Generalized Graph Packing Problems
Parameterized by Treewidth

Barig Can Esmer &
CISPA Helmholtz Center for Information Security, Saarbriicken, Germany
Saarbriicken Graduate School of Computer Science, Saarland Informatics Campus, Germany

Daniel Marx =
CISPA Helmholtz Center for Information Security, Saarbriicken, Germany

—— Abstract

H-PACKING is the problem of finding a maximum number of vertex-disjoint copies of H in a given
graph G. H-PARTITION is the special case of finding a set of vertex-disjoint copies that cover each
vertex of G exactly once. Our goal is to study these problems and some generalizations on bounded-

treewidth graphs. The case of H being a triangle is well understood: given a tree decomposition of G
having treewidth tw, the K3-Packing problem can be solved in time 2" - no(l), while Lokshtanov et
al. [ACM Transactions on Algorithms 2018] showed, under the Strong Exponential-Time Hypothesis
(SETH), that there is no (2 — €)' - n®D algorithm for any € > 0 even for K3-Partition. Similar
results can be obtained for any other clique K4 for d > 3. We provide generalizations in two
directions:
We consider a generalization of the problem where every vertex can be used at most ¢ times
for some ¢ > 1. When H is any clique K4 with d > 3, then we give upper and lower bounds
showing that the optimal running time increases to (¢ + 1)*" - n°® . We consider two variants
depending on whether a copy of H can be used multiple times in the packing.
If H is not a clique, then the dependence of the running time on treewidth may not be even
single exponential. Specifically, we show that if H is any fixed graph where not every 2-connected
component is a clique, then there is no 2°("1°8*) . O aleorithm for H-PARTITION, assuming
the Exponential-Time Hypothesis (ETH).

2012 ACM Subject Classification Theory of computation — Fixed parameter tractability

Keywords and phrases Graph Packing, Graph Partitioning, Parameterized Complexity, Treewidth,
Pathwidth, pw-SETH, Single-Exponential Lower Bound, Slightly Superexponential Lower Bound

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.3

Related Version Full Version: http://arxiv.org/abs/2509.06091

1 Introduction

Parameterized complexity theory has proven instrumental in systematically understanding
the computational complexity of various combinatorial problems under different parameteriz-
ations. Parameterization by treewidth implies tractability for a large number of fundamental
algorithmic problems. A prominent line of research has emerged around classifying the
complexity of classical NP-hard graph problems under this parameterization framework [8, 7].

In their influential work, Lokshtanov et al. [8] studied six classical combinatorial problems
for which parameterized algorithms are known where the running-time dependence on
treewidth is single exponential. They showed that, under Strong Exponential Time Hypothesis
(SETH), the running times are optimal in the base of the exponent. Following this work,
significant efforts have been devoted to generalizing and extending these results. In particular,
five out of six problems in [8] have been put into a wider context and generalized to an infinite
family of problems: ¢-Coloring was generalized into H-homomorphism problems [1, 10, 9],
Independent Set (equivalent to Vertex Cover), MaxCut and Odd Cycle Transversal [2] into
H-homomorphism deletion problem, and Dominating Set into general (o, p)-dominating
set problems [5]. Curticapean and Marx [3] showed tight lower bounds for the problem of
? Barig Can Esmer a.nd Déniel Mar)f;

37 icensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 3; pp. 3:1-3:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:baris-can.esmer@cispa.de
https://orcid.org/0000-0001-5694-1465
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
https://doi.org/10.4230/LIPIcs.ESA.2025.3
http://arxiv.org/abs/2509.06091
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

3:2

Generalized Graph Packing Problems Parameterized by Treewidth

counting perfect matchings, which was later extended into general factor problems. However,

from the initial six problems studied by Lokshtanov et al. [8], the triangle packing problem

has remained unaddressed by prior generalization efforts.

The 2t -n®™) running time for triangle packing stated in [8] is actually valid for any clique
packing problem, instead of triangle with just three vertices. In this paper, we investigate
further generalizations of the triangle packing problem. This line of research naturally gives
rise to two conceptually distinct directions:

1. Allowing vertices to be covered multiple times: The motivation for this general-
ization stems naturally from closely related problems such as fractional packing, where
vertices can inherently contribute fractionally or multiple times to different packings. To
illustrate, Figure 1.1 shows a graph that does not admit a triangle partition, yet allows a
collection of triangles that cover each vertex exactly twice. Motivated by this observation,
we formally define and explore a generalized packing problem, where each vertex of G
can be covered at most c¢ times, for any fixed integer ¢ > 1. Unlike ¢ = 1 case, this
generalization demands careful consideration of the definition, specifically on whether a
copy of H may appear multiple times in the solution.

2. Considering packings of arbitrary graphs: The second natural direction involves
generalizing triangle packing by replacing triangles with an arbitrary fixed graph H. This
problem has already been studied in the literature under the name of H-partition in [6].
Specifically, in [6] the authors prove the NP-Hardness of the H-partition problem where
H has a connected component with at least three vertices. In this paper we let H be a
connected graph with at least three vertices and study the complexity of the H-partition
problem parameterized by treewidth.

(a) The graph under consideration. (b) Each color represents a triangle in the collection.
Observe that each vertex is covered exactly twice.

Figure 1.1 A graph that does not admit a triangle partition, but allows a collection of triangles
such that each vertex is covered exactly twice.

