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Abstract
The Fréchet distance is a popular similarity measure that is well-understood for polygonal curves
in Rd: near-quadratic time algorithms exist, and conditional lower bounds suggest that these results
cannot be improved significantly, even in one dimension and when approximating with a factor less
than three. We consider the special case where the curves bound a simple polygon and distances are
measured via geodesics inside this simple polygon. Here the conditional lower bounds do not apply;
Efrat et al. (2002) were able to give a near-linear time 2-approximation algorithm.

In this paper, we significantly improve upon their result: we present a (1 + ε)-approximation
algorithm, for any ε > 0, that runs in O( 1

ε
(n + m log n) log nm log 1

ε
) time for a simple polygon

bounded by two curves with n and m vertices, respectively. To do so, we show how to compute the
reachability of specific groups of points in the free space at once, by interpreting the free space as
one between separated one-dimensional curves. We solve this one-dimensional problem in near-linear
time, generalizing a result by Bringmann and Künnemann (2015). Finally, we give a linear time
exact algorithm if the two curves bound a convex polygon.
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1 Introduction

The Fréchet distance is a well-studied similarity measure for curves in a metric space. Most
results so far concern the Fréchet distance between two polygonal curves R and B in Rd

with n and m vertices, respectively. Then the Fréchet distance between two such curves can
be computed in Õ(nm) time (see e.g. [1, 5]). There is a closely matching conditional lower
bound: If the Fréchet distance between polygonal curves can be computed in O((nm)1−ε)
time (for any constant ε > 0), then the Strong Exponential Time Hypothesis fails [3]. This
lower bound extends to curves in one dimension, and holds even when approximating to a
factor less than three [6].

Because it is unlikely that exact strongly subquadratic algorithms exist, approximation
algorithms have been developed [9, 15, 8]. The authors [15] were the first to present an
algorithms which results in an arbitrarily small polynomial approximation factor (nε for any
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R

B

Figure 1 (left) Curves R and B bound a simple polygon. (right) A maximally-parallel matching.

ε ∈ (0, 1]) in strongly subquadratic time (Õ(n2−ε)). Very recently, Cheng et al. [8] gave the
first (randomized) constant-factor approximation algorithm with a strongly subquadratic
running time. Specifically, it computes a (7 + ε)-approximation in O(nm0.99 log(n/ε)) time.

For certain families of “realistic” curves, the SETH lower bound does not apply. For
example, when the curves are c-packed, Driemel et al. [11] gave an (1 + ε)-approximation
algorithm, for any ε ∈ (0, 1), that runs in Õ(cn/ε) time. Bringmann and Künnemann [4]
improved the running time to Õ(cn/

√
ε) time.

For curves in one dimension with an imbalanced number of vertices, the Fréchet distance
can be computed in strongly subquadratic time without making extra assumptions about
the shape of the curves. This was recently established by Blank and Driemel [2], who give
an Õ(n2α + n)-time algorithm when m = nα for some α ∈ (0, 1).

If the two polygonal curves R and B lie inside a simple polygon P with k vertices and
we measure distances by the geodesic distance inside P , then neither the upper nor the
conditional lower bound change in a fundamental way. Specifically, Cook and Wenk [10] show
how to compute the Fréchet distance in this setting in O(k + N2 log kN log N) time, with
N = max{n, m}. For more general polygonal obstacles, Chambers et al. [7] give an algorithm
that computes the homotopic Fréchet distance in O(N9 log N) time, where N = m + n + k

is the total number of vertices on the curves and obstacles.
Har-Peled et al. [13] investigate the setting where R and B are simple, interior-disjoint

curves on the boundary of a triangulated topological disk. If the disk has k faces, their
algorithm computes a O(log k)-approximation to the homotopic Fréchet distance in O(k6 log k)
time. Efrat et al. [12] consider a more geometric setting, where R and B bound a simple
polygon (see Figure 1 (left)). Here, the SETH lower bound does not apply; a 2-approximation
to the geodesic Fréchet distance can be computed in O((n + m) log nm) time [12]. Moreover,
the authors [14] recently gave an O((n + m) log4 nm)-time exact algorithm for a similar
setting, where distances are measured under the L1-geodesic distance. Their result implies a√

2-approximation algorithm for the geodesic Fréchet distance.

Organization and results. In this paper, we significantly improve upon the results of
Efrat et al. [12] and the authors [14]: we present a (1 + ε)-approximation algorithm for the
geodesic Fréchet distance, for any ε ∈ (0, 1], that runs in O( 1

ε (n + m log n) log nm log 1
ε ) time

when R and B together bound a simple polygon. We give an overview of our algorithm
in Section 2. Our algorithm relies on an interesting connection between matchings and
nearest neighbors and is described in Section 3. There we also explain how to transform the
decision problem for far points on B (those who are not a nearest neighbor of any point on R)
into a problem between separated one-dimensional curves. This problem is about computing,
given a set of “entrances” and “potential exits” (points anywhere in the parameter space),
which potential exits are δ-reachable from entrances. Bringmann and Künnemann [4] study a
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restricted variant of this problem in the context of Fréchet distance between c-packed curves.
In addition to giving a near-linear time algorithm for the general problem, we also compute
the Fréchet distance between two separated one-dimensional curves in linear time.

