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—— Abstract

We revisit the complexity of building, given a two-dimensional string of size n, an indexing structure
that allows locating all k occurrences of a two-dimensional pattern of size m. While a structure of
size O(n) with query time O(m + k) is known for this problem under the additional assumption that
the pattern is a square [Giancarlo, SICOMP 1995], a popular belief was that for rectangular patterns
one cannot achieve such (or even similar) bounds, due to a lower bound for a certain natural class of
approaches [Giancarlo, WADS 1993]. We show that, in fact, it is possible to construct a very simple
structure of size O(nlogn) that supports such queries for any rectangular pattern in O(m + klog® n)
time, for any € > 0.
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1 Introduction

In the area of algorithms on strings, two basic algorithmic questions are pattern matching
and string indexing. In the former, we aim to locate an occurrence of the pattern in the
text, while in the latter the goal is to preprocess the text for multiple such queries. The
complexity of both problems is well understood, at least for the case of regular strings and
exact occurrences. In particular, a text of length n can be indexed in O(n) space, so that all
k occurrences of a pattern of length m can be retrieved in O(m + k) time: this is a textbook
application of suffix trees, already explained in the original article by Weiner [22].

In this paper, we consider two-dimensional strings, which are simply (two-dimensional)
arrays of characters. Such a generalisation is naturally motivated by possible applications in
image processing, and the complexity of pattern matching for two-dimensional strings has
been already considered in the 70s [4,5], and further investigated in the early 90s [1,10]. A
common assumption in all of these papers is that both the text and the pattern are square
arrays, but this assumption is just to avoid clutter and can be removed without encountering
any technical difficulties.

To state the results concerning indexing two-dimensional strings, let the dimensions
of the text be H x W, with the total size n = HW, and the dimensions of the pattern
be h x w, with the total size m = hw. Giancarlo [12] introduced the LSuffix tree of a
matrix, based on a linearisation of a two-dimensional string (similar concept has been also
used by Amir and Farach [2]). This allowed him to design an index of (asymptotically
optimal) size O(n) that supports queries in O(m) time (for simplicity, we restate the bounds
for constant alphabets), but only if the pattern is a square matrix. This assumption was
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in fact inherent to his approach, as otherwise it is not clear how to linearise the strings.
For the general case, he designed another structure, called the submatrix tree [11], of size
O(min(H, W)n) that supports queries in O(m) time. In the same paper, he defined an
abstract notion of an index for a two-dimensional text, and proved that the size of any
such index must be Q(min(H, W)n), making his construction essentially optimal (perhaps
up to a logarithmic factor). Consequently, subsequent work focused on the case of square
patterns [7,9,13-16, 18, 21].

Our contribution. We revisit the complexity of indexing a two-dimensional text for the
general case of rectangular patterns. We observe that, in fact, the abstract notion of an
index, as defined by Giancarlo [11], is somewhat restricted: he defines what it means for one
pattern to be a prefix of another, and then requires that the index has a form of a compacted
tree, with every node corresponding to some pattern occurring in the text, and the parent of
each node corresponding to its prefix. This is consistent with the notion of one-dimensional
suffix trees, but suffix trees are not the only known indexing structures. For example, suffix
arrays [20] use O(n) space and allow retrieving the occurrences in O(m + logn + k) time,
even though they are not based on storing a compacted trie (although they are of course
related to suffix arrays). We show that a very simple idea allows us to obtain the following
result.

» Theorem 1. For a two-dimensional text of size n, there is an O(nlogn)-space data
structure that, given a two-dimensional pattern of size m, reports all k occurrences of the
pattern in the text in time O(m + klog®n), for any constant € > 0.

Computational model. In the above theorem we assume the standard word RAM model
with words of logarithmic (in the size of the input) length. Basic arithmetic operations on
such words (and indirect addressing) are assumed to take constant time. Each character is
assumed to fit in a single machine word. We measure the size of our data structures in the
number of words.

