
Linear-Time Multilevel Graph Partitioning via Edge
Sparsification
Lars Gottesbüren #

Google Research, Zürich, Switzerland

Nikolai Maas #

Karlsruhe Institute of Technology, Germany

Dominik Rosch #

Karlsruhe Institute of Technology, Germany

Peter Sanders #

Karlsruhe Institute of Technology, Germany

Daniel Seemaier #

Karlsruhe Institute of Technology, Germany

Abstract
The current landscape of balanced graph partitioning is divided into high-quality but expensive
multilevel algorithms and cheaper approaches with linear running time, such as single-level algorithms
and streaming algorithms. We demonstrate how to achieve the best of both worlds with a linear time
multilevel algorithm. Multilevel algorithms construct a hierarchy of increasingly smaller graphs by
repeatedly contracting clusters of nodes. Our approach preserves their distinct advantage, allowing
refinement of the partition over multiple levels with increasing detail. At the same time, we use edge
sparsification to guarantee geometric size reduction between the levels and thus linear running time.

We provide a proof of the linear running time as well as additional insights into the behavior of
multilevel algorithms, showing that graphs with low modularity are most likely to trigger worst-
case running time. We evaluate multiple approaches for edge sparsification and integrate our
algorithm into the state-of-the-art multilevel partitioner KaMinPar, maintaining its excellent
parallel scalability. As demonstrated in detailed experiments, this results in a 1.49× average speedup
(up to 4× for some instances) with only 1% loss in solution quality. Moreover, our algorithm clearly
outperforms state-of-the-art single-level and streaming approaches.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph Partitioning, Graph Algorithms, Linear Time Algorithms, Graph
Sparsification

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.32

Related Version Full Version: https://arxiv.org/abs/2504.17615 [30]

Supplementary Material Software (Source Code): https://github.com/KaHIP/KaMinPar/commit/
73eeaa2371c6826e166c9ca1383996f14d8c7a2a [27]

archived at swh:1:dir:2ec38dbccb676136f71dc1796d6a06b450c48c6d

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. 882500).

1 Introduction

Balanced graph partitioning aims to divide a graph into blocks of roughly equal size while
minimizing the number of edges cut by the partition. As this is a crucial subtask in many
applications [8, 14], it is of considerable interest to compute high-quality partitions within a
minimal amount of time. Unfortunately, this goal seems unattainable from the viewpoint of

© Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 32; pp. 32:1–32:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gottesbueren@google.com
https://orcid.org/0000-0003-1895-5828
mailto:nikolai.maas@kit.edu
https://orcid.org/0009-0002-6959-417X
mailto:dominik.rosch@student.kit.edu
https://orcid.org/0009-0008-1292-0353
mailto:sanders@kit.edu
https://orcid.org/0000-0003-3330-9349
mailto:daniel.seemaier@kit.edu
https://orcid.org/0000-0002-1997-1304
https://doi.org/10.4230/LIPIcs.ESA.2025.32
https://arxiv.org/abs/2504.17615
https://github.com/KaHIP/KaMinPar/commit/73eeaa2371c6826e166c9ca1383996f14d8c7a2a
https://github.com/KaHIP/KaMinPar/commit/73eeaa2371c6826e166c9ca1383996f14d8c7a2a
https://archive.softwareheritage.org/swh:1:dir:2ec38dbccb676136f71dc1796d6a06b450c48c6d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

32:2 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

complexity theory – even approximating balanced graph partitioning to a constant factor
is NP-hard [4]. Consequently, heuristic approaches are used in practice, covering a wide
spectrum of options along the running time versus quality trade-off.

In the high-quality category, the most successful approaches use the multilevel framework.
By repeatedly contracting clusters of nodes, multilevel algorithms first construct a hierarchy
of increasingly smaller graphs in the coarsening phase. On the smallest graph, more expensive
heuristics can be used to find a good initial partition. Finally, the uncoarsening phase undoes
the contractions in reverse order while further improving the partition quality via local search
algorithms (this is called refinement). Overall, multilevel partitioning combines a good initial
solution with iterative refinement on a series of summarized graph representations with
increasingly finer granularity. This has proven highly successful in practice, consistently
achieving better solution quality than alternative approaches on real-world inputs [13, 26, 36].
However, due to lacking constraints on the size of the contracted representations, current
multilevel implementations have superlinear running time.

On the other hand, single-level algorithms that use only a fixed number of passes on
the input graph can run in linear time [50]. This is motivated by applications where the
partitioning time is a potential bottleneck. For example, graph partitioning is used in various
domains to efficiently distribute workloads across parallel machines [7, 11, 48]. This requires
the graph partitioning step to be less expensive than the downstream computation. Taking this
to the extreme, streaming approaches only consider a small part of the graph at once, assigning
nodes greedily while using only a minimal representation of the partition state [17, 21, 31].
However, the running time guarantees of single-level and streaming algorithms come at the
cost of inferior solution quality when compared to multilevel algorithms [6, 26, 53].

Contributions. In this work, we show that the described trade-off can be avoided by
constructing a linear time multilevel algorithm. Our coarsening algorithm enforces that
the graph shrinks by a constant factor with every successive contraction step, using edge
sparsification to reduce the number of edges if necessary. We prove that this guarantees
O(n + m) expected total work for n nodes and m edges, without any assumptions on the
input graph. Our analysis provides a framework to understand the running time behavior of
a broad class of existing multilevel algorithms. In addition, we demonstrate that graphs with
low modularity are most likely to trigger worst-case running time behavior, while graphs with
high modularity might already allow linear running time without using edge sparsification.

We integrate our approach into the KaMinPar shared-memory graph partitioner [29],
preserving its excellent scaling behavior while guaranteeing linear work. For instance classes
that approximate the worst case, our algorithm achieves practical speedups of up to 4×
(1.49× in the geometric mean) over a baseline KaMinPar configuration – which is the fastest
available shared-memory multilevel partitioner according to Ref. [26]. Despite this, the loss
in partition quality is only 1% on average. Our algorithm outperforms both the single-
level partitioner PuLP [50] and the state-of-the-art streaming partitioner CUTTANA [31],
achieving 24% and 66% smaller average cuts, respectively, as well as a faster running time.

2 Preliminaries

Notation and Definitions. Let G = (V, E, c, ω) be an undirected graph with node weights
c : V → N>0, edge weights ω : E → N>0, n := |V |, and m := |E|. We extend c and ω to
sets, i.e., c(V ′ ⊆ V) :=

∑
v∈V ′ c(v) and ω(E′ ⊆ E) :=

∑
e∈E′ ω(e). N(v) := {u | {u, v} ∈ E}

denotes the neighbors of v ∈ V and E(v) := {e | v ∈ e} denotes the edges incident to v. We

L. Gottesbüren, N. Maas, D. Rosch, P. Sanders, and D. Seemaier 32:3

are looking for k blocks of nodes Π := {V1, . . . , Vk} that partition V , i.e., V1 ∪ · · · ∪ Vk = V

and Vi ∩ Vj = ∅ for i ̸= j. The balance constraint demands that ∀i ∈ {1, . . . , k}: c(Vi) ≤
Lmax := (1 + ε)⌈ c(V)

k ⌉ for some imbalance parameter ε > 0. The objective is to minimize
cut(Π) :=

∑
i<j ω(Eij) (weight of all cut edges), where Eij := {{u, v} ∈ E | u ∈ Vi, v ∈ Vj}.

A clustering C := {C1, . . . , Cb} is also a partition of V , where the number of blocks b is not
given in advance (there is also no balance constraint).

Multilevel Graph Partitioning. Virtually all high-quality, general-purpose graph partitioners
are based on the multilevel paradigm, which consists of three phases. During coarsening,
the algorithms construct a hierarchy H = ⟨G =: G1, G2, . . . , Gℓ⟩ of successively coarser
representations of the input graph G. Coarse graphs are built by either computing node
clusterings or matchings and afterwards contracting them. A clustering C = {C1, . . . , Cb} is
contracted by replacing each cluster Ci with a coarse node ci with weight c(ci) = c(Ci). For
each pair of clusters Ci and Cj , there is a coarse edge e = {ci, cj} with weight ω(e) = ω(Eij)
if Eij ̸= ∅, where Eij is the set of all edges between clusters Ci and Cj . Once the number
of coarse nodes falls below a threshold (typically, kC for some tuning constant C), initial
partitioning computes an initial solution of the coarsest graph Gℓ. Subsequently, contractions
are undone, projecting the current solution to finer graphs and refining it. The total running
time of a multilevel partitioner is the cumulative time for coarsening, initial partitioning,
and refinement across all levels of the hierarchy H.