1.1 Our Results

Let H be a fixed graph and ¢ > 1 be an integer. Given a graph G, a subgraph Z of G is
called a copy of H if Z is isomorphic to H. Moreover, if Z is a copy of H in GG, we say that
Z covers v if v € V(Z).

» Definition 1. We say that a multiset (respectively, set) S = {(Vl,El), ceey (Vk, Ek)} of
subgraphs of G is a (c, H)-multi-packing (respectively, (c, H) -single-packing) in G if

1. each (V;, E;) is isomorphic to H for 1 <i <k

2. each vertex v of G is covered at most ¢ times by the subgraphs in S.

The collection S is called a (c, H) -multi-partition (respectively, (c, H) -single-partition) of G
if each vertex v € V(Q) is covered exactly ¢ times.

B. Can Esmer and D. Marx

Observe that when c is equal to 1, two copies of H are not allowed to have any common
vertices. Therefore, in this case, the notions of (¢, H) -single-packing and (07 H)—multi—packing
coincide, and we write H-packing to simpify the notation. We define H-partition in a similar
way. The first problem we introduce, Generalized Graph Packing(H), asks the maximum
size of an H-packing in G.

Generalized Graph Packing(H)
Input: A graph G
Output: The size of a largest H-packing in G.

For a fixed H, we show that Generalized Graph Packing(H) can be solved in time
20(w~logw) .

n®M for graphs of treewidth w.

» Theorem 2. Let H be an arbitrary graph such that it contains at least 8 vertices. Then,
Generalized Graph Packing(H) can be solved in time 2°(w108(w) . nOW) for 4l n-vertex
graphs G where w is the treewidth of G.

Then, we define partitioning problems in which each vertex of G must be covered the
same number of times. For an arbitrary graph H, we let ¢ = 1 which results in vertex disjoint
copies of H.

Generalized Graph Partitioning(H)
Input: A graph G
Question: Is there an H-packing of G such that each vertex is covered exactly once?

Observe that Generalized Graph Partitioning(H) is a special case of the problem
Generalized Graph Packing(H), which implies an algorithm with running time 2°(®1ogw).
n®® for the Generalized Graph Partitioning(H) problem on graphs of treewidth w. We
show that this running time cannot be improved for many choices of H.

» Theorem 3. Let H be an arbitrary graph with at least 8 vertices such that H is not a block
graph. Then, there is no algorithm for Generalized Graph Partitioning(H) problem, that
solves all instances G in time 2000108 w) . nOW) where w is the treewidth of G, unless ETH
fails.

When H is a clique, we consider the more general problem in which a vertex v € V(G)
can be covered more than once, at most ¢ times for some ¢ > 1. Therefore, we distinguish
between two variants of the problem: one where each clique can be selected at most once, and
another without restriction. The Multi-Clique Packing(c,d) problem asks the maximum
size of a (07 Kd)—multi-packing in G.

Multi-Clique Packing(c,d)
Input: A graph G
Output: The size of a largest (c, Kd)—multi—packing in G.

Similar to the Multi-Clique Packing(c,d) problem, the Single-Clique Packing(c,d)
problem asks the maximum size of a (¢, K;) -single-packing in G.

Single-Clique Packing(c,d)
Input: A graph G
Output: The size of a largest (¢, K) -single-packing in G.

3:3

ESA 2025

3:4

Generalized Graph Packing Problems Parameterized by Treewidth

In the full version of the paper we show that Single-Clique Packing(c,d) admits
a single-exponential time algorithm where the same algorithmic result also applies to
Multi-Clique Packing(c,d) with slight modifications.

» Theorem 4. Let ¢ > 1 and d > 3 be integers. Then, Single-Clique Packing(c,d) can be
solved in time (c+1)* -nPW) for all n-vertex graphs G given together with a tree decomposition
of width at most w.

Moreover, we define partitioning problems where H is a clique.

Multi-Clique Partitioning(c,d)
Input: A graph G
Question: Is there a (c, Kd)—multi—partition of G7

Single-Clique Partitioning(c,d)
Input: A graph G
Question: Is there a (c, K,) -single-partition of G?7

Similarly, we prove that this running time is optimal up to polynomial factors in the size
of the input graph.

» Theorem 5. Let ¢ > 1 and d > 3 be integers. If there exists an € > 0 such that

w

Multi-Clique Partitioning(c,d) can be solved in time (c+1—¢)” -n®M) for all n-vertex
graphs G given together with a path decomposition of width at most w, then the pw-SETH

fails.
Finally, we show that the lower bound result in Theorem 5 can also be transferred similarly.

» Theorem 6. Let ¢ > 1 and d > 3 be integers. If there exists an € > 0 such that
Single-Clique Partitioning(c,d) can be solved in time (c+1—¢&)* -n®W) for all n-vertex
graphs G given together with a path decomposition of width at most w, then the pw-SETH
fails.

2 Technical Overview

In this section, we will give an overview of the techniques and ideas presented in the paper.

2.1 Preliminaries

A graph H is k-connected if for each A C V/(H) such that |A| = k — 1 it holds that H \ A is
connected. A graph is also called biconnected if it is 2-connected, and a block is a maximal
2-connected component of H. Similarly, a graph H is called a block graph if every block of
H is a clique.