2 Preliminaries

One-dimensional strings. A (one-dimensional) string is a sequence of characters. We index
positions in a string starting from 1. For a string S of length n, we write S[i] to denote its i-th
character and SJi .. j] to denote the substring spanning positions ¢ through j, inclusive. If
only one endpoint is provided, we interpret the interval as a prefix or suffix: S[..4] := S[1..4]
is the prefix of length ¢; S[i..] ;== S[i..n] is the suffix starting at position i.

Two-dimensional strings. We define two-dimensional strings as rectangular arrays of
characters. We refer to the total number of characters in a two-dimensional string as its size.
Rows and columns are indexed starting from 1. For a two-dimensional string S we write S[i]
to denote its i-th row, interpreted as a one-dimensional string. Consequently, S[i][j] denotes
the character in the i-th row and j-th column.

Meta-characters. In our algorithm, we reduce two-dimensional indexing to a collection of
problems concerning one-dimensional strings. This is done by treating fixed-length fragments
of rows of the two-dimensional text as atomic symbols, which we refer to as meta-characters.
Formally, for a two-dimensional string S and a fixed width w, a meta-character is a substring
of the form S[i][j..j + w — 1]. To effectively operate on such meta-characters, we will
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represent each of them by an integer from [poly(n)] that fits inside a single machine word?,
called the identifier. The identifiers of two meta-characters will be different if and only if the
meta-characters themselves are different.

Compacted trie. We use the standard compacted trie, also known as a compressed trie
or Patricia trie, for storing a set of strings. The strings consist of either characters or
meta-characters. In either case, we assume that the symbols fit in a single machine word.
A compacted trie built for a set of k strings is of size O(k), as we collapse maximal paths
consisting of nodes with exactly one child into a single edge, thus the number of inner nodes
is strictly smaller than the number of leaves. The remaining nodes are called explicit, while
the dissolved nodes are called implicit.

Tools. We will need a few data structures. The first is called a deterministic dictionary.

» Theorem 2 ([8]). Given a set S of n keys, we can build a dictionary structure of size O(n)
that allows constant-time access to any element of S (and its associated information).

The second is a range reporting structure (we note that other trade-offs between the space
and reporting time are possible, but we state only one of them to avoid clutter).

» Theorem 3 ([6, Theorem 2.1]). Given a collection of n points in {1,...,n}?, we can build

a structure of size O(n) that, given an axis-aligned rectangle, reports all k points inside it in
time O((1 4 k)log® n), for any constant € > 0.

Finally, we need to implement prefiz search on a compacted trie. That is, given a query
string, we traverse the trie to determine whether it occurs as a prefix of any stored string. If
so, we return the corresponding node (which may be implicit); otherwise, we report that no
such prefix match exists.

» Lemma 4. A compacted trie storing k strings uses O(k) additional space (on top of the
strings themselves). Assuming constant-time read-only random access to any character, prefic
search for a query string of length m takes O(m) time.

Proof. To implement prefix search, we start at the root and descend following the appropriate
edge. This requires storing all the edges outgoing from an explicit node in a dictionary
structure, which we implement with Theorem 2. Since the total degree over all explicit nodes
is O(k), the combined space used by all dictionaries is O(k). For implicit nodes, we only
verify whether the subsequent characters of the query string are the same as on the edge,
using constant-time read-only random access to one of the stored strings. Then, the time
per each character of the query string is constant, so O(m) overall. <

3 Two-Dimensional Index Construction

In this section, we present our data structure for indexing a two-dimensional text and prove
Theorem 1. The idea behind our approach is to reduce the two-dimensional pattern matching
problem to a collection of one-dimensional problems. Each of these problems can then be
solved efficiently by plugging in range reporting structures, as usual in the one-dimensional
setting. Throughout this section, we write T" to denote the H x W input text and P to

denote the h X w query pattern, with n = HW and m = hw denoting their respective sizes.

1 1t is in fact enough that it fits in a constant number of machine words.
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The data structure consists of two symmetric components, designed to handle the query
depending on whether the pattern is taller or wider. Given an h X w pattern, we use one
component if h > w and the symmetric one (with rows and columns interchanged) otherwise.
We describe how to handle tall patterns, i.e., those with h > w, as the other case is fully
symmetric. To handle patterns of different widths, we store a separate index for each possible
pattern width. More precisely, for each width w € {1,..., W}, we construct a dedicated data
structure that supports searching for patterns of fixed width w and any height h > w.