In the full version of this paper, we additionally describe a simple linear-time algorithm
for when P is a convex polygon. We show that in this setting there is a Fréchet matching
with a specific structure: a maximally-parallel matching (see Figure 1 (right)). We compute
the orientation of the parallel part from up to O(n + m) different tangents, which we find
using “rotating calipers.”

Preliminaries. A (polygonal) curve R with n vertices is a continuous map R : [1, n] → Rd

that is linear on each interval [i, i + 1] where i is an integer. Its vertices are the points R(i).
If the vertices lie in the plane, then we say R is two-dimensional.1A one-dimensional curve is
defined analogously.

We denote by R[x, x′] the subcurve of R over the domain [x, x′], and abuse notation
slightly to let R[r, r′] to also denote this subcurve when r = R(x) and r′ = R(x′). The edges
of R are the directed line segments R[i, i + 1] for integers i ∈ [1, n − 1]. We write |R| to
denote the number of vertices of R. In this work, we consider two simple, interior-disjoint
curves R : [1, n] → R2 and B : [1, m] → R2 with R(1) = B(1) and R(n) = B(m), and say
that they bound a simple polygon P .

A reparameterization of [1, n] is a non-decreasing surjection f : [0, 1] → [1, n]. Two
reparameterizations f and g of [1, n] and [1, m], describe a matching (f, g) between two
curves R and B with n and m vertices, respectively, where any point R(f(t)) is matched to
B(g(t)). The matching (f, g) is said to have cost

max
t

d(R(f(t)), B(g(t))),

where d(·, ·) is the geodesic distance between points in P . A matching with cost at most δ is
called a δ-matching. The (continuous) geodesic Fréchet distance dF(R, B) between R and B

is the minimum cost over all matchings. The corresponding matching is a Fréchet matching.
The parameter space of R and B is the axis-aligned rectangle [1, n] × [1, m]. Any point

(x, y) in the parameter space corresponds to the pair of points R(x) and B(y) on the two
curves. A point (x, y) in the parameter space is δ-close for some δ ≥ 0 if d(R(x), B(y)) ≤ δ.
The δ-free space Fδ(R, B) of R and B is the set of δ-close points. Alt and Godau [1] observed
that there is a one-to-one correspondence between δ-matchings between subcurves R[x, x′]
and B[y, y′], and bimonotone paths from (x, y) to (x′, y′) through Fδ(R, B). We abuse
terminology slightly and refer to such paths as δ-matchings as well.

A point q = (x′, y′) ∈ Fδ(R, B) is δ-reachable from a point p = (x, y) if x ≤ x′ and y ≤ y′,
and there exists a bimonotone (i.e., monotone in both coordinates) path in Fδ(R, B) from p

to q. That is, if the subcurves R[x, x′] and B[y, y′] have Fréchet distance at most δ between
them. Points that are δ-reachable from (1, 1) are simply called δ-reachable points.

Let ε ∈ (0, 1] be a parameter. A (1 + ε)-approximate decision algorithm for our problem
takes a decision parameter δ ≥ 0, and outputs either that dF(R, B) ≤ (1 + ε)δ or that
dF(R, B) > δ. It may report either answer if δ < dF(R, B) ≤ (1 + ε)δ.

1 Curves are inherently one-dimensional objects. We abuse terminology slightly to refer to the ambient
dimension as the dimension of a curve.
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Figure 2 (left) Points r and b with b ∈ NN (r). The region shaded in green consists of all points
within geodesic distance δ of b. (right) The (r, b, δ)-nearest neighbor fan (orange).

2 Algorithmic outline

In this section we sketch the major parts of our algorithm that approximates the geodesic
Fréchet distance δF := dF(R, B) between curves R and B. We approximate δF using a
(1 + ε)-approximate decision algorithm, and use binary search to find the correct decision
parameter. In Section 3.4 we relate the Fréchet distance to the geodesic Hausdorff distance
δH , which allows us to bound the number of iterations of the binary search. In particular,
we show that δF lies in the range [δH , 3δH ]. The Hausdorff distance δH can be computed
in O((n + m) log nm) time [10, Theorem 7.1]. A binary search over [δH , 3δH ] results in a
(1 + ε)-approximation of the Fréchet distance after O(log 1

ε ) calls to the decision algorithm.
Theorem 1 follows.

▶ Theorem 1. For any ε ∈ (0, 1], we can compute a (1 + ε)-approximation to dF(R, B) in
O( 1

ε (n + m log n) log nm log 1
ε ) time.

The approximate decision algorithm. In the remainder of this section we outline the
approximate decision algorithm, which is presented in detail in Section 3. At its heart lies a
useful connection between matchings and nearest neighbors. A nearest neighbor of a point r

on R is any point b on B that among all points on B is closest to r. We denote the nearest
neighbor(s) of r by NN (r). We prove in Section 3.1 that any δ-matching matches each
nearest neighbor b of r relatively close to r. Specifically, b must be matched to only points r′

for which the entire subcurve of R between r and r′ is within distance δ of b. We introduce
the concept of a (r, b, δ)-nearest neighbor fan to capture the candidate locations for r′.

The (r, b, δ)-nearest neighbor fan Fr,b(δ) contains the point b and the maximal subcurve
R[x, x′] that contains r and is within geodesic distance δ of b; it is the union of geodesics
between b and points on R[x, x′], see Figure 2. We call b the apex of Fr,b(δ) and R[x, x′] the
leaf of the fan. We prove in Section 3.1 that any δ-matching must match the apex b to a
point in the leaf R[x, x′].