A vertex v of a connected graph H is a cutvertex if G \ v is disconnected. In this
paper, we refer to both the blocks of a graph and the nodes of the corresponding block
tree interchangeably, with a slight abuse of notation. While formally distinct, we find it
convenient to treat them as equivalent entities for the sake of clarity and brevity. For a
vertex h € V(H) and a block B € By , we write h € B if h € V(B).

B. Can Esmer and D. Marx

» Definition 7. For a function f and a set X, we let f|x denote the restriction of f to
X Nndom (f). Similarly, we let f|_ denote the restriction of f to dom (f)\ X. Finally, for
v € dom (f) and a value y, we let [lv—y) denote a function g which is defined as

| f(z) ifredom(f),
g(x) = :
Y ifx =w.

We use the Iverson bracket [P], which is defined to be 1 if the proposition P is true and
0 otherwise.

2.2 Gadgets

In this paper, we derive our lower bounds via reductions from well-studied base problems
whose intractability is established under standard complexity hypotheses. Each reduction
makes use of compact, purpose-built gadgets — small graphs whose behavior can be precisely
engineered. Embedding these gadgets into our constructions yields intuitive, transparent
proofs that highlight the underlying ideas without excessive technical overhead.

More formally, we define a gadget G as a graph with designated portal vertices
{p1,...,p¢e} C V(G), where the vertices int (G) := (G \ {p1,...,p¢}) are called internal
vertices. We say that a graph F is an extension of a gadget G if E contains G as an induced
subgraph, where each internal vertex v of G satisfies

Ne(v) C V(G).

In other words, in an extension F, only the portal vertices of G can have neighbors outside
of G.

D1
D2

b3
G E\G

DPe—1

Pe

Figure 2.1 Tllustration of an extension of gadget G with £ portal vertices: the blue region on the
left highlights G along with its portals, while the rectangle on the right depicts the remainder F \ G.

We also require gadgets to behave in a structured way. Whenever a copy of H intersects
the gadget, it must lie entirely within the gadget when connected to a larger graph. We
formalize this in the following definition.

» Definition 8. Let G be a gadget and Pg be the set of its portal vertices. For a graph
H and ¢ > 1, we say that G is (¢, H)-internally coherent if, for any extension E of G and
any (c, H) -multi-partition / (¢, H) -single-partition Z of E, the following holds: If there
exrists Z € Z that contains an internal vertex of G, then all vertices in Z must belong to G.
Formally,

(V)N (V&) \ Pe)) #0 = V(Z) S V(G).

3:5

ESA 2025

3:6

Generalized Graph Packing Problems Parameterized by Treewidth

Next, we define the relation realized by a gadget.

» Definition 9. Let H be a graph, ¢ > 1 and G be a gadget with portal vertices Pg =
{p1,...,pe}. We say G dist-(c, H)-realizes (respectively, arb-(c, H)-realizes) a relation R C
{0, ..., ¢} if the following holds:

r € R <= There exists a (¢, H) -single-packing (respectively, (c, H) -multi-packing) Z of G
such that Z covers each internal verter of G exactly c times, and each portal
vertex p; exactly r; times for 1 <i < /L.

We say that G strict-(c, H)-realizes R if it both dist-(c, H) and arb-(c, H)-realizes R.

» Remark 10. When ¢ = 1, the notions of dist-(c, H)-realization and arb-(c, H)-realization
coincide. In this case, we simply say that the relation R is H-realized by G, instead of using
the term “strict-(1, H)”.

We say a relation R C {0,...,c}" is (z,d)-regular for d > 1 and 0 < 2 < d — 1 if for each
r € R, the weight of r is equivalent to z mod d, i.e. w(r) = (Zie[l] r,;) = z mod d.

Moreover, a relation R has weight X if (maxre R w('r)) = X. Recall that a gadget is a small,
engineered graph used to enforce specific behaviors in a reduction. We streamline the lower
bound constructions by building general-purpose gadgets that can realize any relation. The
descriptions of the gadgets are deferred to the full version of the paper. This way, we avoid
repetitive constructions and keep the focus on the core ideas.

» Lemma 11. Let H be an arbitrary graph, £ > 1 be an integer and R C {0,1}* be
a relation that is (x,|H|)-regular for some 0 < x < |H| — 1. Then, there exists a
(1, H)-internally coherent gadget G that H-realizes the relation R and the size of G is
bounded by some function of £. Moreover, for relations with constant weight, it holds that

pw(G) = O (0).

When ¢ > 1, we require the relation to have more structure, i.e., the relation should
be (0,|H|)-regular. However, this restriction can be easily handled in our lower bound
constructions.

» Lemma 12. Let ¢ > 1, H be a clique, { > 1 be a constant and R C {0,...,c}* be
a (0, |H|)-regular relation. Then, there exists a (¢, H)-internally coherent gadget G that
strict-(c, H)-realizes the relation R. Moreover, the size of G is bounded by some function of

L.

2.3 Single-Exponential Lower Bound

In this section, we give an overview of how the above-described gadgets are used to prove
Theorem 6. Classically, when proving conditional lower bounds based on SETH, one needs to
find a reduction from SAT. However, this usually involves carrying out repetitive, unnecessary
work that is not specific to the problem one is working on. One of the strengths of the
framework introduced by Lampis [7] is removing the need for such repetitive constructions.

The primal graph of a CSP instance 1 is a graph G that has a vertex for each variable
of ¢, and there is an edge between x,y € V(G) if x and y appear together in a constraint.
The pathwidth of the CSP instance 1 is defined to be the pathwidth of its primal graph.
Similarly, by path decomposition of 1, we mean a path decomposition of the primal graph of
1. The following lemma from [7] implies that we can assume the path decomposition to be
nice.