For a fixed width w, we reduce the two-dimensional matching problem to a one-dimensional
problem. Specifically, we interpret the pattern as a one-dimensional string of length h, where
the i-th symbol is a meta-character corresponding to the i-th row P[i] of the pattern, that
is, a contiguous block of w characters from that row. As explained earlier, we will assign
identifiers to these meta-characters, so that we can treat them as integers from [poly(n)].
We first explain how to ensure that we can access the identifier of any meta-character in the
pattern and the text in constant time, after O(nlogn) space preprocessing of the text, and
then define the one-dimensional problem.

Encoding the text. The construction follows the classical Karp-Miller-Rosenberg (KMR)
approach [17], and is based on assigning integer identifiers to all fragments of the form
T[i][j..7+2% —1], for all k such that 2¥ < W. For each such fragment, we define its identifier
as the lexicographic rank of its substring among all distinct substrings of the same length,
and store this value. Then, the identifier of T'[i][;..j + w — 1] consists of the identifiers of
two overlapping fragments of length 2L1°8®] that together cover the whole T'[i][j..j +w — 1].
Since there are O(n) fragments per length and O(log W) relevant lengths, the total space
required is O(nlogn).

Encoding the pattern. To encode a pattern row P[i] of width w, we represent the corres-
ponding meta-character by the pair of identifiers of its prefix and suffix of length 2*, where
k = |logw]. To support this, during text preprocessing, we collect all distinct substrings
T[i][j..j + 2¥ — 1] and store them in a compacted trie, where each leaf is labeled with the
lexicographic rank among all substrings of T' of length 2. We build a separate compacted
trie for each relevant value of k; since each trie requires O(n) space and there are O(log W)
values of k, the total space used by all the compacted tries is O(nlogn). At query time,
we extract the 2F-length prefix and suffix of P[i] and search for them in the corresponding
compacted trie to obtain their identifiers. If either substring is not found, we report that the
pattern does not occur in the text. Otherwise, in O(m) time we obtain the sought identifier
for each row of the pattern.

One-dimensional problems. To complete the reduction, we must identify all occurrences
of the one-dimensional meta-character pattern within the two-dimensional text. To that
end, we consider all windows of w consecutive columns. Each such w-column strip defines a
one-dimensional text of length H, where the j-th character is a meta-character corresponding
to the block of w consecutive characters in the j-th row of the strip. Formally, to define the
one-dimensional texts corresponding to each w-column strip, we fix a horizontal offset i €
{1,...,W —w+ 1} and define a one-dimensional text of length H consisting of the meta-
characters T'[j][i..¢ + w — 1] for all positions j € {1,...,H}. This gives a collection of
W — w + 1 one-dimensional texts over the same meta-character alphabet. Each occurrence
of the meta-character pattern in one of these one-dimensional texts corresponds one-to-one
to a two-dimensional occurrence of the original pattern in the text.
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In each of these one-dimensional instances, the derived meta-character pattern has
length h > w. We exploit this assumption when designing a (simple) indexing structure in
Section 4.

» Lemma 5. For a parameter w and a collection of one-dimensional texts of total length n,
there is a data structure requiring O(n/w) additional space (on top of the strings) that, given
a one-dimensional pattern of length h > w, reports all k occurrences of the pattern in the
texts in time O(hw + (w + k) log® n), for any constant € > 0.

We could apply Lemma 5 for each width w € {1,..., W} to handle patterns of width w
and height h > w. The total additional space is bounded by ZZLl O(n/w) = O(nlogn),
matching the requirements of Theorem 1. However, when h is smaller than log® n, it holds
that wlog®n in the query time is larger than m. We thus handle the case of small w
separately as follows.

» Lemma 6. For a collection of one-dimensional texts of total length n, there is an O(n)-
space data structure that, given a one-dimensional pattern of any length h, reports all k
occurrences of the pattern in the texts in time O(h + k).