3 Related Work

There has been a lot of research on graph partitioning, thus we refer the reader to surveys [8,
13] for a general overview and only focus on work closely related to our contributions here.
As described above, modern general-purpose, high-quality graph partitioners such as Mt-
Metis [38], Mt-KaHIP [3], Mt-KaHyPar [26], KaMinPar [29], and Jet [25] are mostly
based on the multilevel paradigm, which constructs a hierarchy of coarser graphs during the
coarsening phase.

Graph Coarsening. Early multilevel partitioners, like Chaco [32] and Metis [36], primarily
employed coarsening strategies based on contracting graph matchings. While effective for
mesh-like graphs due to high matching coverage (often 85-95% [35]), these strategies struggle
with graphs exhibiting irregular structures, such as scale-free networks. On these graphs,
small maximal matchings can result in much slower coarsening and potentially a linear number
of levels. Subsequent developments addressed this limitation. Mt-Metis [39] introduced
2-hop matchings, extending small maximal matchings by further pairing nodes that have some
degree of overlap in their neighborhoods until ≥ 75% of nodes are contracted. This technique
was subsequently also implemented by other partitioners [18, 25]. Alternative strategies focus
on accelerating coarsening by grouping multiple nodes. These include methods based on
cluster contraction [44, 3, 26, 29] and pseudo-matchings where nodes can match with multiple
neighbors [1]. While enabling faster node reductions, they often constrain the weight of the
clusters to ensure that finding a balanced initial partition is feasible. This can be problematic
on graphs with highly connected hubs (e.g., the center of a star graph), potentially limiting
the achievable coarsening ratio.

Graph Sparsification. Graph sparsification techniques aim to approximate a given graph
with a sparser one (called sparsifier), typically containing substantially fewer edges while

ESA 2025

32:4 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

preserving specific structural properties important for downstream tasks. This allows handling
massive data sets where considering the full graph is computationally infeasible, as well as
speeding up a variety of algorithms on graphs or matrices [2, 9, 22]. For graph partitioning,
preserving cut properties (and thus approximately preserving the partition objective) is
particularly relevant. An ε-cut sparsifier guarantees that every cut in the sparsifier has a
weight within a 1±ε factor of the original cut. Benczúr and Karger showed that such sparsifiers
with O(n log n/ε2) edges exist for any graph and gave near-linear time constructions [9].

There are several approaches to construct sparsifiers. Spielman and Srivastava [51] intro-
duced sparsification based on effective resistance, which often yields high-quality sparsifiers
and preserves spectral properties closely related to cuts. However, this method can be
computationally demanding. Alternatively, various heuristic sampling techniques exist, such
as uniform edge sampling, k-neighbor sampling, and Forest Fire sampling [40, 42], which uses
an analogy to a spreading wildfire. Chen et al. [16] provide a comparative study, suggesting
that Forest Fire sampling outperforms uniform sampling for preserving cut-related properties.

KaMinPar. We integrate the techniques described in this paper into the KaMinPar [29]
framework. KaMinPar is a shared-memory parallel multilevel graph partitioner. Its
coarsening and uncoarsening phases are based on the size-constrained label propagation [44]
algorithm, which is parameterized by a maximum cluster size (resp. block weight) U . In
the coarsening resp. uncoarsening phase, each node is initially assigned to its own cluster
resp. to its corresponding block of the partition. The algorithm then proceeds in rounds.
In each round, the nodes are visited in some order. A node u is moved to the cluster resp.
block K that contains the most neighbors of u without violating the size constraint U , i.e.,
c(K) + c(u) ≤ U . The algorithm terminates once no nodes have been moved during a round
or a maximum number of rounds has been exceeded. The coarsening further implements a
2-hop clustering strategy [29], which reduces the number of coarse nodes further whenever
label propagation alone yields a node reduction factor less than 2. Since each round of
size-constrained label propagation runs in linear time, and there is only a constant number of
rounds, KaMinPar achieves linear time per hierarchy level for coarsening and uncoarsening.

The original paper [29] shows that KaMinPar achieves overall linear-time complexity
under two key assumptions: (i) a constant node reduction factor between hierarchy levels,
and (ii) bounded average degree for coarse graphs. While we will demonstrate in Theorem 1
that KaMinPar’s coarsening strategy satisfies assumption (i), the inability to guarantee
assumption (ii) results in a worst-case running time with an extra log(n) factor.

4 Linear Time Multilevel Graph Partitioning

Multilevel algorithms construct a hierarchy H = ⟨G =: G1, G2, . . . , Gℓ⟩ of successively coarser
representations of the input graph G. Each level of H is considered twice, during coarsening
(to construct the next level) and during refinement (to improve the current partition).
Assuming linear time for the coarsening and refinement on each level (see Section 3), the
total sequential running time is Θ(

∑ℓ
i=1 |Vi|+ |Ei|). Without additional constraints on the

number and size of the levels, the worst-case running time might be Θ(nm) or worse.
To obtain better guarantees, we need a geometric size reduction per level.1 As a first

step, we require that |Vi+1| ≤ γ|Vi| for some constant γ < 1 that is independent of G. If this
is the case, the coarsened graph has constant size after a logarithmic number of steps, which

1 In general, any series with a sum of O(1) works – a geometric series is, however, the most straightforward.

L. Gottesbüren, N. Maas, D. Rosch, P. Sanders, and D. Seemaier 32:5

Ch

C2C1

Figure 1 Illustration of Theorem 1, with examples of the different cluster types. Note that the
green cluster to the right is created by 2-hop clustering.

already achieves a running time of O(n + m log n). Combined with a similar guarantee for
the number of edges, we get a linear total running time.

4.1 Reducing the Number of Nodes
As discussed in Section 3, the coarsening algorithms used in practice start by computing
either a matching or a clustering of adjacent nodes. Typically, a maximum allowed node
weight U is enforced for clusters. We use the term size-constrained label propagation to refer
to a broad class of coarsening algorithms that form clusters of adjacent nodes and use a weight
constraint. We require one essential property. In the resulting clustering, a node v never
forms a singleton cluster as long as there is any adjacent cluster K with c(K) + c(v) ≤ U .

Due to the weight constraint, size-constrained label propagation by itself is not sufficient
for reducing the number of nodes (consider, e.g., a star graph). To solve this, partitioners
use 2-hop clustering as a second step, forming clusters of nodes that are not adjacent but
instead have a common neighbor cluster. In the following, we provide the first formal proof
that this guarantees a constant factor node reduction.

Consider a (non-isolated) node v in a singleton cluster S = {v}. Formally, we will assume
that the algorithm assigns a favorite cluster KS to S, out of the clusters adjacent to S.
The 2-hop clustering then merges any nodes with the same favorite cluster, as long as this
does not violate the weight constraint. Note that only considering favorite clusters is more
restrictive than general 2-hop clustering, but is already sufficient for our purpose.

▶ Theorem 1. The number of clusters obtained by size-constrained label propagation and
2-hop clustering with a maximal cluster weight U ≥ 2 c(V)

|V | is at most

|C| ≤ 1
2 |V |+

c(V)
U

on any graph without isolated nodes.

Proof. We divide the set of clusters C into multiple subsets (see Figure 1 for an illustration).
Ch is the set of heavy clusters with weight larger than 1

2 U . C1 is the set of singleton clusters
with weight at most 1

2 U and C2 is the set of clusters with multiple nodes and weight at most
1
2 U . Note that C = Ch ∪ C1 ∪ C2. Let r := 1

|C2|
∑

K∈C2
|K| be the average number of nodes

for clusters in C2. In combination, this results in the inequality |V | ≥ |Ch|+ |C1|+ r|C2|.
Each singleton cluster S ∈ C1 is only adjacent to clusters with weight larger than U−c(S),

and thus only clusters in Ch – otherwise, the node would have joined the lighter adjacent
cluster. Consider the favorite cluster KS ∈ Ch of S. Due to 2-hop coarsening, there is no other
cluster in C1 with the same favorite (otherwise, 2-hop clustering would have joined them).