As r moves forward along R, so do its nearest neighbors b along B. Their nearest neighbor
fans Fr,b(δ) move monotonically through the polygon P bounded by R and B. However,
while r moves continuously along R, the points b and their nearest neighbor fans might jump
discontinuously. Such discontinuities occur due to points b that are not a nearest neighbor
of any point on R, and thus at points that are not the apex of a nearest neighbor fan. We
classify the points on B accordingly: we call a point b on B a near point if it is a nearest
neighbor of at least one point on R, and call b a far point otherwise.
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Figure 3 (left) The mappings (purple) from points on R to their nearest neighbor(s) on B.
(middle) The partition of the parameter space based on near and far points on B. The partly-dashed
purple curve indicates the nearest neighbor(s) on B of points on R. The beige regions correspond to
the (r, b, δ)-nearest neighbor fans. (right) A δ-matching that is greedy on B inside the regions.

The distinction between near and far points induces a partition H of the parameter space
into horizontal slabs. We consider these slabs from bottom to top, and iteratively construct
a δ-matching (provided that one exists). Recall that a δ-matching is a bimonotone path in
Fδ(R, B) from the bottom-left corner of the parameter space to the top-right corner.

Inside a slab Hnear ∈ H corresponding to a subcurve of B with only near points, the
nearest neighbor fans correspond to a connected, x-monotone and y-monotone region R
spanning the entire height of Hnear. These regions are illustrated in Figure 3. The intersection
between any δ-matching and Hnear is contained in R. The structure of R implies that if a
δ-matching between R and B exists, there exists one which moves vertically up inside R
whenever this is possible. Geometrically, this corresponds to greedily traversing the near
points on B, and traversing parts of R only when necessary. We formalize this in Section 3.2.

Slabs whose corresponding subcurves of B have only far points pose the greatest technical
challenge for our algorithm; we show how to match far points in an approximate manner
in Section 3.3. Specifically, let Hfar ∈ H correspond to a subcurve B[b, b′] with only far points
on its interior. We compute a suitable subcurve of R that can be (1 + ε)δ-matched to B[b, b′]
in the following manner. First we argue that d(b, b′) ≤ 2δF . In other words, the geodesic
from b to b′ is short and separates R from the subcurve B[b, b′]. We use this separating
geodesic to transform the problem of creating a matching for far points into K = O(1/ε)
one-dimensional problems.

Specifically, we discretize the separator with K points, which we call anchors, and ensure
that consecutive anchors are at most εδ apart. We snap our geodesics to these anchors
(see Figure 4), which incurs a small approximation error. Based on which anchor a geodesic

b b′ b b′

≤ 2δF

r r

Figure 4 (left) The points b and b′ are both nearest neighbor of some point r, implying a short
separator. (right) Adding anchor points to the separator and snapping the orange geodesic (between
arbitrary points on R and B[b, b′]) to one.

ESA 2025
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snaps to, we partition the parameter space of R and B[b, b′] into regions, one for each anchor.
For each anchor point, the lengths of the geodesics snapped to it can be expressed as distances
between points on two separated one-dimensional curves; this results in a one-dimensional
problem which we can solve exactly. In Section 3.3 we present the transformation into
one-dimensional curves, and in Section 4 we present an efficient exact algorithm for the
resulting one-dimensional problem.

3 Approximate geodesic Fréchet distance

3.1 Nearest neighbor fans and partitioning the parameter space
We first present useful properties of nearest neighbor fans and their relation to matchings.
In Lemma 3 we give a crucial property of nearest neighbor fans, namely that any δ-matching
between R and B matches b to only points in the leaf of the fan. For the proof, we make use
of the following auxiliary lemma:

▶ Lemma 2. Let r ∈ R and b ∈ NN (r). For any points r′ ∈ R and b′ ∈ B on opposite sides
of the geodesic π(r, b) between r and b, we have d(r′, b) ≤ d(r′, b′).

▶ Lemma 3. Let r ∈ R and b ∈ NN (r). For any δ ≥ 0, every δ-matching between R and B

matches b to only points in the leaf of Fr,b(δ).

Proof. Fix a δ-matching (f, g) and let r′ be a point matched to b by this matching. Assume
without loss of generality that r′ comes before r along R. Let r̂ be a point between r′ and r.
The δ-matching (f, g) matches r̂ to at least one point b̂ after b. Thus we obtain from Lemma 2
that d(r̂, b) ≤ d(r̂, b̂) ≤ δ. This proves that all points between r′ and r are included in the
leaf of Fr,b(δ). ◀

We partition the parameter space into (closed) maximal horizontal slabs, such that for each
slab [1, n] × [y, y′], either the subcurve B[y, y′] contains only near points, or its interior
contains only far points. Let H be the resulting partition. Each slab H ∈ H has two
horizontal line segments, one on its bottom and one on its top side, that correspond to
nearest neighbor fans. We refer to these line segments as the entrance and exit intervals of
H, and refer to points on them as the entrances and exits of H. A consequence of Lemma 3
is that any δ-matching enters and leaves H through an entrance and an exit, respectively.
We compute δ-safe entrances and exits: δ-reachable points from which (n, m) is δ-reachable.
Each such point is used by a δ-matching, and is used to iteratively determine if such a
matching exists.

