recall that a dominating set D is a connected dominating set if the graph
induced by D is connected. Deciding whether a given graph contains a connected dominating
set of size at most k is known to be NP-complete [33] and W[2]-complete parameterized
by k [21].

TS-CDSR and TJ-CDSR, the corresponding reconfiguration variants, are known to be
PSPACE-complete (even on graphs of bounded pathwidth) and W[1]-hard parameterized by
k + ¢ [36, 10]. Moreover, TJ-CDSR parameterized by k + ¢ remains W[1]-hard even when
restricted to 5-degenerate graphs. On the positive side, TJ-CDSR parameterized by k is
known to be FPT on planar graphs [36].

TJ-CDSR parameterized by k has been conjectured to be FPT on every nowhere dense
class of graphs in several papers, see e.g. [18, 36]. In [36], the authors ask whether TJ-CDSR
and TS-CDSR parameterized by k are FPT on graphs of bounded pathwidth. We provide
a negative answer to all of the aforementioned questions. Our proof techniques can also
be adapted for other dominating set variants such as distance d dominating sets and total
dominating sets which have been studied in the literature.

Related work. Deciding whether a given graph contains an independent set of size at least
k is known to be NP-complete [33] and W[1]-complete parameterized by (solution size) k [21].

The INDEPENDENT SET RECONFIGURATION (ISR) problem is another central problem
that has been very widely studied under the combinatorial reconfiguration framework. Both
TJ-ISR and TS-ISR are known to be PSPACE-complete restricted to planar graphs of
bounded bandwidth [42; 41] and XL-complete when parameterized by the size of independent
sets k [10].

Similarly to TJ-DSR, the complexity of the token jumping variant, i.e., TJ-ISR, is rather
well understood. Indeed, Ito et al. [31] proved that TJ-ISR parameterized by k is FPT on
planar graphs. This result has been generalized to nowhere dense and degenerate classes
in [35, 1] and even to Ky 4-free graphs in [17]. The idea of these proofs is to follow a two-step
strategy. First, an “important” subset X of vertices of bounded size is identified. Second,
the remaining vertices are classified according to their neighborhood in X, and it is shown
that if some class is too large then it can be reduced.

Again, the situation becomes a lot less clear when we consider the token sliding model,
i.e., TS-ISR. For instance, while TJ-ISR is trivial on chordal graphs [32], TS-ISR is PSPACE-
complete on split graphs [9]. Lokshtanov and Mouawad [34] showed that, in bipartite graphs,
TJ-ISR is NP-complete while TS-ISR remains PSPACE-complete.
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Just like DSR, even after a decade of research, very little is known about the parameterized
complexity of ISR under the token sliding model. It was proved in [6] that T'S-ISR is FPT
on bipartite Cy-free graphs. The result was later generalized by Bartier et al. [8] on planar
graphs and graphs of bounded maximum degree and graphs of girth at least 5 [7]. One
can easily use the reduction rules introduced in [8] in order to prove that TS-ISR is FPT
parameterized by k plus the feedback vertex set number of the graph, which shows that the
behavior of TS-DSR and TS-ISR is very different on sparse graph classes.

2 Technical overview of our results

2.1 Tape Reconfiguration

Let ¥ be an alphabet. The elements of ¥ are called letters. A X-tape (or tape for short when
¥ is clear from context) is a graph where each vertex, called a cell, is labeled with a subset
of ¥, called its content. Moreover, each tape comes with two distinguished vertices, called
the start and end cell, respectively. We will move a token, called (read) head, on each tape.

Let T = {T%,...,T,} be a set of X-tapes. For i € [1,p],” let ¢; be a cell of T;, and
start; (vesp. end;) be the start (resp. end) cell of T;. We say that (c1,...,cp) forms a valid
configuration if the union of their contents is ¥. Let C' = (c1,...,¢p) and C" = (cy,. .., ¢;,)
be two valid configurations. We say that there is an elementary transformation (or a
(reconfiguration) step) between C' and C” if they differ on exactly one element, say the j-th,
and c;cj is an edge in 7.

TAPE RECONFIGURATION (TAPE-REC)

Input: An alphabet ¥ and a set 7 of Y-tapes, an initial and a final configuration Cy, C;.
Parameter: Size of the alphabet ¥ plus the number of X-tapes.