B. Can Esmer and D. Marx

» Lemma 13 (Lemma 2.1 in [7], restated for CSPs). There is a linear-time algorithm that takes
as input a CSP formula 1 with n variables and m constraints and a path decomposition of
its primal graph of width p and outputs a nice path decomposition By, ..., B of ¥ containing
at mostt = O (p-m) bags, as well as an injective function b from the set of constraints of v
to [t] such that for each constraint c, By contains all the variables of c.

The following conjecture from [7], called pw-SETH, will form the basis of our hardness
results.

» Conjecture 14 (Conjecture 1.1 from [7].). For all € > 0 we have the following: there
exists no algorithm which takes as input a 3 — SAT instance ¢ on n variables and a path

decomposition of its primal graph of width pw and correctly decides if ¢ is satisfiable in time
(2 — PO

Moreover, we have the following result from [7], which proves the equivalence of falsifying
pw-SETH and finding a faster algorithm for 2-CSP.

» Theorem 15 (Theorem 3.2 from [7], shortened). For each B > 3 the following statements
are equivalent:

1. The pw-SETH is false.
2. There exist € > 0,b > 0 and an algorithm that takes as input a 2-CSP instance 1 on

alphabet [B], together with a path decomposition of 1, and decides if 1 is satisfiable in
time (B — €)P¥ - [1)]°.

e e e e
e e e e
e e e e
e e e e
e e e e
e e e e

Figure 2.2 A high-level description of the lower bound construction used to prove Theorem 5.

The coverage counts of all vertices in a column represent an assignment to the variables of the 2-CSP
instance. The rectangles depict the gadgets that enforce the constraints; observe that they interact
locally with the vertices, which allows us to bound the pathwidth of the constructed instance.

Motivated by Theorem 15, Section 3 presents a reduction from the 2-CSP problem to the
Single-Clique Partitioning(c,d) problem. The core idea is to encode each variable’s B
possible assignments using a set of vertices whose coverage count in a (¢, Ky) -single-packing
represents the chosen value. We then introduce gadgets each enforcing a single constraint

3:7

ESA 2025

3:8

Generalized Graph Packing Problems Parameterized by Treewidth

of the 2-CSP instance via carefully specified relations so that only coverage patterns cor-
responding to satisfying assignments are possible. By designing these gadgets to interact
locally, we ensure the pathwidth of the resulting instance increases by at most a constant,
completing the reduction.

2.4 Slightly Superexponential Lower Bound

We now give a high-level description of the proof of Theorem 3. Let H be a graph with
at least 3 vertices that is not a block graph. Next, we will describe the lower bound for
the Generalized Graph Partitioning(H) problem which is stated in Theorem 3. Recall
that Generalized Graph Partitioning(H) is solvable in slightly super-exponential time
for any fixed graph H, i.e., there is an algorithm with running time O* (QO(t“"IOg““)).l
We show that this running time is optimal under ETH, i.e. there exists no algorithm for
Generalized Graph Partitioning(H) with running time O* (20(twlee(tw)) To that end,
we use an auxiliary problem for which such a lower bound was presented in [4]. Specifically,
we define the k X k¥ PERMUTATION INDEPENDENT SET problem where given a graph G on a
vertex set [k] x [k], we ask whether there exists an independent set X in G that contains
exactly one vertex from each row and each column.

k x k PERMUTATION INDEPENDENT SET

Input: A graph G on the vertex set [k] x [k]

Question: Is there an independent set X of G such that X induces a permutation on
[k] x [K]?

The following hardness result was presented for the analogous
k x k PERMUTATION CLIQUE problem in [4] which translates easily to
k X k PERMUTATION INDEPENDENT SET. Below we state it for k x
k PERMUTATION INDEPENDENT SET.

» Theorem 16 (Theorem 14.14 in [4]). Unless ETH fails, k X
k PERMUTATION INDEPENDENT SET cannot be solved in time 2°(F1ogk)

To prove Theorem 3, we reduce the k x k PERMUTATION INDEPENDENT SET problem
to Generalized Graph Partitioning(H). The construction relies on structural properties
of H. Let B be a block in H with a minimum separator S such that B\ S has at least
two connected components. Since H contains a non-clique block, such B and S exist. We
partition S into two subsets, U and D, and create k copies of each. The construction
in the proof of Theorem 3 ensures that any |H|-packing includes k copies of H, each
covering exactly one copy of U and one of D. This yields k! = 20(102k) configurations,
corresponding to all permutations of a set of size k. Additionally, for each edge e in the
k x k PERMUTATION INDEPENDENT SET instance, we introduce a gadget to prevent e from
being included in the set of vertices induced by this permutation. Moreover, these gadgets are
designed to preserve pathwidth by interacting only locally. The detailed proof of Theorem 3
is deferred to the full version of the paper.

L The O*(f(k)) notation suppresses polynomial factors in the input size n; that is, O*(f(k)) = O(f(k)-n°)
for some constant c.

B. Can Esmer and D. Marx

2.5 Algorithmic Results

Recall that a tree decomposition of a graph G = (V, E) is a pair (T, {X¢}ter), where T is a
tree whose every node ¢ is assigned a bag X; C V(G), satisfying the following properties:
1. For every vertex v € V, there exists at least one bag X; such that v € X;.