It proves sufficient to consider only a discrete set of entrances and exits for each slab.
For each slab, we identify (implicitly) a set of O(n) entrances and exits that contain δ-safe
entrances and exits (if any exist at all). We define these entrances and exits using locally
closest points and will call them transit points.

A point r on R is locally closest to a point b on B if perturbing r infinitesimally while
staying on R increases its distance to b. The transit entrances and exits are those entrances
and exits (x, y) where R(x) is either a vertex or locally closest to B(y). We show that it is
sufficient to consider only transit entrances and exits:

▶ Lemma 4. If there exists a δ-matching, then there exists one that enters and leaves each
slab through a transit entrance and exit.

Our algorithm computes a δ-safe transit exit for each slab. To do so, it requires the explicit
entrance and exit intervals. We compute these using a geodesic Voronoi diagram.
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▶ Lemma 5. The partition H consists of O(m) slabs. We can compute H, together with the
entrance and exit interval of each slab, in O((n + m) log nm) time in total.

3.2 Slabs of near points
Let Hnear ∈ H be a slab corresponding to a subcurve B̂ of B with only near points. We
use properties of nearest neighbor fans to determine a δ-safe transit exit of Hnear. A crucial
property is that the nearest neighbor fans behave monotonically with respect to their apexes,
if δ is large enough. Specifically, this is the case if δ ≥ δH , the geodesic Hausdorff distance
between R and B. This is the maximum distance between a point on R ∪ B and its closest
point on the other curve.

▶ Lemma 6. Suppose δ ≥ δH . Let b and b′ be near points on B and let R[x1, x′
1] and

R[x2, x′
2] be the leaves of their respective nearest neighbor fans. If b comes before b′, then

x1 ≤ x2 and x′
1 ≤ x′

2.

The monotonicity of the nearest neighbor fans, together with the fact that each point on B̂

corresponds to such a fan, ensures that we can determine such an exit in logarithmic time
(see Lemma 8). We make use of the following data structure that reports transit exits:

▶ Lemma 7. Given the exit interval [x, x′] × {y} of Hnear, we can report the at most three
transit exits on a horizontal line segment [i, i + 1] × {y}, for any integer 1 ≤ i < n, in
O(log nm) time, after O(n + m) preprocessing time.

▶ Lemma 8. Suppose δ ≥ δH . Let Hnear ∈ H be a slab corresponding to a subcurve of B

with only near points. Given the exit interval of Hnear, together with a δ-safe transit entrance,
we can compute a δ-safe transit exit in O(log nm) time, after O(n + m) preprocessing time.

Proof (sketch). Given a δ-safe transit entrance penter, the leftmost transit exit to the right
of penter is δ-safe. We report it with the data structure of Lemma 7. ◀

3.3 Slabs of far points
Next we give an algorithm for computing a δ-safe transit exit of a given slab Hfar ∈ H
that corresponds to a subcurve of B with only far points on its interior. Our algorithm is
approximate: given ε ∈ (0, 1], it computes an (ε, δ)-safe transit exit (if one exists). This is a
(1 + ε)δ-reachable point from which (n, m) is δ-reachable. Such a transit exit behaves like a
δ-safe transit exit for the purpose of iteratively constructing a matching.

To compute an (ε, δ)-safe transit exit, we make use of an approximate decision algorithm
that uses the fact that B̂ has only far points on its interior. We present this algorithm
in Section 3.3.1. In Section 3.3.2 we then apply this approximate decision algorithm in a
search procedure, where we search over the O(n) transit exits to compute an (ε, δ)-safe one.

3.3.1 Approximate decision algorithm for far points
Let B̂ be the subcurve of B that corresponds to Hfar, so its interior has only far points. Let
R̂ be an arbitrary subcurve of R, for which we seek to approximately determine whether
dF(R̂, B̂) ≤ δ. We report either that dF(R̂, B̂) ≤ (1 + ε)δ, or that dF(R̂, B̂) > δ.

For our algorithm, we first discretize the space of geodesics between points on R̂ and
points on B̂, by grouping the geodesics into few (O(1/ε)) groups and rerouting the geodesics
in a group through some representative point. Let b̂ and b̂′ be the first, respectively last,

ESA 2025
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B̂

R̂

b b′

Figure 5 (left) Snapping a geodesic (orange) to an anchor. (right) The eight regions in the
parameter space of R̂ and B̂ corresponding to the first eight (out of nine) anchors. The orange
geodesic lies in region R5.

endpoints of B̂. There is a point r on R with NN (r) = {b̂, b̂′}. We observe that this implies
the geodesic π(b̂, b̂′) that connects b̂ to b̂′ is short with respect to the Fréchet distance, and
thus with respect to any relevant value for δ:

▶ Lemma 9. d(b̂, b̂′) ≤ 2dF(R̂, B̂).

We assume for the remainder that d(b̂, b̂′) ≤ 2δ; if this is not the case, we immediately report
that dF(R̂, B̂) > δ. This assumption means that the geodesic π(b̂, b̂′) is a short separator
between R̂ and B̂. That is, any geodesic between a point on R̂ and a point on B̂ intersects
π(b̂, b̂′). For clarity, we denote by πsep the separator π(b̂, b̂′). We use the short separator to
formulate the (exact) reachability problem as O(1/ε) subproblems involving one-dimensional
curves. This is where we incur a small approximation error.