ESA 2025

32:6 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

Algorithm 1 Graph Coarsening with Sparsification.

1 i← 1, Gi ← G // Input: graph G

2 while Gi not small enough do
3 G′

i+1 ← Coarsen(Gi)
4 m̂← min{τe · |E(Gi)|, τd · |E(Gi)|

|V (Gi)| · |V (G′
i+1)|}

5 if |E(G′
i+1)| > ρ · m̂ then Gi+1 ← Sparsify(G′

i+1, m̂)
6 else Gi+1 ← G′

i+1
7 i += 1
8 return ⟨G1, . . . , Gi⟩ // Output: hierarchy H = ⟨G1, . . . , Gi⟩

contract

Figure 2 Contracting the bolded edges leads to increased density on the coarse graph.

Consequently, |C1| ≤ |Ch|. Moreover, c(S)+c(KS) > U gives, when summed over all clusters
and combined with the definition of Ch, the inequality c(V) ≥

∑
K∈Ch

c(K)+
∑

K∈C1
c(K) =∑

K∈C1
(c(K) + c(KS)) +

∑
K∈Ch\{K′

S
|K′∈C1} c(K) > U |C1|+ 1

2 U(|Ch| − |C1|). Rearranged,
this is |Ch|+ |C1| ≤ 2 c(V)

U .
Combining all inequalities, we get

|C| = |Ch|+ |C1|+ |C2|

≤ 1
r
|V |+ (1− 1

r
)|Ch|+ (1− 1

r
)|C1|

≤ 1
r
|V |+ 2(1− 1

r
)c(V)

U

≤ 1
2 |V |+

c(V)
U

For the final step, we use the observation that xa + (1− x)b ≤ 1
2 a + 1

2 b for b ≤ a and x ≤ 1
2 .

Since r ≥ 2 and U ≥ 2 c(V)
|V | , we can apply this with x = 1

r , a = |V | and b = 2 c(V)
U . ◀

Isolated nodes (i.e., nodes without a neighbor) are a special case as standard clustering
algorithms do not handle them. Therefore, they are omitted from Theorem 1. However, it is
trivial to either remove isolated nodes and reinsert them in the uncoarsening, or alternatively
cluster them with each other (we do the latter).

Note that the precondition U ≥ 2 c(V)
|V | is no limitation for the applicability of Theorem 1.

In practice, much larger values are used for U (in our case U = c(V)
160k , see Section 4.3).

However, the theorem does not include clustering approaches which limit the number of
nodes in a cluster (e.g., allowing only matchings). We note that in this case similar, but
weaker, bounds can be obtained with an analogous line of reasoning.

L. Gottesbüren, N. Maas, D. Rosch, P. Sanders, and D. Seemaier 32:7

4.2 Reducing the Number of Edges via Sparsification

As discussed above, geometric node reduction in coarsening strategies can still lead to
superlinear total running time due to increasing graph density at coarser levels (e.g., Figure 2).
Achieving linear time necessitates preventing this phenomenon. Since common clustering
algorithms can not guarantee a geometric reduction in the number of edges, we propose an
alternative strategy: sparsifying the contracted graph when the edge count does not shrink at
a sufficient rate. To validate this concern, we first show that the issue can arise on important
classes of graphs using the example of Erdős-Rényi graphs. Subsequently, we will detail our
sparsification approach.

Consider the coarsening hierarchy of a sparse Erdős-Rényi graph G0 = G(n0, c/n0) with
n0 nodes and edge probability p0 := c/n0 for some constant c. Assume that coarsening
halves the number of nodes at each level by contracting pairs of nodes, and that coarse
graphs also behave like Erdős-Rényi graphs. In other words, Gi = G(ni, pi) with ni = ni−1/2
and pi ≈ 1 − (1 − pi−1)4 for i > 0 (there is an edge between two coarse nodes if any of
the four potential edges between the corresponding nodes in Gi−1 existed). Note that
ni = n0/2i and pi = 1 − (1 − p0)4i = 1 − (1 − c/n0)4i ≈ 1 − e−4i·c/n0 . Let i = α log(n0),
then pi ≈ 1− e−cn2α−1

0
n0→∞−−−−→ 0 for α < 1

2 , i.e., there are Θ(log n0) sparse levels. On these,

E[mi+1]
E[mi]

= 1− (1− pi)4

pi

ni(ni − 2)/8
ni(ni − 1)/2

n0→∞−−−−→ 1− (1− pi)4

4pi
≈ 1− (1− 4pi)

4pi
= 1,

since ni = n0/2i ≥ n0/2α log n0 >
√

n0 →∞ and (1− pi)4 ≈ 1− 4pi for small pi. Thus, the
number of coarse edges remains relatively constant, leading to overall O(m0 log(n0)) time.

To achieve linear time, we therefore limit the number of edges through sparsification
as outlined in Algorithm 1. Let G′

i+1 = (Vi+1, E′
i+1) denote the current graph before

sparsification, obtained by contracting the previous graph Gi (line 1). We obtain Gi+1 =
(Vi+1, Ei+1) by sparsifying the edges of G′

i+1 so that the size of Ei+1 is bounded by a
threshold m̂, defined as

m̂ := min{τe · |Ei|, τd ·
|Ei|
|Vi|
· |Vi+1|}.

Here, τe is the edge threshold parameter, limiting the coarse edge count relative to the current
graph’s edge count, and τd is the density threshold parameter, likewise limiting the average
degree of the coarse graph. Since sparsification itself introduces computational overhead, we
only apply it if the potential edge reduction is significant. Specifically, we trigger sparsification
only if |E′

i+1| > m̂ and the target edge count m̂ represents a substantial reduction from
the current edge count |E′

i+1|, quantified by the condition |E′
i+1|/m̂ ≥ ρ, where ρ ≥ 1 is a

tunable constant (line 1). Once triggered, we use one of the following sampling algorithms
to reduce the edge count to m̂ (in expectation), before adding the sparsified graph to the
hierarchy (line 1). Since our goal is to achieve overall linear time, we only consider linear
time sparsification algorithms. Further, sparsification must be fast in practice for speedups
to be attainable.

Uniform Sampling: UR. As a simple baseline, we consider uniform random sampling. Each
edge e ∈ E′

i+1 is selected independently with probability p := m̂/|E′
i+1|, resulting in expected

m̂ edges. Note that this approach is oblivious to edge weights – although heavier edges have
larger influence on the partitioning objective and are thus likely more important.

ESA 2025

32:8 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

Algorithm 2 Weighted Forest Fire: graph G = (V, E), burn ratio ν, probability p. The
only difference to the original Forest Fire [41] algorithm is highlighted blue.

1 S ← new Array() of size |E| // Scores
2 b← 0 // Number of burnt edges
3 while b ≤ ν|E| do in parallel
4 Q← new FIFO(); Q.push(random node from V) // BFS queue
5 T ← new Set() // Visited nodes
6 while Q ̸= ∅ do
7 u← Q.pop()
8 while N(u) \ T ̸= ∅ do
9 Sample v from N(u) \ T with prob. ω({u, v})/

∑
v∈N(u)\T ω({u, v})

10 T.insert(v); Q.push(v)
11 S[{u, v}]

atomic
+= 1; b

atomic
+= 1

12 Break with prob. p

13 return S

Weighted Threshold Sampling: T-Weight. To incorporate edge weights, we consider a
weighted threshold sampling strategy. First, we identify the weight threshold ωt := ω(et)
corresponding to the m̂-th heaviest edge et in G′

i+1. This can be done in expected time
O(|E′

i+1|) using the quickselect algorithm. Based on ωt, we partition E′
i+1 into three disjoint

sets E
′<
i+1, E

′=
i+1, and E

′>
i+1, for coarse edges with weight smaller than, equal to, or larger than

ωt. Edges in E
′<
i+1 are discarded, while edges in E

′>
i+1 are kept. To reach the target size m̂,

we further sample edges from E
′=
i+1 uniformly with probability p := m̂−|E

′>
i+1|

|E′=
i+1| .