2. For every edge (u,v) € E, there exists a bag X; such that {u,v} C X;.

3. For every vertex v € V, the set of nodes {t € V(T') | v € X;} induces a connected subtree

of T.

The width of a tree decomposition is the size of its largest bag minus one, and the treewidth of
G is the minimum width over all possible tree decompositions of G. A nice tree decomposition
is a rooted tree decomposition in which each node is one of the four types: leaf, introduce,
forget or join. We refer the reader to [4] for more details.

The algorithmic results in Theorems 2 and 4 follow a fairly standard dynamic programming
framework over tree decompositions. We define a suitable set of states for each bag in the
decomposition, capturing the essential information needed to extend partial solutions. The
main challenge of the approach lies in carefully designing these states and proving the
correctness of the update rules that determine how states transition from one bag to the
next. Usually what determines the running time is the state representation and transitions
to the specific structural constraints of our problem.

In particular, the single-exponential algorithm for the Single-Clique Packing(c,d)
problem defines the state of a bag based on how many times each vertex in the bag is covered
by a partial solution. This yields (c 4+ 1)¢ states for a bag of size £, naturally leading to a
running time of (¢ + 1)* - n®W,

In contrast, the slightly superexponential algorithm for the
Generalized Graph Packing(H) problem requires keeping track of a partition of
the bag, in which each part corresponds to a partial copy of H. This results in O(¢) possible
states for a bag of size ¢, leading to an overall running time of 20(twlogtw) . ,O) = The
algorithms are presented in detail in the full version of the paper.

3 Lower Bounds for Clique Partitioning Problems

In this section we prove Theorems 5 and 6. Theorem 15 says that in order to prove a
conditional lower bound based on pw-SETH, one can start the reduction from the 2-
CSP problem. In the following, we will present a reduction from the 2-CSP problem to
the Multi-Clique Partitioning(c,d). Subsequently, we will describe another reduction
from Multi-Clique Partitioning(c,d) to Single-Clique Partitioning(c,d) problem,
and prove Theorems 5 and 6.

3.1 Lower Bounds

We first prove Theorem 5. To that end, intuitively, we show that a fast algorithm for the
Multi-Clique Partitioning(c,d) problem implies a fast algorithm for the 2-CSP problem.

» Lemma 17. Let ¢ > 1 and d > 3 be integers. Suppose there exists an € > 0 such that
Multi-Clique Partitioning(c,d) can be solved in time (c + 1 — &)PW(&) . nOW) for all
n-vertex graphs G given together with a path decomposition of width at most pw(G). Then,
there exist €, > 0, an integer B > 1 and an algorithm that takes as input a 2-CSP instance
¥ on alphabet [B], together with a path decomposition of v, and decides if 1 is satisfiable in
time (B — €')PV - ||,

3:9

ESA 2025

3:10

Generalized Graph Packing Problems Parameterized by Treewidth

Proof. Let ¢, b be as in the lemma statement and let 4 be the hypothetical algorithm for
Multi-Clique Partitioning(c,d). Moreover, we let H denote the clique K, and let ¢ be
the smallest integer that is a multiple of |H| such that

(L—e)-[H| < - (¢~ |H]). (3.1)

Observe that ¢ is a constant that only depends on € and H.

Let B = (c+ 1)5_‘H| and ¢ = 5. We will now present a reduction from 2-CSP with
alphabet size B to Multi-Clique Partitioning(c,d). The idea is as follows: in order to
make use of regular relations, we will represent each variable of the 2-CSP instance by ¢
vertices. Note that each of the ¢ vertices can be covered between 0 and ¢ times, which can
be thought of as the state of a vertex. In total, £ vertices combined give rise to (c + 1)*
states. These states can also be visualized as vectors r € {0,...,c}*. Next, we consider the
following subset of vectors

Z={zxe(c+1)|wx)=0 mod H|}.

Observe that we have |Z| > (c + 1)* 1l = B, because we can append to each vector in
" €{0,...,c}* 1"l at most |H| many 1’s so that the new vector r € {0,...,c}¢ constructed
this way satisfies w(r) =0 mod |H|. Hence there exists an injective map ®: [B] — Z where
we define W := im (®). We use the set W to simulate B many assignments to a variable of
the 2-CSP instance. Observe that W, as a relation, is (0, |H|)-regular.

Construction of the Multi-Clique Partitioning(c,d) instance. Let ¢ be a 2-CSP
instance with variables z1,...,x,, contraints Ci,...,C,, and alphabet [D]. Let P =
(B1,...,B:) be a nice path decomposition of width p. Finally, let b: [m] — [t] be a function
that maps each constraint C; of ¢ to a bag such that By(;) contains the variables occurring
in C;. We will construct an instance of the Multi-Clique Partitioning(c,d) problem as
follows:

1. For each 1 < i < n, define I(i) € [t] to be the smallest integer such that x; € By.
Similarly, let r(i) be the largest integer such that x; € B,(;. For each i € [n] and
(i) < j <r(i) + 1, introduce £ vertices {a7”,...,a;”}.

2. Define the relation

W€ := Compl, (W).