We discretize πsep with K + 1 = O(1/ε) points b̂ = a1, . . . , aK+1 = b̂′, which we call
anchors, and ensure that consecutive anchors at most a distance εδ apart, see Figure 5 (left).
We assume that no anchor coincides with a vertex of R̂ ∪ B̂ (except for a1 and aK+1).

We route geodesics between points on R̂ and points on B̂ through these anchors. Spe-
cifically, for points r̂ ∈ R̂ and b̂ ∈ B̂, if π(r̂, b̂) intersects πsep between consecutive anchors ak

and ak+1, then we “snap” π(r̂, b̂) to ak; that is, we replace it by the union of π(r̂, ak) and
π(ak, b̂) (see Figure 5 (right)). This creates a new path between r̂ and b̂ that goes through
ak and has length at most d(r̂, b̂) + εδ.

We associate an anchor ak with the points (x, y) in the parameter space for which the
geodesic π(R̂(x), B̂(y)) is snapped to ak. These points form a region Rk that is connected
and monotone in both coordinates (see Figure 5 (right)). We iteratively compute, for each
region Rk, a set of (1 + ε)δ-reachable points on its boundary, such that the decision question
can be answered by checking if the last set contains (|R̂|, |B̂|). We later formulate these
subproblems in terms of pairs of one-dimensional curves that are separated by a point.

We first discretize the problem. For this, we identify sets of points on the shared
boundaries between the pairs of adjacent regions, such that there exists a δ-matching that
enters and exits each region through such a set. Specifically, for k = 2, . . . , K, we let the
set Sk contain those points (x, y) ∈ Rk−1 ∩ Rk for which one of R(x) and B(y) is a vertex
or locally closest to ak (so perturbing the point infinitesimally along its curve increases its
distance to ak). We set S1 = {(1, 1)}. In the following lemmas, we show that these sets suit
our needs and are efficiently constructable.

▶ Lemma 10. If there exists a δ-matching between R̂ and B̂, then there exists one that goes
through a point in Sk for every anchor ak.
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▶ Lemma 11. Each set Sk contains O(|R̂| + |B̂|) points and can be constructed in O((|R̂| +
|B̂|) log nm) time, after O(n + m) preprocessing time.

Having constructed the sets Sk for all anchors in O( 1
ε (|R̂| + |B̂|) log nm) time altogether, we

move to computing subsets S∗
k ⊆ Sk containing all δ-reachable points, and only points that

are (1 + ε)δ-reachable. We proceed iteratively, constructing S∗
k+1 from S∗

k . For this, observe
that for any point (x, y) in the interior of Rk, the geodesic π(R̂(x), B̂(y)) was snapped to ak.
We use this fact to construct a pair of one-dimensional curves that approximately describe
the lengths of these geodesics.

Let R̄k : [1, |R̂|] → R and B̄k : [1, |B̂|] → R be one-dimensional curves, where we set
R̄k(x) = −d(R̂(x), ak) and B̄k(y) = d(B̂(y), ak) (note the difference in sign). These curves
encode the distances between points on R̂ and B̂ when snapping geodesics to ak. That is,
|R̄k(x) − B̄k(y)| is the length of π(R̂(x), B̂(y)) after snapping to ak. Hence, for any pair of
points p ∈ S∗

k and q ∈ Sk+1, we have the following relations:
If q is δ-reachable from p in the parameter space of R̂ and B̂, then it is (1 + ε)δ-reachable
in the parameter space of R̄k and B̄k.
Conversely, if q is (1 + ε)δ-reachable from p in the parameter space of R̄k and B̄k, then it
is (1 + ε)δ-reachable in the parameter space of R̂ and B̂.

We define S∗
k+1 as the points in Sk+1 that are (1 + ε)δ-reachable from points in S∗

k , in
the parameter space of R̄k and B̄k. Computing these points is the problem involving
one-dimensional curves that we alluded to earlier.

▶ Lemma 12. Given S∗
k , we can compute S∗

k+1 in O((|R̂|+ |B̂|) log nm) time, after O(n+m)
preprocessing time.

We apply the above procedure iteratively, computing S∗
k for each anchor ak. These sets take

a total of O( 1
ε (|B̂| + |R̂|) log nm) time to construct. Afterwards, if (|R̂|, |B̂|) ∈ S∗

K , we report
that dF(R̂, B̂) ≤ (1 + ε)δ. Otherwise, we report that dF(R̂, B̂) > δ. We obtain:

▶ Lemma 13. Let R̂ be an arbitrary subcurve of R, and let B̂ be a maximal subcurve of
B with only far points on its interior. We can decide whether dF(R̂, B̂) ≤ (1 + ε)δ or
dF(R̂, B̂) > δ in O( 1

ε (|R̂| + |B̂|) log nm) time, after O(n + m) preprocessing time.

B̂

B̂ penter

penter

(1 + ε)δ δ

Figure 6 The subproblem of matching far points. The exit interval on the right is divided into
three regions, based on reachability of points. The aim is to compute a (1 + ε)δ-reachable transit
exit to the left of all δ-reachable transit exits.
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3.3.2 Computing a good exit
Recall that we set out to compute an (ε, δ)-safe transit exit of Hfar. We assume we are given
an (ε, δ)-safe entrance penter = (x, y). Since the entire exit interval of Hfar lies in Fδ(R, B),
it suffices to compute a transit exit qexit that is (1 + ε)δ-reachable from penter and that lies to
the left of all transit exits that are δ-reachable from penter, see Figure 6. We compute such a
transit exit qexit through a search procedure, combined with the decision algorithm.