Output: Yes, if it is possible to transform the start configuration (i.e., (start, ..., start,))
into the end configuration (i.e., (end, ..., end)p)) via a sequence of elementary transformations
while keeping a valid configuration all along.

We argue in the full version of the paper that one can always assume the number of
Y-tapes is bounded by the size of the alphabet |Z|. Consequently, one can assume |X| to be
the parameter. The problem can be equivalently defined as follows. We are given a set of
p graphs, each with a read head positioned on one vertex. In one step, we are permitted
to slide a read head along an edge within any one of these graphs. Note that since we only

allow the movement of tokens along edges we can assume that these graphs are connected.

We will mostly show hardness results for this problem, and a natural question is about how
the structure of the input graphs affects its complexity. As it turns out, even the simplest
case — captured by the variant PATH-TAPE-REC, which requires all tapes to be paths whose
endpoints are the start and end cells — is already hard. In particular, we show the following:

» Theorem 4. TAPE-REC is XL-complete.

2.2 Consequences for TS-DSR (and TS-CDSR)

We prove that, for DSR, the results for TJ have not been generalized to TS for a good reason;
TS-DSR is hard even on very restricted graph classes. Namely, we show the following;:

7 [1,p] denotes the set of integers between 1 and p.
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» Theorem 5. T'S-DSR and TS-CDSR are PSPACE-complete and XL-complete paramet-
erized by k plus the feedback vertex set number, even restricted to T-degenerate graphs of
treewidth at most 12 and pathwidth at most 18.

Note that, as far as we know, this is the first “natural” reconfiguration problem which
becomes hard parameterized by k plus the feedback vertex set number of the graph. Very
few problems are hard for that parameter since allowing the feedback vertex set number to
be part of the parameter enables the use of very powerful algorithmic techniques (given the
simple structure of graphs having a feedback vertex set of bounded size).

With minor modifications to the reduction, we obtain the following slightly weaker result
for TJ-CDSR:

» Theorem 6. TJ-CDSR is PSPACE-complete and XL-complete when parameterized by k
plus the feedback vertex set number, even restricted to 5-degenerate graphs of treewidth at
most 13 and pathwidth at most 19.

Theorems 5 and 6 imply that both TS-DSR and TJ-CDSR are very hard problems, even
though the connectivity constraints are quite different in both; the latter is a global condition
on the dominating set while the former only wants to ensure local connectivity when moving
along edges. In addition, both problems are much harder than TJ-DSR which is known to
be FPT parameterized by k on nowhere dense, degenerate, biclique-free, and semi-ladder-free
graphs.

2.3 Positive results for TS-DSR

We complement our hardness results with positive ones. In particular, we show that TS-DSR
is FPT on planar graphs. We first prove that the following holds:

» Theorem 7. T'S-DSR parameterized by k is FPT on K3 q-free graphs.

As a by-product of Theorem 7, TS-DSR (parameterized by k) is FPT on planar graphs.
The proof technique is inspired from [31, 35] and consists in looking at neighborhood classes
in a domination core and proving that all these classes can be reduced to have bounded size.
It was proven in [23] that a domination core of size O(k?*!) exists (and can be efficiently
computed) even in Ky 4-free graphs (having a dominating set of size k).

» Theorem 8. T'S-DSR parameterized by k is FPT on K4 q-minor-free graphs.

To prove Theorem 8, we start as in the proof of Theorem 7. Although it can be seen as
rather incremental compared to the previous result, reducing neighborhood classes is actually
much trickier and requires more general arguments. In some steps of the proof we have to
use the fact that dominating the domination core ensures that the whole graph is dominated
to show that some subsets of vertices have to intersect with the dominating set (which in
turn permits reducing some large enough parts of the graph).