Observe that W is (0, |H|)-regular by construction. The same also holds for W, because
for each x € W¢ such that z = Compl, (s) for s € W, we have

w(x) = (ﬁocfw(s)) =0 mod |H|,

where the last equivalence holds because ¢ and w(s) are both equivalent to 0 mod |H]|. In-
troduce two gadgets L’ and R’ that arb-(c, H)-realize the relation W¢ and W, respectively,

which exist by Lemma 12. Then, identify the portal vertices of L with (ai’l(i), cey aé’l(i)),
and similarly, identify the portal vertices of R’ with the vertices {all’r(l)ﬂ, . ,aZ’T(l)H}.

3. Let j € [t]. We say that j represents s for s € [m] if b(s) = j. In that case, we define S}
to be the relation, and 7; and i5 to be the indices of the variables associated with the
constraint C's. We define the new relation

R; = {@(ul) ® ®(uz) ® Compl, (®(u1)) ® Compl, (P(uz))

(u1,us2) eSj}.

B. Can Esmer and D. Marx

Observe that R; is (0, |H|)-regular because for each « € R; we have
w(x)=(2-£-¢)=0 mod |H|

since ¢ is a multiple of |H|. Hence, we can introduce a gadget]\fijl)i2

by Lemma 12 that

arb-(c, H)-realizes R;. Then, we identify the portal vertices of Nij with the vertices

1,82

(ail’j, e ,azl’j> O] (a?"’j, e azz’j)(D (alf’jJrl, e ,azl’j+1> ©) (alf’jJrl, . ,az"”j+1) . (3.2)
Next, we define the relation COPY C {0, ...,c}?* where

COPY := {u ® Compl, (u) | u € W} (3.3)

and let

I {i1,12} if j represents s,
R) otherwise.

Observe that COPY is (0, |H|)-regular because for each x € COPY we have
w(x)=¢-c=0 mod |H|.

By Lemma 12, there exists a gadget that arb-(c, H)-realizes COPY. Next, for each
i € ([n] \T;) such that I(i) < j < r(i), we introduce a gadget F] that arb-(c, H)-realizes
the relation COPY and identifies the portal vertices of F} with

1,7 i,J 4,541 1,541
<a17...,ae>®(a1 sy Oy) (3.4)

Finally, for each i € [n] and j € [t] such that I(i) < j < r(i), we define the gadget that
covers ¢ at step j as
1,12

Kj =

3

{Nj if j represents s € [m] and 7 € {i1,i2}

F} otherwise.

This is the whole construction of the Multi-Clique Partitioning(c,d) instance which we
call G.

Equivalence of the instances. We now prove that v is satisfiable if and only if G admits a
(¢, K4)-multi-partition, by establishing each direction separately.

Suppose that there exists an assignment («g,...,ay) to (z1,...,2,) such that ¥ is
satisfied. In the following, we will describe a (c, Kd)—multi—partition K of G. For each
i € [n], define a; = ®(a;) € W. Now let j € [t]. Observe that since a;, € W for each
i € [n], it holds that there exists a (c, Kd)—multi—packing of L that covers (ai’l(i), e az’l(i))
according to Compl, (ai). Moreover, there exists a (c, Kd)—multi—packing of R’ that covers
(ail’r(i)ﬂ, . ,az’l(i)ﬂ) according to a;. In both cases, the internal vertices of the gadgets are
covered exactly ¢ times.

Now let j € [t]. For all i € ([n] \ T;), there exists a (c, K4)-multi-packing of F/ that
covers

,J i,J i,j+1 i,j+1
<a1,...,a€)®(a1)) (3.5)

3:11

ESA 2025

3:12

Generalized Graph Packing Problems Parameterized by Treewidth

according to a; ® Compl, (ai), because a; € W. Moreover, if j represents s for some s € [m)],
and x;,,x;, are the variables corresponding to Cs, then there exists a (c, Kd)—multi—packing
that covers

. it it it
(ai”,...ﬂé”)@(all“,...,azﬂ)@(alllﬁ'7...,a2”+)®<a§“+,...,a?ﬁ')(3.6)

according to a;, ® a;, ® Compl,(a;,) ® Compl,(a;,). Again, in both cases, the internal
vertices of the gadgets are covered exactly ¢ times. Next, we prove that the remaining vertices
are covered c times as well.

> Claim 18. It holds that for each i € [n], j € [t] such that [(i) < j <r(i) + 1 and z € [{],
aly is covered exactly c times by K.

Proof. We prove the claim by induction on j. Let j = 1, i € [n] and suppose that (i) <
j < r()+1. Since 1 < () < j = 1, we have that {(i) = 1 = j. Consider the vertices
(a’fl, cee aé’l), which are covered according to Compl, (ai) by L*. Moreover, (ai’l, e aé’l)
is covered according to a; by K} which follows from (3.5) or (3.6), depending on whether
i € T'1 or not, respectively. All in all, a’! is covered exactly ¢ times for x € [(].

