Efficient Contractions of Dynamic Graphs — With
Applications

Monika Henzinger &
Institute of Science and Technology, Klosterneuburg, Austria

Evangelos Kosinas &
Institute of Science and Technology, Klosterneuburg, Austria

Robin Miink &

Technical University of Munich, Germany

Harald Racke =

Technical University of Munich, Germany

—— Abstract

A non-trivial minimum cut (NMC) sparsifier is a multigraph G that preserves all non-trivial
minimum cuts of a given undirected graph G. We introduce a flexible data structure for fully
dynamic graphs that can efficiently provide an NMC sparsifier upon request at any point during the
sequence of updates. We employ simple dynamic forest data structures to achieve a fast from-scratch
construction of the sparsifier at query time. Based on the strength of the adversary and desired type
of time bounds, the data structure comes with different guarantees. Specifically, let G be a fully
dynamic simple graph with n vertices and minimum degree 6. Then our data structure supports an
insertion/deletion of an edge to/from G in n°® worst-case time. Furthermore, upon request, it can
return w.h.p. an NMC sparsifier of G that has O(n/d) vertices and O(n) edges, in O(n) time. The
probabilistic guarantees hold against an adaptive adversary. Alternatively, the update and query
times can be improved to O(l) and O(n) respectively, if amortized-time guarantees are sufficient, or
if the adversary is oblivious. Throughout the paper, we use O to hide polylogarithmic factors and 6]
to hide subpolynomial (i.e., n°®) factors.

We discuss two applications of our new data structure. First, it can be used to efficiently
report a cactus representation of all minimum cuts of a fully dynamic simple graph. Building this
cactus for the NMC sparsifier instead of the original graph allows for a construction time that is
sublinear in the number of edges. Against an adaptive adversary, we can with high probability
output the cactus representation in worst-case O(n) time. Second, our data structure allows us
to efficiently compute the maximal k-edge-connected subgraphs of undirected simple graphs, by
repeatedly applying a minimum cut algorithm on the NMC sparsifier. Specifically, we can compute
with high probability the maximal k-edge-connected subgraphs of a simple graph with n vertices
and m edges in O(m + n?/k) time. This improves the best known time bounds for k = Q(n'/®) and
naturally extends to the case of fully dynamic graphs.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms; Theory of
computation — Dynamic graph algorithms

Keywords and phrases Graph Algorithms, Cut Sparsifiers, Dynamic Algorithms
Digital Object Identifier 10.4230/LIPIcs.ESA.2025.36
Related Version Full Version: https://arxiv.org/abs/2509.05157

Funding Monika Henzinger and Evangelos Kosinas: This project has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innov-
ation programme (MoDynStruct, No. 101019564) and the Austrian Science Fund (FWF) grant
DOI 10.55776/7422 and grant DOI 10.55776/15982.
Harald Rdcke and Robin Miink: This project has received funding from the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) — 498605858.
? Monika Henzinger,. Evangelos Kosi.nas, Robin Miink, and Harald Récke;

37 icensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 36; pp. 36:1-36:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:monika.henzinger@ist.ac.at
https://orcid.org/0000-0002-5008-6530
mailto:ekosinas@cs.uoi.gr
https://orcid.org/0009-0008-2457-4937
mailto:robin.muenk@tum.de
https://orcid.org/0009-0000-5083-7704
mailto:raecke@in.tum.de
https://orcid.org/0000-0001-8797-717X
https://doi.org/10.4230/LIPIcs.ESA.2025.36
https://arxiv.org/abs/2509.05157
https://www.doi.org/10.55776/Z422
https://www.doi.org/10.55776/I5982
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

36:2

Efficient Contractions of Dynamic Graphs — With Applications

1 Introduction

Graph sparsification is an algorithmic technique that replaces an input graph G by another
graph G, which has fewer edges and/or vertices than G, but preserves (or approximately
preserves) a desired graph property. Specifically, for connectivity-based and flow-based
problems, a variety of static sparsifiers exist, that approximately maintain cut- or flow-values
in G [2, 3, 4, 8, 20, 26, 27].