There are O(n) transit exits of Hfar. To avoid running the decision algorithm for each of
these, we use exponential search. The choice for exponential search over, e.g., binary search
comes from the fact that the running time of the decision algorithm depends on the location
of the transit exit, with transit exits lying further to the right in the exit interval of Hfar
needing more time for the decision algorithm. Exponential search ensures that we do not
consider transit exits that are much more to the right than needed.

▶ Lemma 14. Let Hfar ∈ H be a slab corresponding to a subcurve B̂ of B with only far points
on its interior. Given an (ε, δ)-safe transit entrance p = (x, y) of Hfar, we can compute an
(ε, δ)-safe transit exit q = (x′, y′) in O( 1

ε (|R[x, x′]| + |B̂|) log n log nm) time.

3.4 The approximate optimization algorithm
We combine the algorithms of Sections 3.2 and 3.3 to obtain a (1 + ε)-approximate decision
algorithm, which we then turn into an algorithm that computes a (1 + ε)-approximation of
the geodesic Fréchet distance between R and B. Given δ ≥ 0 and ε ∈ (0, 1], the approximate
decision algorithm reports that dF(R, B) ≤ (1 + ε)δ or dF(R, B) > δ.

Let δH be the geodesic Hausdorff distance between R and B. This distance, which is the
maximum distance between a point on R ∪ B to its closest point on the other curve, is a
natural lower bound on the geodesic Fréchet distance. If δ < δH , we therefore immediately
return that dF(R, B) > δ. We can compute δH in O((n + m) log nm) time [10].

Next suppose δ ≥ δH . For our approximate decision algorithm, we first compute the
partition H and the entrance and exit intervals of each of its slabs. By Lemma 5, this takes
O((n + m) log nm) time. We iterate over the O(m) slabs of H from bottom to top. Once
we consider a slab H ∈ H, we have computed an (ε, δ)-safe transit entrance penter = (x, y)
(except if H is the bottom slab, in which case we set penter = (1, 1)).

Let B̂ be the subcurve corresponding to H. If B̂ contains only near points, we compute a
(ε, δ)-safe transit exit qexit = (x′, y′) of H in O(log nm) time with the algorithm of Section 3.2.
Otherwise, we use the algorithm of Section 3.3, which takes O( 1

ε (|R[x, x′]|+ |B̂|) log n log nm)
time. Both algorithms require O(n + m) preprocessing time. Taken over all slabs in H, the
total complexity of the subcurves B̂ is O(m). This gives the following result:

▶ Theorem 15. For any ε ∈ (0, 1], there is a (1 + ε)-approximate decision algorithm running
in O( 1

ε (n + m) log n log nm) time.

We turn the decision algorithm into an approximate optimization algorithm with a simple
binary search. For this, we show that the geodesic Fréchet distance is not much greater than
δH . This gives an accurate “guess” of the actual geodesic Fréchet distance.

▶ Lemma 16. δH ≤ dF(R, B) ≤ 3δH .

For our approximate optimization algorithm, we perform binary search over the values
δH , (1 + ε)δH , . . . , 3δH and run our approximate decision algorithm with each encountered
parameter. This procedure yields a (1 + ε)2-approximation to the geodesic Fréchet distance.
Since (1 + ε)2 ≤ 1 + 3ε for ε ∈ (0, 1], scaling ε by a factor of 1/3 gives our main result:

▶ Theorem 1. For any ε ∈ (0, 1], we can compute a (1 + ε)-approximation to dF(R, B) in
O( 1

ε (n + m log n) log nm log 1
ε ) time.
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4 Separated one-dimensional curves and propagating reachability

In this section we consider the following problem: Let R̄ and B̄ be two one-dimensional
curves with n and m vertices, respectively, where R̄ lies left of the point 0 and B̄ right of
it. We are given a set S ⊆ Fδ(R̄, B̄) of O(n + m) “entrances,” for some δ ≥ 0. Also, we are
given a set E ⊆ Fδ(R̄, B̄) of O(n + m) “potential exits.” We wish to compute the subset of
potential exits that are δ-reachable from an entrance. We call this procedure propagating
reachability information from S to E. We assume that the points in S and E correspond to
pairs of vertices of R̄ and B̄. This assumption can be met by introducing O(n + m) vertices,
which does not increase our asymptotic running times. Additionally, we may assume that all
vertices of R̄ and B̄ have unique values, for example by a symbolic perturbation.

The problem of propagating reachability information has already been studied by Bring-
mann and Künnemann [4]. In case S lies on the left and bottom sides of the parameter space
and E lies on the top and right sides, they give an O((n+m) log nm) time algorithm. We are
interested in a more general case however, where S and E may lie anywhere in the parameter
space. We make heavy use of the concept of prefix-minima to develop an algorithm for our
more general setting that has the same running time as the one described by Bringmann and
Künnemann [4]. Furthermore, our algorithm is able to actually compute a Fréchet matching
between R̄ and B̄ in linear time (see the full version of this paper), whereas Bringmann and
Künnemann require near-linear time for only the decision version.