(Weighted) Forest Fire Sampling: T-(W)FF. We further include a variation of threshold
sampling that uses Forest Fire [42] scores rather than edge weights, as this performed well as
a cut-preserving sparsifier in Ref. [16]. We include a brief description for self-containment and
extend the algorithm to take edge weights into consideration (Algorithm 2). The algorithm
computes edge scores by simulating fires spreading through the graph via multiple traversals
starting from random nodes. When visiting a node u, the number of neighbors X to be visited
is drawn from a geometric distribution paramterized by a tunable parameter p. The standard
forest fire algorithm subsequently samples X distinct nodes (without replacement) from u’s
unvisited neighbors. We incorporate edge weights by making this sampling weight-dependent:
the probability of selecting neighbor v of u is proportional to the edge weight ω({u, v})
relative to the total edge weight between u and its unvisited neighbors (line 9). Note that
this modification (marked blue in Algorithm 2) is the only difference to Ref. [41]. Each edge
traversal during this process increments the burn score of the edge (line 11). The algorithm
stops scheduling fires once the cumulative burn score b exceeds ν|E| (line 3) for some burn
ratio ν > 0. After computing the edge importance scores, we use the weighted threshold
sampling strategy to sparsify the graph (using the importance scores instead of edge weights).

4.3 Putting it Together
Based on the discussed insights, we propose a linear time multilevel algorithm that builds
upon KaMinPar [29]. We leverage the existing clustering and refinement algorithms

L. Gottesbüren, N. Maas, D. Rosch, P. Sanders, and D. Seemaier 32:9

available in KaMinPar, whose running time is linear in the size of the current hierarchy level
(see Section 3). We introduce two necessary changes to achieve linear time for the overall
algorithm. Most importantly, we introduce edge sparsification as discussed in Section 4.2,
ensuring the number of edges shrinks geometrically. In addition, we replace the coarsening and
initial partitioning used by the default configuration of KaMinPar with a more traditional
approach. This is because the default configuration is amenable to scenarios where expensive
bipartitioning happens on a relatively large graph, adding a Ω(n log n) term to the running
time in the worst-case. We refer to our technical report [30] for details.

Instead, we use size-constrained label propagation with subsequent recursive biparti-
tioning, following other state-of-the-art multilevel algorithms [3, 28, 44]. Similar to Mt-
KaHyPar [26], the cluster weight limit is U = c(V)

160k and we limit the node reduction per
coarsening step to at most 2.5×. As this is combined with 2-hop clustering, Theorem 1
guarantees a geometric shrink factor until a size of |Vi| = 320k is reached. The coarsening
terminates at 160k nodes or if the current shrink factor is too small, thereby resulting in
a graph with size O(k).2 The recursive bipartitioning then requires total time O(k log k),
which is linear under the extremely weak assumption that k log k ∈ O(n + m).

So far, we have argued from a sequential point of view. In the parallel setting, the
consequence is that our algorithm needs only linear work. With regards to scalability, the
sparsification algorithms described in Section 4.2 lend themselves to a rather straightforward
parallelization. Combined with the excellent scalability of the coarsening and refinement
algorithms of KaMinPar [29] and the fact that initial partitioning is insignificant for the
total running time, we maintain the scalability of default KaMinPar while reducing the
required work.

5 Quantifying Worst-Case Instances

As discussed, we need edge sparsification to achieve linear time if coarsening does not shrink
the number of edges geometrically. However, it would be useful to understand for which
graphs sparsification is required and for which it is not – both for theoretical insights into
the structure of worst-case instances and to allow empirical estimates. Given a clustering C

of a graph G, we are thus interested in the number of edges of G′, where G′ is the graph
created by contracting C. If |E(G′)| ≈ |E(G)| for clusterings computed by the coarsening
algorithm, sparsification is required to further reduce the number of edges.

Intuitively, this is the case for graphs with low locality – edges might lead anywhere and
are thus hard to contain in small clusters. For many random graph models, this is rather easy
to decide. For example, sparse Erdős-Rényi graphs are highly non-local, thus necessitating
sparsification (see Section 4.2). On the other hand, for random geometric graphs (i.e., unit
disk graphs) coarsening algorithms reduce the number of edges very efficiently. However, to
classify real-world instances or more complex graph models, a general criterion is needed.

Classification via Modularity. We propose that the modularity of a graph allows to estimate
whether sparsification is necessary.3 Modularity was introduced by Newman and Girvan to
evaluate the quality of a clustering with regards to community structure [46], and modularity
based community detection algorithms are used in many applications [33, 54, 55]. Given

2 Note that sparsification ensures O(k) edges – although this is not necessary for linear time.
3 There are also multiple other locality metrics, but these are less useful. For example, the clustering

coefficient is based on the number of triangles. However, this does not result in any useful bounds.

ESA 2025

32:10 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Q

R
em

ai
ni

ng
Ed

ge
W

ei
gh

t

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Q

R
em

ai
ni

ng
Ed

ge
s

Figure 3 Remaining total edge weight (left) and number of edges (right) after one coarsening
step, compared to the modularity of the graph. The y-values are denoted as a fraction of the initial
value. Based on Lemma 2, we expect most points (i.e., graphs) to be in the upper right half.

a clustering C = {V1, . . . , V|C|}, let eij := 1
2|E| |E(Vi, Vj)| denote the fraction of edges that

connect cluster i and cluster j (only counted in one direction). Further, let ai :=
∑

j eij

be the fraction of edges with one endpoint in cluster i. The modularity of the clustering is
then defined as QC :=

∑
i

(
eii − a2

i

)
, where QC ∈ [− 1

2 , 1]. The modularity Q ∈ [0, 1] of the
graph itself is the maximum modularity of all possible clusterings. As demonstrated in the
following, modularity is a good fit for our purpose.

▶ Lemma 2. For a given clustering, the total fraction of edges that connect nodes within the
same cluster is bounded by

QC ≤
∑

i

eii ≤ QC + αC

where α := maxi ai is the maximum fraction of edges with endpoints in the same cluster.

Proof. Since QC =
∑

i

(
eii − a2

i

)
, the left side of the inequality follows immediately. Further,∑

i eii = QC +
∑

i a2
i ≤ QC +

∑
i(maxj aj)ai = QC + maxi ai. Note that

∑
i ai = 1 since

each edge is connected to exactly two clusters. ◀

Lemma 2 provides a lower bound of 1 −QC − αC for the fraction of edges connecting
different clusters. Unfortunately, this does not correspond directly to the edges of G′ – if
multiple edges connect the same pair of clusters (we say that the edges are parallel), they are
combined into a single edge, thereby further reducing the number of remaining edges. The
actual bound is thus 1−QC − αC − pC ≤ |E(G′)|

|E(G)| , where pC is the number of parallel edges.
Let us consider the case where the clusters are small, such as during the first steps of

multilevel coarsening. Then, 1−Q is an approximate lower bound for the number of edges.
If clusters are small, any cluster is only incident to a small fraction of all edges and edges
are unlikely to be parallel, i.e., both αC and pC are small. Moreover, QC is almost certainly
smaller than Q as achieving maximum modularity often necessitates large clusters [23].
Consequently, we expect that 1 − Q ≲ 1 − QC − αC − pC ≤ |E(G′)|

|E(G)| if clusters are small,
making 1−Q an accurate bound.

Empirical Effect of Modularity. To verify whether 1−Q is a useful bound in practice, we
provide an empirical evaluation on a set of 71 large graphs which is used in multiple recent

L. Gottesbüren, N. Maas, D. Rosch, P. Sanders, and D. Seemaier 32:11

works on graph partitioning [37, 43, 49]. Figure 3 shows computed modularity scores of
the graphs in relation to the fraction of edges that remains after one step of our multilevel
coarsening algorithm (see Section 4.1). Since computing the modularity of a graph is itself
NP-hard [12], we calculate approximate scores with the well-known Louvain algorithm [10],
using the implementation from NetworKit [5, 52].