Let n denote the number of vertices, m the number of edges, and J the minimum degree
of the input graph. In an undirected simple graph it is possible to reduce the number of
vertices to O(n/d) and the number of edges to O(n) both in randomized and deterministic
time O(m) while preserving the value of all non-trivial minimum cuts ezactly [10, 19, 21]. A
minimum cut is considered trivial if one of its sides consists of a single vertex and we call
the resulting multigraph a non-trivial minimum cut sparsifier (NMC sparsifier).

Most sparsification algorithms assume a static graph. Maintaining an NMC sparsifier in
a fully dynamic setting, where a sequence of edge insertions and deletions can be arbitrarily
interleaved with requests to output the NMC sparsifier, was only recently studied: Goranci,
Henzinger, Nanongkai, Saranurak, Thorup, and Wulff-Nilsen [11] show how to maintain an
NMC sparsifier in a fully dynamic graph w.h.p. in O(n) worst-case update and query time
(as a consequence of Theorem 3.7 in [11]), under the assumption of an oblivious adversary.
Additionally, Theorem 4.5 in [11] gives a deterministic algorithm that outputs an NMC
sparsifier of size O(m/d) in O(m/§) worst-case query time with O(6%) amortized update
time.

1.1 Our Results

In this paper, we present the first data structure for providing an NMC sparsifier of a fully
dynamic graph that supports sublinear worst-case update and query time and works against
an adaptive adversary. As a first application, we give an improved fully dynamic algorithm
that outputs a cactus representation of all minimum cuts of the current graph upon request.
Additionally, we use our data structure to compute the maximal k-edge connected subgraphs
of an undirected simple graph with an improvement in running time for large values of k.

In more detail, we provide a data structure for a fully dynamic graph that can be updated
in worst-case time O(l) and that allows (at any point during the sequence of edge updates)
to construct an NMC sparsifier in worst-case time O(n) The probabilistic guarantees work
against an adaptive adversary. If the update time is relaxed to be amortized or if the adversary
is oblivious, the update time can be improved to O(1) and the query time to O(n).

Our basic approach is to maintain suitable data structures in a dynamically changing
graph that allow the execution of the static NMC sparsifier algorithm based on random 2-out
contractions proposed by Ghaffari, Nowicki, and Thorup [10] in time O(n) instead of O(m).
Our main insight is that this speedup can be achieved by maintaining
1. a dynamic spanning forest data structure (DSF) of the input graph G and
2. a dynamic cut set data structure (DCS), where the user determines which edges belong

to a (not necessarily spanning) forest F' of G, and, given a vertex v, the data structure

returns an edge that leaves the tree of F' that contains v (if it exists).

We show that these two data structures suffice to construct an NMC sparsifier of the
current graph in the desired time bound. Put differently, we can avoid processing all edges
of G in order to build the NMC sparsifier, and only spend time that is roughly proportional
to the size of the sparsifier.

M. Henzinger, E. Kosinas, R. Miink, and H. Racke

Note that the NMC sparsifier is computed from scratch every time it is requested and
no information of a previously computed sparsifier is maintained throughout the dynamic
updates of the underlying graph. This ensures the probabilistic guarantees hold against an
adaptive adversary if the guarantees of the chosen DSF and DCS data structures do.

Our main result is the following theorem.

» Theorem 1. Let G be a fully dynamic simple graph that currently has n nodes and
minimum degree 6 > 0. There is a data structure that outputs an NMC sparsifier of G that
has O(n/8) vertices and O(n) edges w.h.p. upon request. Fach update and query takes either
1. worst-case O(l) and O(n) time respectively w.h.p., assuming an adaptive adversary, or
2. amortized O(l) and O(n) time respectively w.h.p., assuming an adaptive adversary, or
3. worst-case O(l) and O(n) time respectively w.h.p., assuming an oblivious adversary.

Recall that O hides polylogarithmic factors and O hides subpolynomial (i.e., no(l)) factors.

The three cases of Theorem 1 result from using different data structures to realize our required
DSF and DCS data structures. We show that with minimal overhead both data structures
can be reduced to a dynamic minimum spanning forest data structure, for which many
constructions have been proposed in the literature. For Case 1, we make use of the fully
dynamic minimum spanning forest algorithm of Chuzhoy, Gao, Li, Nanongkai, Peng, and
Saranurak [6] — the only spanning forest data structure known so far that can provide
worst-case time guarantees against an adaptive adversary. Case 2 is the result of substituting
the deterministic data structure of Holm, de Lichtenberg, and Thorup [15] and case 3 results
from using the randomized data structure of Kapron, King, and Mountjoy [16] instead.