3 Hardness results roadmap

3.1 Synchronized version and width of tape reconfiguration problems

The goal of this section is to state our main hardness results and give outlines of their proofs.
In order to do so, we will need to define some auxiliary problems along the way, which we
also believe to be of independent interest.
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The first auxiliary problems we will need are synchronized versions of TAPE-REC and
PATH-TAPE-REC where we assume that all the read heads move at the same speed. We say
that a tape is r-numbered if each cell is labeled with some integer of [1, 7] (the same integer
possibly occurring on several cells), where the number of adjacent cells differs by at most 1
modulo r. A configuration is numbered with j if all the read heads are on a cell numbered
with j. The read heads are synchronized if, for every pair of tapes, the numbers of the cells
under their read heads differ by at most 1 modulo 7. In other words, if the read head in the
tape T is at a cell numbered ¢, then the read head in 7" is on a cell numbered with ¢ or ¢ -1
mod r. A transformation is synchronized if the read heads are synchronized at each step. A
configuration of a synchronized instance is valid if read heads on the synchronized tapes are
synchronized and the union of the contents of the reading heads is the whole alphabet.

The synchronized version of TAPE-REC is defined as follows:

SyNc-TAPE-REC

Input: An alphabet X, a set 7 of r-numbered tapes and two numbered configurations
Cs, Ch.

Parameter: 2|+ |T].

Output: Yes if and only if there exists a synchronized transformation from Cs to Cy.

We similarly define the restriction PATH-TAPE-REC when tapes are paths whose endpoints
are the start and end cells, and its synchronized version SYNC-PATH-TAPE-REC where, for
technical reasons, we assume that the start cells are all numbered with 1 and the numbering
is non-decreasing along each tape.

Observe that the synchronization makes the problem much simpler to solve in some
configurations. For instance, consider instances of PATH-TAPE-REC where cells of paths are
labeled with their position in the path. Then, one can easily upper bound the number of
valid configurations by 2!71 - n valid configurations (where n is the size of the longest tape).
In particular, the following holds:

» Remark 9. In the particular setting where cells of paths are labeled with their position in
the path, SYNC-PATH-TAPE-REC is FPT.

Note that we do not know if SYNC-PATH-TAPE-REC lies in P in that setting.

A more general problem. We will consider a harder problem whose flavor is close to PATH-
TAPE-REC, denoted by MULTI-TAPE-REC, and prove that this problem is W[x]-hard. The
idea consists in allowing to make choices to construct a valid instance of PATH-TAPE-REC by
selecting tapes among some tuples. More formally, we define the problem MULTI-TAPE-REC
as follows:

MULTI-TAPE-REC

Input: An alphabet ¥, k tuples 71, ..., 7% of path Z-tapes.

Parameter: k + |3

Output: Yes if and only if there exists i1, ..., such that {72 | 7 € [1,k]} is a positive
instance of PATH-TAPE-REC.

There is a trivial reduction from PATH-TAPE-REC to MULTI-TAPE-REC; by considering
an instance of MULTI-TAPE-REC where each tuple has size 1. More formally, {T1,...,T;} is
a positive instance of PATH-TAPE-REC if and only if the &k tuples (T1), ..., (T}) of size 1 form
a positive instance of MULTI-TAPE-REC. In other words, we have no choice on the tape to
choose in each tuple so we simply have an instance of PATH-TAPE-REC. We will later provide
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a reduction in the converse direction, proving that PATH-TAPE-REC and MULTI-TAPE-REC
have the same complexity. We define SYNC-MULTI-TAPE-REC as the synchronized version
of MULTI-TAPE-REC as we defined SYNC-TAPE-REC from TAPE-REC earlier.

Before stating our main results, let us first prove that SYNC-MULTI-TAPE-REC is hard.
We obtain much stronger hardness results later but this proof is interesting since it illustrates
the utility of having synchronized tapes to design hardness reductions with the following
very simple statement.

» Theorem 10. SyNC-MULTI-TAPE-REC is W[2]-hard even when |£| = 1.

3.2 Hardness results for tape reconfiguration

Width of tape reconfiguration instances. In the rest of this section we will need some
notions of width of a tape reconfiguration instance. Let I = (X, (T;);, Cs, Ct) be an instance
of TAPE-REC (or any other tape problem defined above such as MULTI-TAPE-REC or SYNC-
TAPE-REC), where ¥ is the alphabet and (7;); is a collection of tapes. The extended graph
of I is the graph with vertex set | J, V(T;) UX, and where zy is an edge if either it is an edge
of some T;, or z is a cell of some T; which contains the letter y.