With regards to the total edge weight of G′ (left, corresponds to inter-cluster edges in
G), 1−Q is almost a strict lower bound. For most graphs, the fraction of remaining weight
is much larger than 1−Q. The actual number of edges after combining parallel edges (right)
is often significantly smaller than the weight. However, 1 − Q is still a mostly accurate
bound. Therefore, modularity is indeed useful to predict the coarsening behavior of multilevel
algorithms – graphs with low modularity are likely to be worst-case instances.

6 Experiments

Setup. We implemented the described sparsification algorithms within the KaMinPar [29]
framework and compiled it using gcc 14.2.0 with flags -O3 -mtune=native -march=native.
The code is parallelized using TBB [47]. All experiments are performed on a machine equipped
with two 32-core Intel Xeon Gold 6530 processors (2.1 GHz) and 3 TB RAM running Rocky
Linux 9.5. We only use one of the two processors (i.e., 32 cores) to avoid NUMA effects.

Competitors. In Section 6.3, we compare our algorithm against PuLP [50] (v1.1) and
Cuttana [31] (commit ed0c182 in the official GitHub repository4). PuLP is a linear time
single-level partitioner which focuses on shared-memory scalability and low memory usage.
PuLP starts by growing (unbalanced) initial clusters from a random assignment and then
performs multiple iterations of alternating balancing and cut minimization. Each phase
is implemented with a fixed number of label propagation rounds. The authors showed
that PuLP achieves considerable speedups in comparison to multiple well-known multilevel
algorithms. Cuttana is a streaming partitioner which improves upon the solution quality of
previous streaming approaches with a node buffering technique. Instead of assigning each
node greedily, it uses a buffer of fixed size to delay assignment until more information on
the neighborhood is available or the buffer overflows. In addition, Cuttana uses a more
fine-grained subpartition which allows to further refine the solution quality after the initial
assignment. We use the default settings for PuLP and configure Cuttana following the
parameters described by the authors, i.e., K′

K = 4 096, Dmax = 1 000 and max_qsize = 106.

Instances. We focus on graphs for which coarsening increases edge density substantially.
This happens on 17 out of 71 graphs of a benchmark set used in previous works on graph
partitioning [43, 37, 49] (mostly real-world k-mer and social graphs, and graphs deduced from
text recompression [34]). We only use these graphs since sparsification is not triggered on the
remaining instances, thus leaving the algorithm unchanged. Note that there is no running time
overhead in this case. We further include 6 social graphs from the Sparse Matrix Collection [19]
and generate random graphs: Erdős-Rényi graphs (using KaGen [24]), as well as Chung-
Lu [45], Planted Partition, and R-MAT [15] graphs (using NetworKit [5]). These graphs
are inherently non-local, thus especially challenging for linear-time partitioning. Overall,
the benchmark set comprises 39 graphs (see Ref. [30]) with 511 K to 1.8 G undirected edges.
The graphs deduced from text recompression feature node weights. All other graphs are

4 https://github.com/cuttana/cuttana-partitioner

ESA 2025

https://github.com/cuttana/cuttana-partitioner

32:12 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

unweighted. Tuning experiments are performed on a subset containing 8 randomly drawn
graphs spanning different types.

Methodology. We consider an instance as the combination of a graph and a number of
blocks k. We set the imbalance tolerance to ε = 3%, use k ∈ {3, 7, 8, 16, 37, 64} and perform
5 repetitions for each instance using different seeds. Results (running time, edge cut) are
averaged arithmetically per instance over these repetitions. When aggregating across multiple
instances, we use the geometric mean to ensure that each instance has equal influence.

Performance Profiles. To compare the edge cuts of different algorithms, we use performance
profiles [20]. Let A be the set of all algorithms we want to compare, I the set of instances,
and cutA(I) the edge cut of algorithm A ∈ A on instance I ∈ I. For each algorithm A, we
plot the fraction of instances

PA(τ) := |{I ∈ I : cutA(I) ≤ τ ·minA′∈A cutA′(I)}|
|I|

on the y-axis and τ on the x-axis. Achieving higher fractions at lower τ -values is considered
better. In particular, PA(1) denotes the fraction of instances for which algorithm A performs
best, while PA(τ) for τ > 1 illustrates the robustness of the algorithm. For example, an
algorithm A with PA(1) = 0.49 but PA(1.01) = 1.0 (i.e., never more than 1% worse than
the best) might be preferable to an algorithm B with PB(1) = 0.51 that only achieves
PB(τ) = 1.0 at much larger τ (indicating much worse partitions on some inputs).

6.1 Parameter Study
We begin our evaluation by tuning the parameters introduced in Section 4.2. Recall that
these are the edge and density thresholds τe and τd, which control the number of coarse edges,
and the minimum reduction factor ρ, which controls whether sparsification is triggered on a
given hierarchy level. We use the tuning benchmark subset and k = 16 for this experiment
to limit computational costs.

The results are shown in Figure 4, where we plot geometric mean edge cuts and running
times relative to the KaMinPar baseline without sparsification for τe ∈ {1/4, 1/2, 1},
τd ∈ {1/2, 1, 2} and ρ ∈ {1, 2, 3, 4, 8}. We observe similar speedups of up to 1.63× for
weighted threshold sampling (T-Weight) and uniform sampling (UR). T-Weight achieves
the highest speedup (1.63×) at τe = 1/2, τd = 1/2 and ρ = 3, while UR achieves the same
speedup at slightly different parameters (τe = 1/4, τd = 1 and ρ = 2). With these parameters,
edge cuts increase by 12.6% and 27.6% for T-Weight and UR, respectively. Surprisingly, more
aggressive sparsification (i.e., smaller τe, τd and ρ) does not achieve larger speedups. This is
likely due to several factors. First, the sparsification process itself introduces computational
overhead which can counteract potential speedups, particularly when the size reduction is
modest. Second, excessive sparsification degrades partition quality considerably, thereby
increasing the workload required for the refinement algorithm to converge to a local optimum.
Hence, moderate sparsification seems favorable.

Larger ρ seems beneficial for maintaining partition quality. At ρ = 4 (i.e., only sparsify
if reducing the number of edges by a factor of ≥ 4), both T-Weight and UR show similar
speedups as with smaller ρ and partition quality close to the baseline. We therefore pick
τe = τd = 1/2 and ρ = 4 for subsequent experiments, where T-Weight and UR achieve
speedups of 1.56× and 1.59×, while increasing edge cuts by 0.9% and 5.3%, respectively.

L. Gottesbüren, N. Maas, D. Rosch, P. Sanders, and D. Seemaier 32:13

0.5 1.0

1.0

1.5

R
el

a
ti

v
e

C
u

t
ρ = 1

0.5 1.0

ρ = 2

0.5 1.0

ρ = 3

0.5 1.0

ρ = 4

0.5 1.0

T
−

W
e
ig

h
t

ρ = 8

0.5 1.0

1.0

1.5

R
el

a
ti

v
e

C
u

t

0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

U
R

1.0 4.0
Rel. Time

1.0

1.5

R
el

a
ti

v
e

C
u

t

1.0 4.0
Rel. Time

1.0 4.0
Rel. Time

1.0 4.0
Rel. Time

1.0 4.0
Rel. Time

T
−

W
F

F

τe = 0.25

τd = 0.5

τe = 0.5

τd = 1.0

τe = 1.0

τd = 2.0

Figure 4 Relative cut and running time of KaMinPar with weighted threshold sampling (T-
Weight), uniform sampling (UR), or threshold sampling via Weighted Forest Fire scores (T-WFF)
versus baseline (KaMinPar without sparsification) on the tuning benchmark set with k = 16.

Lastly, we look at threshold sampling using Weighted Forest Fire (T-WFF) scores. For
T-WFF itself, we use p = 0.6 and ν = 0.5, since these parameters performed best during
preliminary experimentation. We observe the fastest running times using parameters that do
not trigger sparsification, suggesting that T-WFF does not provide practical speedups. At
τe = τd = 1/2 and ρ = 4, T-WFF is 2.62× slower while incurring a 1.0% increase in cut size.