As a first application we can efficiently provide a cactus representation of the minimum
cuts of a simple graph upon request in the fully dynamic setting. The cactus representation
of all minimum cuts of a static graph is known to be computable in near linear time O(m)
using randomized algorithms [12, 18, 21]. With deterministic algorithms, the best known
time bound is m'*+°(1) [12]. We are not aware of any previous work on providing the cactus
for fully dynamic graphs in sublinear time per query. Specifically, we show the following:

» Theorem 2. Let G be a fully dynamic simple graph with n vertices. There is a data
structure that w.h.p. reports a cactus representation of all minimum cuts of G. Each update
and query takes either

1. worst-case O(l) and O(n) time respectively w.h.p., assuming an adaptive adversary, or
2. amortized O(1) and O(n) time respectively w.h.p., assuming an adaptive adversary, or
3. worst-case O(1) and O(n) time respectively w.h.p., assuming an oblivious adversary.

Theorem 2 provides an improvement over one of the main technical components in [11].
Specifically, Goranci et al. [11], provide a method to efficiently maintain an NMC sparsifier
of a dynamic simple graph, based on the 2-out contractions of Ghaffari et al. [10]. However,
their main technical result (Theorem 3.7 in [11]) has several drawbacks. First, it needs
to know an estimated upper bound $ on the minimum degree of any graph that occurs
during the sequence of updates of G. Second, they try to maintain the sparsifier during the
updates. This results in an update time 0(3), and forces them to “hide” their sparsifier from
an adversary, i.e., they can expose their sparsifier only if they work against an oblivious
adversary. Thus, to make their minimum cut algorithm work against an adaptive adversary,
they return only the wvalue of the minimum cut. In contrast, our algorithm computes a
sparsifier from scratch upon request, and can therefore provide a cactus representation of all
minimum cuts, even against an adaptive adversary.

Notice that we provide a different trade-off in reporting the minimum cut: We have an
update time of O(1) and a query time of O(n), whereas Theorem 1.1 of Goranci et al. [11]
has an update time of O(n) and query time O(1). This trade-off is never worse (modulo

36:3

ESA 2025

36:4

Efficient Contractions of Dynamic Graphs — With Applications

Table 1 Best known time bounds for computing the maximal k-edge-connected subgraphs in
undirected graphs in the static setting. The O expression hides polylogarithmic factors.

Algorithm Time Type Range of k
Chechik et al., Forster et al. [5, 7] O(m + kOWp3/2) Det. keN
Forster et al. [7] O(m + k*n®/?) Las Vegas Rnd. keN
Henzinger et al. [13] O(n?) Det. keN
Thorup, Georgiadis et al. [28, 9] O(m + k®n®/?) Det. kE=1logPn
Saranurak and Yuan [25] O(m + kn'*to®) Det. k =1log°M n
Nalam and Saranurak [24] O(m - min{m3/* n*/®}) | Monte Carlo Rnd. keN
This paper O(m +n?/k) Monte Carlo Rnd. keN

the subpolynomial factors) if one caches the result of a query and answers queries from the
cache if the graph did not change. Furthermore, upon request, we can provide a minimum
cut explicitly, and not just its value.

As a second application of our main result, we improve the time bounds for computing
the (vertex sets of the) maximal k-edge-connected subgraphs in a simple undirected graph.
Specifically, we have the following:

» Theorem 3. Let G be a simple graph with n vertices and m edges, and let k be a positive
integer. We can compute the maximal k-edge-connected subgraphs of G w.h.p. in O(m+n?/k)
time w.h.p.

For comparison, Table 1 gives an overview of the best known algorithms for computing the
maximal k-edge-connected subgraphs in undirected graphs. Thorup [28] does not deal with
the computation of the maximal k-edge-connected subgraphs, but the result is a consequence
of his fully dynamic minimum cut algorithm as observed in [9]. The algorithm in [24] is the
only one that holds for weighted graphs (with integer weights), and it has no dependency on
k in the time bound. Notice that our algorithm improves over all prior results for & = Q(nl/ 8)
and m = Q(n%/7).