As mentioned above, we use prefix-minima extensively for our results in this section.
Prefix-minima are those vertices that are closest to the separator 0 among those points before
them on the curves. In the full version of this paper, we prove that a Fréchet matching exists
that matches subcurves between consecutive prefix-minima to prefix-minima of the other
curve, see Figure 7 for an illustration. We call these matchings prefix-minima matchings.
This matching will end in a bichromatic closest pair of points, and so we can compose the
matching with a symmetric matching for the reversed curves.

δ

Figure 7 (left) A pair of separated, one-dimensional curves R̄ and B̄, drawn stretched vertically
for clarity, together with a prefix-minima matching. (right) The path in Fδ(R̄, B̄) corresponding to
the matching.
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In Section 4.1 we introduce two geometric forests in Fδ(R̄, B̄), with leaves at S, that
capture multiple prefix-minima matchings at once. It is based on horizontal-greedy and
vertical-greedy matchings. We show that these forests have linear complexity and can be
computed efficiently.

In Section 4.2 we do not only go forward from points in S, but also backwards from points
in E using suffix-minima. Again we have horizontal-greedy and vertical-greedy versions.
Intersections between the two prefix-minima forests and the two suffix minima forests show
the existence of a δ-free path of the corresponding points in S and E, so the problem reduces
to a bichromatic intersection algorithm.

4.1 Greedy paths in the free space
We wish to construct a set of canonical prefix-minima δ-matchings in the free space from which
we can deduce which points in E are reachable. Naturally, we want to avoid constructing
a path between every point in S and every point in E. Therefore, we investigate certain
classes of prefix-minima δ-matchings that allows us to infer reachability information with
just two paths per point in S and two paths per point in E. Furthermore, these paths have
a combined O(n + m) description complexity.

We first introduce one of the greedy matchings and prove a useful property. A horizontal-
greedy δ-matching πhor is a prefix-minima δ-matching starting at a point s = (i, j) that
satisfies the following property: Let (i′, j′) be a point on πhor where R̄(i′) and B̄(j′) are
prefix-minima of R̄[i, n] and B̄[j, m]. If there exists a prefix-minimum R̄(̂i) of R̄[i, n] after
R̄(i′), and the horizontal line segment [i′, î] × {j′} lies in Fδ(R̄, B̄), then either πhor traverses
this line segment, or πhor terminates in (i′, j′).

For an entrance s ∈ S, let πhor(s) be the maximal horizontal-greedy δ-matching. See Fig-
ure 8 for an illustration. The path πhor(s) serves as a canonical prefix-minima δ-matching,
in the sense that any point t that is reachable from s by a prefix-minima δ-matching is
reachable from a point on πhor(s) through a single vertical segment:

▶ Lemma 17. Let s ∈ S and let t be a point that is reachable by a prefix-minima δ-matching
from s. A point t̂ ∈ πhor(s) vertically below t exists for which the segment t̂t lies in Fδ(R̄, B̄).

A single path πhor(s) may have O(n + m) complexity. We would like to construct the paths
for all entrances, but this would result in a combined complexity of O((n + m)2). However,
due to the definition of the paths, if two paths πhor(s) and πhor(s′) have a point (i, j) in
common, then the paths are identical from (i, j) onwards. Thus, rather than explicitly
describing the paths, we instead describe their union. Specifically, the set

⋃
s∈S πhor(s) forms

a geometric forest Thor(S) whose leaves are the points in S, see Figure 8. This forest has low
complexity and can be constructed efficiently:

▶ Lemma 18. The forest Thor(S) has O(n + m) vertices.

▶ Lemma 19. We can construct a geometric graph for Thor(S) in O((n + m) log nm) time.

4.2 Propagating reachability
Next we give an algorithm for propagating reachability information. For the algorithm,
we consider three more δ-matchings that are symmetric in definition to the horizontal-
greedy δ-matchings. The first is the maximal vertical-greedy δ-matching πver(s), which,
as the name suggests, is the maximal prefix-minima δ-matching starting at an entrance
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δ

Figure 8 (left) For every vertex, its next prefix-minimum is depicted as its parent in the respective
tree. (right) The horizontal-greedy δ-matchings. Paths move monotonically to the right and up.

s ∈ S that prioritizes vertical movement over horizontal movement. The other two require
a symmetric definition to prefix-minima, namely suffix-minima. These are the vertices
closest to 0 compared to the suffix of the curve after the vertex. The maximal reverse
horizontal- and vertical-greedy δ-matchings ⃗πhor(t) and ⃗πver(t), starting at a potential exit
t ∈ E, are symmetric in definition to the maximal horizontal- and vertical-greedy δ-matching,
except that they move backwards, to the left and down, and their vertices correspond to
suffix-minima of the curves (see Figure 9).

Consider a point s = (i, j) ∈ S and let t = (i′, j′) ∈ E be δ-reachable from s. Let R̄(i∗)
and B̄(j∗) form a bichromatic closest pair of R̄[i, i′] and B̄[j, j′]. Note that these points are
unique, by our general position assumption. We prove in the full version of this paper that
(i∗, j∗) is δ-reachable from s, and that t is δ-reachable from (i∗, j∗).