6.2 Effects of Sparsification

Next, we evaluate the proposed sparsification techniques on the full benchmark set. As can
be seen in Figure 5, T-Weight (geometric mean running time 1.43 s) and UR (1.40 s) achieve
similar speedups of 1.49× resp. 1.52× over the baseline (no sparsification, 2.13 s). T-Weight
achieves considerably better partition quality (increase in average edge cut by 1.5%) than UR
(increase by 5.5%). T-WFF outperforms T-FF, but is not competitive: its partition quality
is slightly worse (increase by 3.9%) while much slower (7.04 s). We thus focus on T-Weight.

Looking at Figure 6, we can see that sparsification reduces the number of edges on coarse
graphs considerably. Without sparsification, the graphs on the first hierarchy levels (i.e.,
after the first coarsening step) contain, on average, 75% of the edges of the input graphs, but
only 39% of the nodes. With sparsification, the average edge count reduces to 28%.

As shown in Figure 7 (left), the speedup from T-Weight sparsification varies considerably

ESA 2025

32:14 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

1 1.05 1.1 1.5 21

Cut relative to best

0%

20%

40%

60%

80%

100%
F

ra
ct

io
n

of
In

st
an

ce
s

0 50 100 150 200

Number of Instances

2−3

2−1

21

S
p

ee
d

u
p

re
la

ti
v
e

to
K

a
M

in
P

a
r

KaMinPar KaMinPar UR KaMinPar T-Weight KaMinPar T-WFF KaMinPar T-FF

Figure 5 Partition quality as performance profile (left) and speedup over baseline (no sparsifica-
tion, right) of sparsification algorithms: weighted threshold sampling (T-Weight), uniform sampling
(UR), and threshold sampling via (Weighted) Forest Fire scores (T-(W)FF).

1 2 3 4 5 6 7 8 9 10

Level

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

E
d

ge
s

KaMinPar

KaMinPar T-Weight

Figure 6 Relative geometric mean number of edges per hierarchy level (levels 1-10), comparing
no sparsification against T-Weight (weighted threshold sampling) sparsification. Edge counts are
relative to the input graphs. The final value is propagated for hierarchies shorter than 10 levels.

Kmer OtherCompr-
ession

Social Chung
Lu

Erdős-
Rényi

Plan-
ted

R-MAT All

0.2

0.4

0.6

0.8

1.0

T
im

e
re

la
ti

v
e

to
K

a
M

in
P

a
r

0.98 0.89 0.70 0.76 0.75 0.42 0.48 0.44 0.67

Kmer OtherCompr-
ession

Social Chung
Lu

Erdős-
Rényi

Plan-
ted

R-MAT All
0.90

0.95

1.00

1.05

1.10

C
u

t
re

la
ti

ve
to

K
aM

in
P

a
r

0.99 1.02 1.01 1.04 1.00 1.00 1.00 1.02 1.01

Figure 7 Comparison of KaMinPar with T-Weight sparsification relative to the baseline without
sparsification grouped by graph class (lower is faster resp. higher-quality). Left: Relative running
times with the geometric mean relative time annotated per class. Right: Relative cuts with the
geometric mean relative cut annotated per class.

L. Gottesbüren, N. Maas, D. Rosch, P. Sanders, and D. Seemaier 32:15

0.0 0.2 0.4 0.6 0.8 1.0

Relative Number of Edges

0.0

0.2

0.4

0.6

0.8

1.0

R
el

a
ti

v
e

T
im

e

Figure 8 Relationship between running time of KaMinPar T-Weight relative to KaMinPar
without sparsification and the hierarchy size ratio (number of total edges across all hierarchy levels
after sparsification relative to no sparsification). Note the strong correlation (coefficient ≈ 0.893).

Graphs

0.00

0.25

0.50

0.75

1.00

T
im

e
a
s

F
ra

ct
io

n
o
f

K
a
M

in
P

a
r

KaMinPar

Graphs

KaMinPar T-Weight

Refinement

Sparsification

Coarsening

Uncoarsening

Initial partitioning

Remaining

Figure 9 Relative running time attribution for KaMinPar without sparsification (left) and
with T-Weight sparsification (right) using k = 16. Graphs are sorted by the total running time of
KaMinPar without sparsification in descending order.

with graph class, with moderate cut size increases on real-world grahs (Figure 7, right). Non-
local graphs with extremely low modularity (Erdős-Rényi, Planted Partition, R-MAT) show
substantial gains (average speedup > 2×, up to 4×), while real-world text recompression
(≈ 1.43×) and social graphs (≈ 1.32×) exhibit moderate speedups. K-mer graphs see
negligible benefit. This variation correlates strongly with the reduction in graph hierarchy
size (number of edges across all hierarchy levels): instances with greater reduction achieve
faster relative running times (Figure 8). The observed speedups stem primarily from reduced
time in the coarsening and refinement phases, see Figure 9. Without sparsification, these
phases consume on average 55% (1.17 s) and 23% (0.48 s) of the total partitioning time
(2.13 s), respectively. Sparsification reduces these to 0.65 s and 0.32 s, respectively. This
improvement comes at low cost, as the sparsification step itself averages only 0.10 s out of
1.62 s when triggered (94% of the instances).

6.3 Comparison against Competing Partitioners
Finally, we compare KaMinPar with T-Weight sparsification against alternative linear-time
partitioners: single-level PuLP [50] and streaming Cuttana [31]. We found that Cuttana
is rather slow and does not support node weights. Thus, we limit our benchmark set to
unweighted graphs with m ≤ 226 edges (18 out of 39 graphs).

ESA 2025

32:16 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

1 1.05 1.1 1.5 21 10 100fail

Cut relative to best

0%

20%

40%

60%

80%

100%
F

ra
ct

io
n

o
f

In
st

an
ce

s

0 20 40 60 80 100

Number of Instances

2−3

2−2

2−1

20

21

22

S
p

ee
d
u
p

re
la

ti
v
e

to
K

a
M

in
P

a
r

KaMinPar KaMinPar T-Weight PuLP CUTTANA

Figure 10 Partition quality (left) and relative running time (right) on the reduced benchmark
set and all k values for KaMinPar without and with T-Weight sparsification, PuLP and Cuttana.
Speedups are plotted relative to KaMinPar without sparsification. Cuttana is omitted from the
speedup plot since it is ≥ 72× slower than all other algorithms.

As shown in Figure 10 (left), KaMinPar with T-Weight sparsification computes con-
siderably better partitions with average cuts 30% and 66% smaller than those of PuLP
and Cuttana, respectively. Compared to KaMinPar without sparsification, edge cuts are
slightly larger (cutting 1% more edges on average), but are still within a factor of 1.10 to
the best cut found on 88% of all instances (vs. 90% for non-sparsifying KaMinPar). In
contrast, PuLP and Cuttana compute edge cuts within factors 1.26 and 1.93 to the best
cuts found on only half of the instances, respectively. PuLP computes the best partitions for
21% of the instances, predominantly Erdős-Rényi and Planted Partition graphs. Cuttana
crashes on 39% of the instances (we exclude these instances in pairwise aggregates).

Through sparsification, the geometric mean running time of KaMinPar reduces from
0.48 s to 0.37 s. PuLP (0.63 s) is slower than non-sparsifying KaMinPar on average, but
proves faster on 53 (resp. 48 vs. sparsifying KaMinPar) and twice as fast on 23 (resp. 2)
out of 108 instances. Cuttana is 72× slower than PuLP (and thus the other algorithms),
although we note that comparing running times fairly is difficult since Cuttana interleaves
computation with graph I/O from SSD (I/O times are excluded for the other algorithms).

7 Conclusion

Current graph partitioning algorithms can be classified into high-quality but superlinear
multilevel algorithms, and cheaper linear time approaches such as single-level partitioning
and streaming partitioning. We demonstrate both in theory and in practice that it is possible
to achieve the best of both worlds at once. Our linear time multilevel algorithm uses edge
sparsification to constrain the size of subsequent coarser levels, which provably guarantees
linear work while maintaining scalability to many cores. We minimize quality loss by choosing
appropriate thresholds for triggering the sparsification step and, if triggered, removing the
edges with lowest weight. As a result, our multilevel algorithm is faster than state-of-the-art
single-level and streaming approaches while consistently computing better solutions – making
multilevel the preferable choice even if extremely short running time is required.