We say that I is d-degenerate whenever its extended graph is d-degenerate. We similarly
define the notion of pathwidth, treewidth, and minors of an instance I; the pathwidth (resp.
treewidth) of I is the pathwidth (resp. treewidth) of its extended graph.

We say that a path (resp. tree) decomposition of the extended graph of T is s-structured if
each of its bags contains vertices of at most s tapes. The utility of structured decompositions
will appear naturally in future reductions. The minimum width of a s-structured path (resp.
tree) decomposition is called the s-structured pathwidth (resp. treewidth) of I.

Hardness results. The goal of this section is to give the main hardness results for TAPE-REC
and its variants. The first and one of our main results is the following:

» Theorem 11. TAPE-REC is PSPACE-complete and XL-complete even restricted to 5-
degenerate instances of 2-structured treewidth at most 9 and 3-structured pathwidth at most 14.

The proof of Theorem 11 is divided into two steps. The first one consists in proving
that the synchronized version of TAPE-REC, SYNC-TAPE-REC, is PSPACE-complete and
XL-complete. The reduction is from TJ-DSR. The proof generalizes the proof of Theorem 10.
Indeed, Theorem 10 shows first how to encode a choice of vertices by a choice of tapes, and
then translates checking that these vertices dominate the graph into moving read heads on
these tapes. We reuse these “checking paths” to prove Theorem 11, but now we have to
encode a way to reconfigure dominating sets. This can be done by arranging the checking
paths between some cells that correspond to vertices of G. By doing so, our tapes are not
paths anymore; they become subdivided stars. Moreover, in order to guarantee that we
reconfigure dominating sets one vertex at a time, we also need to add another tape. This
construction leads to the following statement which we prove in the full version of the paper:

» Theorem 12. SYNC-TAPE-REC is PSPACE-complete and XL-complete parameterized by k
plus the feedback vertex set number, even restricted to 3-degenerate instances of 1-structured
treewidth at most 3, 2-structured pathwidth at most 5, and whose tapes are subdivided stars.

The second step in the proof of Theorem 11 consists in providing a very generic reduction
from synchronized problems to their unsynchronized versions. This reduction allows us to
prove that synchronized and unsynchronized versions of each problem are actually equivalent
(up to small changes in the parameters and the structured width).
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To prove this, we add a new tape and new characters to X that force the read heads
to move at the same “speed” in all the tapes. The reduction also ensures that all the cells
are useful to cover the whole alphabet 3. Namely, we say that an instance (3,7, Cs, Cy) of
TAPE-REC is irreducible if ¥ cannot be written as the union of the contents of less than
|T| cells.

Formally, we show that the following holds, which directly implies Theorem 11, when
combined with Theorem 12.

» Theorem 13. There is an FPT-reduction (and PL-reduction) ® from instances of SYNC-
TAPE-REC to irreducible instances of TAPE-REC. Moreover, if I is an instance of SYNC-
TAPE-REC of s-structured treewidth (resp. pathwidth) w, then ®(I) has (s + 1)-structured
treewidth (resp. pathwidth) at most w + 3s + 3. Furthermore, ® increases the degeneracy by
at most 2 and the feedback vertex set number by at most 3|X| + 3.

Theorem 11 is a direct corollary of Theorems 12 and 13. Theorem 13 is proved in the full
version of the paper. We give two proofs of Theorem 13; one where one additional tape is
a long path and one where it is a triangle. The spirit of the two proofs is similar but each
construction allows us to reach a specific conclusion. For long paths, we guarantee that all
tapes are paths and thus obtain hardness results for PATH-TAPE-REC. However this path
reduction comes at a cost; the size of clique-minors and treewidth increase by a function of
the size of the alphabet, hence they become unbounded. We thus provide another reduction
where the additional tape is a triangle that permits to control widths and degeneracy. In
the end, the first reduction yields hardness results for T'S-DSR, parameterized by feedback
vertex set number, while the second handles the bounded widths and degeneracy cases.

3.3 Consequences for (C)DSR

Let us finally explain the consequences of the results from the previous subsections on
TS-DSR, TJ-CDSR, and TS-CDSR.

» Theorem 5. T'S-DSR and T'S-CDSR are PSPACE-complete and XL-complete paramet-
erized by k plus the feedback verter set number, even restricted to 7-degenerate graphs of
treewidth at most 12 and pathwidth at most 18.