With a reduction to simple graphs, this implies the following bounds for computing the
maximal k-edge-connected subgraphs of multigraphs.

» Corollary 4. Let G be a multigraph with n vertices and m edges, and let k be a positive
integer. We can compute the mazimal k-edge-connected subgraphs of G w.h.p. in O(m +
k*n + kn?) time w.h.p.

Notice that Corollary 4 provides an improvement compared to the other algorithms in
Table 1, depending on k and the density of the graph. For example, if § and e are two
parameters satisfying 1/4 < 6 < 1, 16/15 < ¢ < 2 and § < € — 6/5, then we have an
improvement in the regime where m = ©(n) and k = ©(n°) against all previous algorithms
in Table 1 that work for multigraphs (i.e., except for Henzinger et al. [13], which works only
for simple graphs).

Finally, the method that we use in Theorem 3 for computing the maximal k-edge-connected
subgraphs in static graphs extends to the case of dynamic graphs.

» Theorem 5. Let G be a fully dynamic simple graph with n vertices. There is a data
structure that can provide the mazimal k-edge-connected subgraphs of G at any point in time,
with high probability, for any integer k < n. Fach update and query takes either

M. Henzinger, E. Kosinas, R. Miink, and H. Racke

1. worst-case O(l) and O(nz/k) time respectively w.h.p, assuming an adaptive adversary,
2. amortized O(1) and O(n?/k) time respectively w.h.p, assuming an adaptive adversary, or

3. worst-case O(1) and O(n?/k) time respectively w.h.p, assuming an oblivious adversary.

The results by Aamand et al. [1] and Saranurak and Yuan [25] provide algorithms for
maintaining the maximal k-edge-connected subgraphs in decremental graphs. Georgiadis et
al. [9] provide a fully dynamic algorithm that given two vertices determines whether they
belong to the same k-edge connected subgraph in time O(1). Their worst-case update time is
O(T(n, k)), where T'(n, k) is the running time of any algorithm for static graphs that is used
internally by the algorithm (see values in the time column of Table 1 with the additive term m
removed). Thus, as in the case for dynamic minimum cut, our algorithm provides a different
trade-off, with fast updates and slower query time. Notice that Theorem 5 provides an
improvement over [9] (for any function T'(n, k) corresponding to an algorithm from Table 1)
when k is sufficiently large (i.e., when k = Q(n'/®)).

Due to the space constraints, more details on related work, all omitted proofs, and some
further details can be found in the full version of this paper.

2 Preliminaries

In this paper, we consider only undirected, unweighted graphs. A graph is called simple
if it contains no parallel edges, conversely it is a multigraph if it does. We use common

graph terminology and notation that can be found e.g. in [23]. Let G = (V, E) be a graph.
Throughout, we use n and m to denote the number of vertices and edges of G, respectively.

We use V(G) and E(G) to denote the set of vertices and edges, respectively, of G; that is,
V =V(G) and E = E(G). A subgraph of G is a graph of the form (V', E’), where V! CV
and E' C E. A spanning subgraph of G is a subgraph of the form (V, E’) that contains
at least one incident edge to every vertex of G that has degree > 0. If X is a subset of
vertices of G, we let G[X] denote the induced subgraph of G on the vertex set X. Thus,
V(G[X]) := X, and the edge set of G[X] is {e € E'| both endpoints of e are in X}. If E’ is
a set of edges of G, we let G[E'] := (V, E').

A connected component of G is a maximal connected subgraph of G. A set of edges of G
whose removal increases the number of connected components of G is called a cut of G. The
size |C| is called the value of the cut. A cut C' with minimum value in a connected graph G
is called a minimum cut of G. In this case, G\ C = (V, E \ C) consists of two connected
components. If one of them is a single vertex, then C' is called a trivial minimum cut.

An NMC sparsifier of G is a multigraph H on the same vertex set as G that preserves all
non-trivial minimum cuts of G, in the sense that the number of edges leaving any non-trivial
minimum cut is the same in H as it is in G.