L. Gottesbüren, N. Maas, D. Rosch, P. Sanders, and D. Seemaier 32:17

References
1 Amine Abou-Rjeili and George Karypis. Multilevel Algorithms for Partitioning Power-Law

Graphs. In 20th International Conference on Parallel and Distributed Processing (IPDPS).
IEEE Computer Society, 2006. doi:10.1109/IPDPS.2006.1639360.

2 Nesreen K. Ahmed, Jennifer Neville, and Ramana Rao Kompella. Network Sampling: From
Static to Streaming Graphs. ACM Transactions on Knowledge Discovery from Dat, 8(2):7:1–
7:56, 2013. doi:10.1145/2601438.

3 Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. High-Quality Shared-Memory
Graph Partitioning. In 24th European Conference on Parallel Processing (Euro-Par), pages
659–671. Springer, August 2018. doi:10.1007/978-3-319-96983-1_47.

4 Konstantin Andreev and Harald Räcke. Balanced Graph Partitioning. In 16th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 120–124, 2004. doi:10.1145/
1007912.1007931.

5 Eugenio Angriman, Alexander van der Grinten, Michael Hamann, Henning Meyerhenke,
and Manuel Penschuck. Algorithms for Large-Scale Network Analysis and the NetworKit
Toolkit. In Algorithms for Big Data: DFG Priority Program 1736, pages 3–20. Springer, 2023.
doi:10.1007/978-3-031-21534-6_1.

6 Amel Awadelkarim and Johan Ugander. Prioritized Restreaming Algorithms for Balanced
Graph Partitioning. In 26th Conference on Knowledge Discovery and Data Mining (SIGKDD),
pages 1877–1887. ACM, 2020. doi:10.1145/3394486.3403239.

7 Cevdet Aykanat, Berkant Barla Cambazoglu, Ferit Findik, and Tahsin M. Kurç. Adaptive
decomposition and remapping algorithms for object-space-parallel direct volume rendering
of unstructured grids. Journal of Parallel and Distributed Computing, 67(1):77–99, 2007.
doi:10.1016/J.JPDC.2006.05.005.

8 David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. Graph Parti-
tioning and Graph Clustering, volume 588. American Mathematical Society Providence, 2013.
doi:10.1090/conm/588.

9 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In
28th Symposium on Theory of Computing (STOC), pages 47–55. ACM, 1996. doi:10.1145/
237814.237827.

10 Vincent D. Blondel, Jean Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast Unfolding
of Communities in Large Networks. Journal of Statistical Mechanics: Theory and Experiment,
2008. doi:10.1088/1742-5468/2008/10/P10008.

11 Erik G. Boman, Karen D. Devine, and Sivasankaran Rajamanickam. Scalable Matrix Compu-
tations on Large Scale-Free Graphs Using 2D Graph Partitioning. In International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), pages 50:1–50:12.
ACM, 2013. doi:10.1145/2503210.2503293.

12 Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. Maximizing Modularity is Hard, 2006. doi:10.48550/arXiv.physics/
0608255.

13 Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
Advances in Graph Partitioning. In Algorithm Engineering, volume 9220, pages 117–158.
Springer, 2016. doi:10.1007/978-3-319-49487-6_4.

14 Ümit Çatalyürek, Karen Devine, Marcelo Faraj, Lars Gottesbüren, Tobias Heuer, Henning
Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel Seemaier, et al. More
Recent Advances in (Hyper)Graph Partitioning. ACM Computing Surveys, 55(12):253–253,
2023. doi:10.1145/3571808.

15 Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A Recursive Model
for Graph Mining. In 4th International Conference on Data Mining (ICDM), pages 442–446.
SIAM, 2004. doi:10.1137/1.9781611972740.43.

16 Yuhan Chen, Haojie Ye, Sanketh Vedula, Alex M. Bronstein, Ronald G. Dreslinski, Trevor N.
Mudge, and Nishil Talati. Demystifying Graph Sparsification Algorithms in Graph Properties

ESA 2025

https://doi.org/10.1109/IPDPS.2006.1639360
https://doi.org/10.1145/2601438
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.1145/1007912.1007931
https://doi.org/10.1145/1007912.1007931
https://doi.org/10.1007/978-3-031-21534-6_1
https://doi.org/10.1145/3394486.3403239
https://doi.org/10.1016/J.JPDC.2006.05.005
https://doi.org/10.1090/conm/588
https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/237814.237827
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1145/2503210.2503293
https://doi.org/10.48550/arXiv.physics/0608255
https://doi.org/10.48550/arXiv.physics/0608255
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1145/3571808
https://doi.org/10.1137/1.9781611972740.43

32:18 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

Preservation. Proceedings of the VLDB Endowment, 17(3):427–440, 2023. doi:10.14778/
3632093.3632106.

17 Adil Chhabra, Florian Kurpicz, Christian Schulz, Dominik Schweisgut, and Daniel Seemaier.
Partitioning Trillion Edge Graphs on Edge Devices, 2024. doi:10.48550/arXiv.2410.07732.

18 Timothy A. Davis, William W. Hager, Scott P. Kolodziej, and S. Nuri Yeralan. Algorithm 1003:
Mongoose, a Graph Coarsening and Partitioning Library. ACM Transactions on Mathematical
Software, 46(1), 2020. doi:10.1145/3337792.

19 Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Transactions on Mathematical Software, 38(1):1:1–1:25, November 2011. doi:10.1145/2049662.
2049663.

20 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking Optimization Software with Performance
Profiles. Mathematical Programming, 91(2):201–213, 2002. doi:10.1007/s101070100263.

21 Marcelo Fonseca Faraj and Christian Schulz. Buffered Streaming Graph Partitioning. ACM
Journal of Experimental Algorithmics (JEA), 27:1.10:1–1.10:26, 2022. doi:10.1145/3546911.

22 Sebastian Forster and Tijn de Vos. Faster Cut Sparsification of Weighted Graphs. Algorithmica,
85(4):929–964, 2022. doi:10.1007/s00453-022-01053-4.

23 Santo Fortunato and Marc Barthélemy. Resolution limit in community detection. National
Academy of Sciences, 104(1):36–41, 2007. doi:10.1073/pnas.0605965104.

24 Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Moritz
von Looz. Communication-free Massively Distributed Graph Generation. In 32nd International
Parallel and Distributed Processing Symposium (IPDPS), pages 336–347. IEEE Computer
Society, 2018. doi:10.1109/IPDPS.2018.00043.

25 Michael S. Gilbert, Kamesh Madduri, Erik G. Boman, and Siva Rajamanickam. Jet: Multilevel
Graph Partitioning on Graphics Processing Units. SIAM Journal of Scientific Computing.,
46(5):700, 2024. doi:10.1137/23M1559129.

26 Lars Gottesbüren, Tobias Heuer, Nikolai Maas, Peter Sanders, and Sebastian Schlag. Scalable
High-Quality Hypergraph Partitioning. ACM Transactions on Algorithms, 20(1):9:1–9:54,
2024. doi:10.1145/3626527.

27 Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier.
KaMinPar. Software, swhId: swh:1:dir:2ec38dbccb676136f71dc1796d6a06b450c48c6d
(visited on 2025-09-03). URL: https://github.com/KaHIP/KaMinPar/commit/
73eeaa2371c6826e166c9ca1383996f14d8c7a2a, doi:10.4230/artifacts.24666.

28 Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scalable Shared-
Memory Hypergraph Partitioning. In 23st Workshop on Algorithm Engineering & Experiments
(ALENEX), 2021. doi:10.1137/1.9781611976472.2.

29 Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel Seemaier. Deep
Multilevel Graph Partitioning. In 29th European Symposium on Algorithms (ESA), pages
48:1–48:17, 2021. doi:10.4230/LIPIcs.ESA.2021.48.

30 Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier. Linear-
time multilevel graph partitioning via edge sparsification, 2025. doi:10.48550/arXiv.2504.
17615.

31 Milad Rezaei Hajidehi, Sraavan Sridhar, and Margo I. Seltzer. CUTTANA: Scalable Graph
Partitioning for Faster Distributed Graph Databases and Analytics. Proceedings of the VLDB
Endowment, 18(1):14–27, 2024. doi:10.14778/3696435.3696437.