Now suppose that the claim holds for 1 < j < ¢, and we will prove the claim for j + 1.
Let ¢ € [n] such that I(i) < j4+1 < (i) + 1. Consider the vertices (ai’”l, e ,aé’jﬂ), which

are covered according to Compl,(a;) by Kf . This follows from (3.5) and (3.6). Now, observe
that we have either j < r(i) or j = r(i). In both cases, by using the arguments in the

j =1 case, one can conclude that (a’l’jﬂ, . ,aE’JJrl) is covered according to a; by KT

Therefore, all in all, it holds that each vertex a’’ is covered exactly c times for x € [¢(]. <

Now for the reverse implication, suppose that G has a (c, Kd)—multi—partition. Since each
gadget used in the construction of G is (¢, Kg)-internally coherent, this implies that for each
gadget there is a (c, K d)—multi—packing that covers its interval vertices exactly ¢ times, and
its portal vertices according to the relation associated with it. In particular, for each i € [n],
let b; € WC denote the vector such that L covers the vertices {ai’l(i), e aé’l(i)} according
to bz

By induction, one can show that for each j € [t] and 7 € [n] such that I(7) < j < r(7), the
tuple (ai’j Yo ,aé’j) is covered by K f according to z; where z; = Compl, (bl) Hence, we let
a; = ® ! (z;) € B. Next, we will prove that A := (ay,...,q,) is a satisfying assignment for
1. To that end, let s € [m] and j = b(s). To show that Cj is satisfied by A, let z;, and =z,
be the variables associated with Cs. By the above discussion, we know that (aif J ey a?’l>

and (alf’j . ,a?’j) is covered according to z;, and z;,, respectively. By the definition of
Rj, a;;, = ®7!(z;,) and a;, = ®71(2;,) satisfy Cs. Therefore, the assignment A satisfies all
constraints of ¥, and v is satisfied if and only if G has a (c, Kd)—multi—partition.

Pathwidth and size of the constructed instance. To bound the pathwidth of G, we will
create a path decomposition by following {B;},cy. Specifically, for each j € [t], we first

create a new path decomposition X = (X1,...,X;) where each X is a copy of B; and we
replace each z; € B with the vertices a}”,...,a;”. Note that the size of each X; is at most
p- L for j € [t].

In the following, we will add the remaining vertices of G to the bags in X such that X is
a valid path decomposition of G. Let j € [t]. For each i € [n] \ T'; such that (i) < j < r(3),
we replace the vertices {a%’},cp with {a%/ 1}, ¢ as follows. After the bag X; ,we first

insert the bag Xj; := (Xj uv (Ff)>, and then add another bag X,

, Where we replace

B. Can Esmer and D. Marx

{al7}oeig in X, with {a} ™' },¢}q, and finally, another bag X]N; where we remove the
vertices V (F ZJ) from X J”z For a fixed j € [t], we keep adding the bags iteratively for each
i € [n]\T'; such that [(i) < j < r(7), until all vertices in all the gadgets are contained in the
bag decomposition. Note that, by our construction, edges that are adjacent to a vertex in
F} are also covered by either X jior X]”Z

Finally, for each s € [m] and j = b(s), we add the gadgets Nij1 ;, to the tree decomposition

32

in a similar way. Since the size of each Nz'jl,¢2 and FZJ is a function of ¢, it is bounded by a
constant. All in all, the pathwidth of GG increases at most by a constant. We have

pw(G)=1-p+0O(1).

Finally, since ¢ and m are bounded by a polynomial of n, it follows from the construction
that

V(G) =n°W,

Running Time. Constructing the graph G from 1 takes time polynomial in n. By our
assumption on A, the whole reduction takes time

(c+1)1=PWE) . 1/(G) = (¢ + 1)) b . 00
= (c+ 1) EHDp (g)= Hlp pO)
= BU=9)P . (¢4 1)) HIP . nO0)
< BU=9P . (¢4 1)5EHDP . 00

_ g-9)p . giv . ,00)
— B(lfe’)p . |w|b'
where the inequality follows from (3.1) and b’ is a constant. <

The proof of Theorem 5 follows from Theorem 15 and Lemma 17. We note
here that the same construction can be used to prove Theorem 6, because the
gadgets used in Lemma 17 strict-(c, Kg)-realize their relations (see Definition 9
and Lemma 12). However, by presenting a simple reduction, we demonstrate that
a fast algorithm for Single-Clique Partitioning(c,d) implies a fast algorithm for
Multi-Clique Partitioning(c,d), which is used to prove Theorem 6 in a more formal
way.

» Lemma 19. Let ¢ > 1 and d > 3 be integers. Suppose there exists an € > 0 such that
Single-Clique Partitioning(c,d) can be solved in time (c+ 1 — £)PW(G) . nO®0) for all
n-vertex graphs G given together with a path decomposition of width at most pw(G). Then,
there exist € > 0 and b/ > 0 such that Multi-Clique Partitioning(c,d) can be solved in
time (c+1— 5’)pW(G) n? for all n-vertex graphs G given together with a path decomposition
of width at most pw(QG).

Proof. Let € and b be as in the statement of the lemma. Moreover, let A be the hypothetical
algorithm for Single-Clique Partitioning(c,d).

Construction of the Single-Clique Partitioning(c, d) instance. Let G be an instance of
Multi-Clique Partitioning(c,d). Moreover, we let H denote the clique Ky and construct
a Single-Clique Partitioning(c,d) instance G’ as follows. Let G’ have the same vertex
set as G. We call these vertices the original vertices of G’. Moreover, for each clique X in G
of size d, we add a gadget Ex that dist-(c, H)-realizes the relation EQS)’C]. We identify the
portal vertices of Ex with V(X). This is the whole construction.

3:13

ESA 2025

3:14

Generalized Graph Packing Problems Parameterized by Treewidth

Equivalence of Instances. We will now prove that G admits a (¢, K4)-multi-partition if
and only if G’ admits a (¢, K,) -single-partition.