δ

Figure 9 (left) For every vertex, its previous suffix-minimum is shown as its parent in the tree.
(right) The reverse horizontal-greedy δ-matchings. Paths move monotonically to the left and down.
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s

t

i∗

j∗

s

t

i∗

j∗

πver

πhor

⃗πver

⃗πhor

⃗πver

⃗πhor

πver

πhor

Figure 10 Two possible situations following from Lemmas 17 and 20. The paths starting at s

or t are the four greedy matchings. The horizontal and vertical light green segments lie in Fδ(R, B).
On the right, the extensions of πhor(s) and πver(s) respectively intersect ⃗πver(t) and ⃗πhor(t).

From Lemma 17 we have that πhor(s) has points vertically below (i∗, j∗), and the vertical
segment between πhor(s) and (i∗, j∗) lies in Fδ(R̄, B̄). We extend the property to somewhat
predict the movement of πhor(s) near t:

▶ Lemma 20. Either πhor(s) terminates in (i∗, j∗), or it contains a point vertically below t

or horizontally left of t.

Based on Lemmas 17 and 20 and their symmetric counterparts, πhor(s) and πver(s) satisfy
the properties below, and ⃗πhor(t) and ⃗πver(t) satisfy symmetric properties, see Figure 10.

πhor(s) has a point vertically below (i∗, j∗), and the vertical segment between πhor(s) and
(i∗, j∗) lies in Fδ(R̄, B̄).
πver(s) has a point horizontally left of (i∗, j∗), and the horizontal segment between πver(s)
and (i∗, j∗) lies in Fδ(R̄, B̄).
πhor(s) and πver(s) both either terminate in (i∗, j∗), or contain a point vertically below t

or horizontally left of t.
These properties mean that either πhor(s)∪πver(s) intersects ⃗πhor(t)∪ ⃗πver(t), or the following
extensions do: Let π+

hor(s) be the path obtained by extending πhor(s) with the maximum
horizontal line segment in Fδ(R̄, B̄) whose left endpoint is the end of πhor(s). Define π+

ver(s)
symmetrically, by extending πver(s) with a vertical segment. Also define ⃗π+

hor(s) and ⃗π+
ver(s)

analogously. By Lemma 17, π+
hor(s) or π+

ver(s) must intersect ⃗π+
hor(t) or ⃗π+

ver(t). Furthermore,
if π+

hor(s) or π+
ver(s) intersects ⃗π+

hor(t′) or ⃗π+
ver(t′) for some potential exit t′ ∈ E, then the

bimonotonicity of the paths implies that t′ is δ-reachable from s. Thus:

▶ Lemma 21. A point t ∈ E is δ-reachable from a point s ∈ S if and only if π+
hor(s) ∪ π+

ver(s)
intersects ⃗π+

hor(t′) ∪ ⃗π+
ver(t′).

Recall that Thor(S) represents all paths πhor(s). We augment Thor(S) to represent all paths
π+

hor(s). For this, we take each root vertex p and compute the maximal horizontal segment
pq ⊆ Fδ(R̄, B̄) that has p as its left endpoint. We compute this segment in O(log n) time
after O(n log n) time preprocessing (for details, refer to the full version of this paper). We
then add q as a vertex to Thor(S), and add an edge from p to q.

Let T +
hor(S) be the augmented graph. We define the graphs T +

ver(S), ⃗T
+
hor(E) and ⃗T

+
ver(E)

analogously. The four graphs have a combined complexity of O(n+m) and can be constructed
in O((n + m) log nm) time. Our algorithm computes the edges of ⃗T

+
hor(E) and ⃗T

+
ver(E) that

intersect an edge of T +
hor(S) or T +

ver(S). We do so with a standard sweepline algorithm:

▶ Lemma 22. Given sets of n “red” and m “blue,” axis-aligned line segments in R2, we can
report all segments that intersect a segment of the other color in O((n + m) log nm) time.
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Suppose we have computed the set of edges E of ⃗T
+
hor(E) and ⃗T

+
ver(E) that intersect an edge

of T +
hor(S) or T +

ver(S). We store E in a red-black tree, so that we can efficiently retrieve and
remove edges from this set. Let e ∈ E and suppose e is an edge of ⃗T

+
hor(E). Let µ be the

top-right vertex of e. All potential exits of E that are stored in the subtree of µ are reachable
from a point in S. We traverse the entire subtree of µ, deleting every edge we find from E .
Every point in E we find is marked as reachable. In this manner, we obtain:

▶ Theorem 23. Let R̄ and B̄ be two separated one-dimensional curves with n and m vertices.
Let δ ≥ 0, and let S, E ⊆ Fδ(R̄, B̄) be sets of O(n + m) points. We can compute the set of
all points in E that are δ-reachable from points in S in O((n + m) log nm) time.

5 Conclusion

We studied computing the approximate geodesic Fréchet distance of two curves R and B

that bound a simple polygon P , one clockwise and one counterclockwise, whose endpoints
meet. Our algorithm is approximate, though the only approximate parts are for matching
the far points and turning the decision algorithm into an optimization algorithm. Doing so
exactly and in strongly subquadratic time remains an interesting open problem.

Our algorithm extends to the case where R and B do not cover the complete boundary
of the polygon. In other words, the start and endpoints of R and B need not coincide.
Geodesics between points on R and B must stay inside P . In this case, k = |P | can be much
greater than n + m − 2, which influences the preprocessing and query times of various data
structures we use. The running time then becomes: O(k + 1

ε (n + m log n) log k log 1
ε ).
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