32 Bruce Hendrickson and Robert Leland. A Multi-Level Algorithm For Partitioning Graphs. In
ACM/IEEE Conference on Supercomputing, pages 28–es. ACM, 1995. doi:10.1145/224170.
224228.

33 Tobias Heuer and Sebastian Schlag. Improving Coarsening Schemes for Hypergraph Partitioning
by Exploiting Community Structure. In 16th International Symposium on Experimental
Algorithms (SEA), pages 21:1–21:19, June 2017. doi:10.4230/LIPIcs.SEA.2017.21.

34 Artur Jez. Faster Fully Compressed Pattern Matching by Recompression. ACM Transactions
on Algorithms (TALG), 11(3):20:1–20:43, 2015. doi:10.1145/2631920.

https://doi.org/10.14778/3632093.3632106
https://doi.org/10.14778/3632093.3632106
https://doi.org/10.48550/arXiv.2410.07732
https://doi.org/10.1145/3337792
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s101070100263
https://doi.org/10.1145/3546911
https://doi.org/10.1007/s00453-022-01053-4
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1137/23M1559129
https://doi.org/10.1145/3626527
https://archive.softwareheritage.org/swh:1:dir:2ec38dbccb676136f71dc1796d6a06b450c48c6d
https://github.com/KaHIP/KaMinPar/commit/73eeaa2371c6826e166c9ca1383996f14d8c7a2a
https://github.com/KaHIP/KaMinPar/commit/73eeaa2371c6826e166c9ca1383996f14d8c7a2a
https://doi.org/10.4230/artifacts.24666
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.48550/arXiv.2504.17615
https://doi.org/10.48550/arXiv.2504.17615
https://doi.org/10.14778/3696435.3696437
https://doi.org/10.1145/224170.224228
https://doi.org/10.1145/224170.224228
https://doi.org/10.4230/LIPIcs.SEA.2017.21
https://doi.org/10.1145/2631920

L. Gottesbüren, N. Maas, D. Rosch, P. Sanders, and D. Seemaier 32:19

35 George Karypis and Vipin Kumar. Analysis of Multilevel Graph Partitioning. In ACM/IEEE
Conference on Supercomputing, pages 29–es. ACM, 1995. doi:10.1145/224170.224229.

36 George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998. doi:10.1137/
S1064827595287997.

37 Robert Krause, Lars Gottesbüren, and Nikolai Maas. Deterministic Parallel High-Quality
Hypergraph Partitioning, 2025. doi:10.48550/arXiv.2504.12013.

38 Dominique Lasalle and George Karypis. Multi-threaded Graph Partitioning. In 27th IEEE
International Symposium on Parallel and Distributed Processing (IPDPS), pages 225–236,
2013. doi:10.1109/IPDPS.2013.50.

39 Dominique LaSalle, Md. Mostofa Ali Patwary, Nadathur Satish, Narayanan Sundaram, Pra-
deep Dubey, and George Karypis. Improving Graph Partitioning for Modern Graphs and
Architectures. In 5th Workshop on Irregular Applications - Architectures and Algorithms (IA3),
pages 14:1–14:4. ACM, 2015. doi:10.1145/2833179.2833188.

40 Jure Leskovec and Christos Faloutsos. Sampling from Large Graphs. In 12th International
Conference on Knowledge Discovery and Data Mining (KDD), pages 631–636. ACM, 2006.
doi:10.1145/1150402.1150479.

41 Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph Evolution: Densification and
Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data, 1(1):2–es, 2007.
doi:10.1145/1217299.1217301.

42 Gerd Lindner, Christian L. Staudt, Michael Hamann, Henning Meyerhenke, and Dorothea
Wagner. Structure-Preserving Sparsification of Social Networks. In IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 448–454.
ACM, 2015. doi:10.1145/2808797.2809313.

43 Nikolai Maas, Lars Gottesbüren, and Daniel Seemaier. Parallel Unconstrained Local Search
for Partitioning Irregular Graphs. In 26st Workshop on Algorithm Engineering & Experiments
(ALENEX), pages 32–45. SIAM, 2024. doi:10.1137/1.9781611977929.3.

44 Henning Meyerhenke, Peter Sanders, and Christian Schulz. Partitioning Complex Networks
via Size-Constrained Clustering. In 13th International Symposium on Experimental Algorithms
(SEA), pages 351–363. Springer, 2014. doi:10.1007/978-3-319-07959-2_30.

45 Joel C. Miller and Aric A. Hagberg. Efficient Generation of Networks with Given Expected
Degrees. In 8th International Workshop on Algorithms and Models for the Web Graph (WAW),
pages 115–126. Springer, 2011. doi:10.1007/978-3-642-21286-4_10.

46 Mark E. J. Newman and Michelle Girvan. Finding and Evaluating Community Structure in
Networks. Physical Review E, 69, February 2004. doi:10.1103/PhysRevE.69.026113.

47 Chuck Pheatt. Intel Threading Building Blocks. Journal of Computing Sciences in Colleges,
23(4):298–298, 2008.

48 Semih Salihoglu and Jennifer Widom. GPS: A Graph Processing System. In Conference
on Scientific and Statistical Database Management (SSDBM), pages 22:1–22:12. ACM, 2013.
doi:10.1145/2484838.2484843.

49 Daniel Salwasser, Daniel Seemaier, Lars Gottesbüren, and Peter Sanders. Tera-Scale Multilevel
Graph Partitioning, 2024. doi:10.48550/arXiv.2410.19119.

50 George M. Slota, Kamesh Madduri, and Sivasankaran Rajamanickam. PuLP: Scalable Multi-
Objective Multi-Constraint Partitioning for Small-World Networks. In IEEE International
Conference on Big Data, pages 481–490. IEEE, 2014. doi:10.1109/BIGDATA.2014.7004265.

51 Daniel A. Spielman and Nikhil Srivastava. Graph Sparsification by Effective Resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011. doi:10.1137/080734029.

52 Christian L. Staudt and Henning Meyerhenke. Engineering Parallel Algorithms for Community
Detection in Massive Networks. IEEE Transactions on Parallel and Distributed Systems,
27(1):171–184, 2016. doi:10.1109/TPDS.2015.2390633.

53 Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic.
FENNEL: Streaming Graph Partitioning for Massive Scale Graphs. In 7th International

ESA 2025

https://doi.org/10.1145/224170.224229
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.48550/arXiv.2504.12013
https://doi.org/10.1109/IPDPS.2013.50
https://doi.org/10.1145/2833179.2833188
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/2808797.2809313
https://doi.org/10.1137/1.9781611977929.3
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1007/978-3-642-21286-4_10
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1145/2484838.2484843
https://doi.org/10.48550/arXiv.2410.19119
https://doi.org/10.1109/BIGDATA.2014.7004265
https://doi.org/10.1137/080734029
https://doi.org/10.1109/TPDS.2015.2390633

32:20 Linear-Time Multilevel Graph Partitioning via Edge Sparsification

Conference on Web Search and Data Mining (WSDM), pages 333–342. ACM, 2014. doi:
10.1145/2556195.2556213.

54 Jianshu Weng and Bu-Sung Lee. Event Detection in Twitter. In 5th International Conference
on Weblogs and Social Media. AAAI, 2011. doi:10.1609/icwsm.v5i1.14102.

55 Tom Chao Zhou, Hao Ma, Michael R. Lyu, and Irwin King. UserRec: A User Recommendation
Framework in Social Tagging Systems. In 24th AAAI Conference on Artificial Intelligence,
pages 1486–1491. AAAI, 2010. doi:10.1609/AAAI.V24I1.7524.

https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1609/icwsm.v5i1.14102
https://doi.org/10.1609/AAAI.V24I1.7524

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Linear Time Multilevel Graph Partitioning
	4.1 Reducing the Number of Nodes
	4.2 Reducing the Number of Edges via Sparsification
	4.3 Putting it Together

	5 Quantifying Worst-Case Instances
	6 Experiments
	6.1 Parameter Study
	6.2 Effects of Sparsification
	6.3 Comparison against Competing Partitioners

	7 Conclusion