The proof of Theorem 5 follows from the next lemma:

» Lemma 14. There is an FPT-reduction (and PL-reduction) from TAPE-REC on irreducible
d-degenerate instances of s-structured treewidth (resp. pathwidth) at most w with k tapes and
of feedback vertex set number f to TS-DSR and TS-CDSR with k + 1 tokens on graphs:
of treewidth (resp. pathwidth) at most s +w + 1 and degeneracy at most d + 2, or
of feedback vertex set number f + k + 1.

By Theorem 11, TAPE-REC is PSPACE-complete and XL-complete on 5-degenerate in-
stances of 2-structures treewidth at most 9 and 3-structured pathwidth at most 14. Moreover,
by Theorem 13, this remains true when the instances are additionally irreducible. Therefore,
applying Lemma 14, we can conclude the proof of Theorem 5.

Note that considering irreducible instances in the above proof allowed us to increase the
widths by at most w + 1. Without this assumption, a similar reduction works, but we need
to introduce a twin of each x;. This yields a reduction to possibly non-irreducible instances
of TAPE-REC with slightly worse bounds (adding 2w + 1 to the widths instead).

The reduction can also be modified to get hardness results for the parameterized (and
classical) complexity of TJ-CDSR, which solves open problems from the literature. Namely,
we adapt our reduction to show that TJ-CDSR is PSPACE-complete and XL-complete.
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» Theorem 6. T J-CDSR is PSPACE-complete and XL-complete when parameterized by k
plus the feedback vertex set number, even restricted to 5-degenerate graphs of treewidth at
most 13 and pathwidth at most 19.

3.4 Hardness of tape reconfiguration on paths

TAPE-REC is XL-complete even restricted to instances where tapes are trees (and even
subdivided stars). One can then naturally wonder if the same holds when tapes are simpler
graphs, for example paths. We did not succeed to obtain exactly the same hardness result
but nevertheless we prove that PATH-TAPE-REC is W[*]-hard. The W[2]-hardness is a
consequence of the synchronization result used to prove Theorem 13. This result is actually
quite generic and can be applied to all the problems defined before. In particular, we will get
the following for free from Theorem 10:

» Remark 15. MULTI-TAPE-REC is W[2]-hard.

Recall that there is a trivial reduction from PATH-TAPE-REC to MULTI-TAPE-REC.
Using another idea, called the selector gadgets, we can provide a reduction in the converse
direction, proving that PATH-TAPE-REC and MULTI-TAPE-REC have the same complexity.
More formally, we will prove that the following holds:

» Theorem 16. MULTI-TAPE-REC and PATH-TAPE-REC are equivalent under FPT-reductions.

As a byproduct, Theorems 10 and 16 ensure that PATH-TAPE-REC is W[2]-hard. We will
actually prove the following more general result (as sketched above):

» Theorem 17. MULTI-TAPE-REC (and consequently PATH-TAPE-REC) is W[x]-hard.

To prove Theorem 17, we will generalize the ideas of Theorem 10. In the proof of
Theorem 10, we gave a reduction from DOMINATING SET, which is a problem in W[2]. In
other words, it can be expressed with a logical sentence, whose variables correspond to the
vertices chosen in the dominating set, with the following shape:

AV o

u€V vEN[u]

that is a conjunction of disjunctions of literals. The reduction of Theorem 10 allowed us to
make a selection (by the definition of MULTI-TAPE-REC) and then check the conjunction of
conditions (one condition per cell), each of them corresponding to a disjunction (at least one
cell has to contain v').

The W-hierarchy can be generalized to higher levels; W[h] problems can be expressed in
the same way except that up to h nested boolean operators are allowed. Therefore, in order to
prove that MULTI-TAPE-REC is W[h]-hard, we build on this W[2]-hardness result and design
OR gadgets and AND gadgets allowing us to lift W[h + 1]-hardness from W[h]-hardness.
Note that this has to be done without adding too many characters nor additional tapes. The
details of the proof can be found in the full version of the paper.

We were not able to determine if the problem is XL-complete or not and leave as an open
problem the exact complexity of PATH-TAPE-REC.
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