Proof. We store all suffixes of all input texts, each terminated with a distinct delimiter, in a
compacted trie implemented with Lemma 4. The total number of suffixes is O(n), so the total
required space is O(n). Querying for a pattern of length h is implemented by performing
a prefix search for the pattern in the trie and reporting all leaves in the corresponding
subtree. |

We apply Lemma 6 for every width w < logn, and otherwise use Lemma 5. The total
space is still O(nlogn). To bound the query time, we observe that whenever we use Lemma 6
the query time is O(h + k) = O(m + k), and whenever we use Lemma 5 we can assume
w > logn so the query time is O(hw + (w + k) log®n) = O(m + klog® n).

4 One-Dimensional Index for Long Patterns

In this section, we prove Lemma 5 by designing an indexing structure for the one-dimensional
setting that takes advantage of the assumption that the pattern is sufficiently long. We briefly
comment that such a setup can be seen as related to locally consistent anchors, and such
an assumption has been used in the literature [3]. In our case, a simple and self-contained
approach based on defining some compacted tries and storing a range reporting structure
is enough, though. The idea of using range searching to solve indexing is, of course, quite
common in the literature [19].

Setup. We assume that the input texts allow constant-time read-only random access to
the individual characters, and each of them fits in a single machine word. Throughout this
section, we fix a parameter w, corresponding to the lower bound on the length of the pattern.
Texts shorter than w can be discarded, as they cannot contain an occurrence of a pattern of
length h > w.

Preprocessing. For each text T', we define a collection of cuts: positions between characters
spaced at regular intervals of length w. Formally, we insert a cut at every position ¢ such
that ¢ =0 (mod w), including ¢ = 0. Each cut partitions T into a prefix T} = T[..4] and a
suffix T = T[i+1..], where either may be empty. We associate the cut with the pair (71, T5),
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which serves as its representation. We organize the collection of cuts using a two-dimensional
range reporting structure. Let 7; denote the set of all prefixes T} reversed, and let 72 denote
the set of all suffixes T, extracted from the cuts. We build two compacted tries:

&1, storing the strings in 77,

Ss, storing the strings in 7.
To ensure that each string from 77 and from 75 corresponds to a unique leaf in the respective
trie, we conceptually prepend and append a distinct delimiter character to each prefix and
suffix, respectively.

Next, we assign a pre-order number to each leaf of S; and Sy via a depth-first traversal.
Each cut then defines a point (z,y) € Z2, where:

x is the pre-order number of the leaf in &7 corresponding to the reversal of 17,

y is the pre-order number of the leaf in Sy corresponding to T5.
This yields a collection of O(n/w) such points, one per cut. We store these points in an
instance of Theorem 3.

Answering a query. Given a pattern P of length A > w, our goal is to report all of its
occurrences in the input texts. Since the pattern has length at least w, any occurrence must
span at least one cut position from the collection defined for the texts. We iterate over all
positions at which such a cut could intersect an occurrence of the pattern. We refer to each
such position within the pattern as an anchor, and consider only the first w possible anchors,
to ensure that every occurrence of P is reported exactly once.

Specifically, we consider all positions j € {0,1,...,w — 1} where the pattern may be
anchored. Each such position induces a partition of P into a prefix P, = P[..j] and a
suffix P, = P[j+1..]. The task is to find and report all cuts in the texts that partition some
text into (T, T5) such that Py is a suffix of T7 and P; is a prefix of T». This is implemented
as follows. First, we extract the corresponding prefix-suffix pair (P;, P2) from the pattern.
We then locate the (possibly implicit) node v; in S; corresponding to the reversal of P;, and
the node vy in Sy corresponding to Ps. If either node does not exist, the current position
cannot yield any occurrences and is skipped. Otherwise, let [¢1,r1] and [¢3, 2] be the ranges
of pre-order numbers of leaves in the subtrees of v; and vs, respectively.

The problem now reduces to a two-dimensional orthogonal range reporting query: report
all stored points (z,y) that lie within the rectangle [¢1,71] X [€2,73]. Each reported point
corresponds to a valid cut that certifies an occurrence of the pattern. Querying the instance
of Theorem 3 yields the query bound claimed in Lemma 5.
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