Suppose that G has a (c, Kd)—multi—partition which is denoted by Z. For each clique X in
G, let a, denote the number of occurences of X in Z. We construct a (¢, Ky)-single-partition
K for G’ as follows. For each clique X in G, consider a (¢, K) -single-packing of Ex such that
the portal vertices of Ex are covered ax times. Add this (¢, Kg4)-single-packing to K. Since
the gadgets are disjoint, the copies of K are also disjoint. The internal vertices of the gadgets
are covered exactly ¢ times. Moreover, the original vertices of G’ are also covered ¢ times,
since each equality gadget simulates a clique. Hence K is a valid (¢, K4) -single-partition and
therefore G’ is a yes instance.

Now suppose that G’ has a (¢, K4)-single-partition /. Then, for each clique X in
G, let ax denote the number of times Ex covers its portal vertices. We construct a
(c, Kd)—multi—packing Z by including each X exactly ax times in Z. Moreover, Z covers
each vertex exactly ¢ times, hence it is a valid (c, Kd)—multi—partition. Therefore, G is a
yes-instance.

Running Time. First, we show that the pathwidth of G’ is p + O(1). Take the path
decomposition of G and for each clique X, let Bx denote the bag that contains the vertices
of X. Note that since X is a clique, there exists such a bag. Moreover, we may assume each
bag By is unique for each clique X, duplicating bags if necessary. Then, we simply add the
vertices of Fx to the bag By, increasing its size at most by a constant. Therefore, we get a
new path decomposition for G’ where the size of a bag is at most p + O (1). Hence, it holds
that pw(G') =p+ O (1).

Constructing the graph takes time polynomial in n = V(G), and we also have V(G’) =
n®M . Therefore, the whole reduction takes time

(c+1—e)PVE) V(G = (c+ 1 —e)PtOD) . 00
=(c+1—¢g)P-n°W

= (C +1-— E)pW(G) . nb/
where b is a constant. <

The proof of Theorem 6 follows from Theorem 5 and Lemma 19.

—— References

1 Barig Can Esmer, Jacob Focke, Daniel Marx, and Pawel Rzazewski. Fundamental Problems on
Bounded-Treewidth Graphs: The Real Source of Hardness. In Karl Bringmann, Martin Grohe,
Gabriele Puppis, and Ola Svensson, editors, 51st International Colloguium on Automata,
Languages, and Programming (ICALP 2024), volume 297 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 34:1-34:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.ICALP.2024.34.

2 Barig Can Esmer, Jacob Focke, Daniel Marx, and Pawel Rzazewski. List Homomorphisms
by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs.
In Timothy Chan, Johannes Fischer, John Tacono, and Grzegorz Herman, editors, $2nd
Annual European Symposium on Algorithms (ESA 2024), volume 308 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 39:1-39:20, Dagstuhl, Germany, 2024. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.ESA.2024.39.

3 Radu Curticapean and D. Marx. Tight conditional lower bounds for counting perfect matchings
on graphs of bounded treewidth, cliquewidth, and genus. In SODA, 2016. doi:10.1137/1.
9781611974331.CH113.

https://doi.org/10.4230/LIPIcs.ICALP.2024.34
https://doi.org/10.4230/LIPIcs.ESA.2024.39
https://doi.org/10.1137/1.9781611974331.CH113
https://doi.org/10.1137/1.9781611974331.CH113

B. Can Esmer and D. Marx

10

Marek Cygan, Fedor V. Fomin, Yukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Mar-
cin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer
International Publishing, Cham, 2015. doi:10.1007/978-3-319-21275-3.

Jacob Focke, Daniel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp Schep-
per, and Philip Wellnitz. Tight Complexity Bounds for Counting Generalized Dominating Sets
in Bounded-Treewidth Graphs Part II: Hardness Results. ACM Transactions on Computation
Theory, page 3708509, January 2025. doi:10.1145/3708509.

P. Hell and D. G. Kirkpatrick. On generalized matching problems. Information Processing
Letters, 12(1):33-35, February 1981. doi:10.1016/0020-0190(81)90073-9.

Michael Lampis. The Primal Pathwidth SETH. In Proceedings of the 2025 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages 1494-1564. Society for
Industrial and Applied Mathematics, January 2025. doi:10.1137/1.9781611978322.47.
Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Known Algorithms on Graphs of
Bounded Treewidth Are Probably Optimal. ACM Transactions on Algorithms, 14(2):1-30,
June 2018. doi:10.1145/3170442.

Karolina Okrasa, Marta Piecyk, and Pawel Rzazewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages

74:1-74:24. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPICS.

ESA.2020.74.

Karolina Okrasa and Pawel Rzazewski. Fine-grained complexity of the graph homomorphism
problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487-508, 2021. doi:10.1137/
20M1320146.

3:15

ESA 2025

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3708509
https://doi.org/10.1016/0020-0190(81)90073-9
https://doi.org/10.1137/1.9781611978322.47
https://doi.org/10.1145/3170442
https://doi.org/10.4230/LIPICS.ESA.2020.74
https://doi.org/10.4230/LIPICS.ESA.2020.74
https://doi.org/10.1137/20M1320146
https://doi.org/10.1137/20M1320146

	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Preliminaries
	2.2 Gadgets
	2.3 Single-Exponential Lower Bound
	2.4 Slightly Superexponential Lower Bound
	2.5 Algorithmic Results

	3 Lower Bounds for Clique Partitioning Problems
	3.1 Lower Bounds