Contractions of graphs. Let E’ C E be a set of edges of a graph G = (V, E), and let
Cy,...,C: be the connected components of the graph G’ = (V| E’). The contraction G
induced by E’ is the graph derived from G by contracting each C;, for i € {1,...,t}, into a
single node. We ignore possible self-loops, but we maintain distinct edges of G that have
their endpoints in different connected components of G’. Hence, G may be a multigraph
even though G is a simple graph. Furthermore, there is a natural injective correspondence
from the edges of G to the edges of G. We say that an edge of G is preserved in G if its
endpoints are in different connected components of G’ (it corresponds to an edge of G)

36:5

ESA 2025

36:6

Efficient Contractions of Dynamic Graphs — With Applications

A random 2-out contraction of G is a contraction of G that is induced by sampling from
every vertex v of G two edges incident to it (independently, with repetition allowed) and
setting E’ to be the edges sampled in this way. Thus, E’ satisfies |E’| < 2|V (G)|. The
importance of considering 2-out contractions is demonstrated in the following theorem of
Ghaffari et al. [10].

» Theorem 6 (rephrased weaker version of Theorem 2.3 in [10]). A random 2-out contraction
of a simple graph G with n vertices and minimum degree 6 has O(n/d) vertices, with high
probability, and preserves any fized non-trivial minimum cut of G with constant probability.

Preserving small cuts via forest decompositions. Nagamochi and Ibaraki [22] have shown
the existence of a sparse subgraph that maintains all cuts of the original graph with value
up to k, where k is an integer > 1. Specifically, given a graph G = (V, E) with n vertices
and m edges, there is a spanning subgraph H = (V, E’) of G with |E’| < k(n — 1) such
that every set of edges C C FE with |C| < k is a cut of G if and only if C is a cut of H.
A graph H with this property is given by a k-forest decomposition of G, which is defined
as follows. First, we let F} be a spanning forest of G. Then, for every i € {2,...,k}, we
recursively let F; be a spanning forest of G\ (Fy U---U F;_1). Then we simply take the
union of the forests H = F} U---U Fj. A naive implementation of this idea takes time
O(k(n 4+ m)). However, this construction can be completed in linear time by computing a
maximum adjacency ordering of G [23].

Maximal k-edge-connected subgraphs. Given a graph G and a positive integer k, a
maximal k-edge-connected subgraph of G is a subgraph of the form G[S], where: (1) G[S]
is connected, (2) the minimum cuts of G[S] have value at least k, and (3) S is maximal
with this property. The first two properties can be summarized by saying that G[S] is
k-edge-connected, which equivalently means that we have to remove at least k edges in order
to disconnect G[S]. Tt is easy to see that the vertex sets Si,...,S; that induce the maximal
k-edge-connected subgraphs of G form a partition of V.

A note on probabilistic guarantees. Throughout the paper we use the abbreviation w.h.p.
(with high probability) to mean a probability of success at least 1 — O(#), where c is a fixed
constant chosen by the user and n denotes the number of vertices of the graph. The choice of
c only affects the values of two parameters ¢ and r that are used internally by the algorithm
of Ghaffari et al. [10], which our result is based on. Note that the specification “w.h.p” may
be applied either to the running time or to the correctness (or to both).

3 Outline of Our Approach

Our main contribution is a new data structure that outputs an NMC sparsifier of a fully
dynamic graph upon request. The idea is to compute the NMC sparsifier from scratch every
time it is requested. For this we adapt the construction by Ghaffari et al. [10] to compute a
random 2-out contraction of the graph at the current time. We can achieve a speedup of the
construction time by maintaining just two data structures for dynamic forests throughout
the updates of the graph.

M. Henzinger, E. Kosinas, R. Miink, and H. Racke

3.1 Updates: Data Structures for Dynamic Forests

As our fully dynamic graph G changes, we rely on efficient data structures for the following
two problems, which we call the “dynamic spanning forest“ problem (DSF) and the “dynamic
cutset” problem (DCS). In DSF, the goal is to maintain a spanning forest F' of a dynamic
graph G. Specifically, the DSF data structure supports the following operations.

insert(e). Inserts a new edge e to G. If e has endpoints in different trees of F', then it
is automatically included in F', and this event is reported to the user.
delete(e). Deletes the edge e from G. If e was a tree edge in F, then it is also removed
from F', and a new replacement edge is selected among the remaining edges of GG in order
to reconnect the trees of F' that got disconnected. If a replacement edge is found, it
automatically becomes a tree edge in F', and it is output to the user.

The DCS problem is a more demanding variant of DSF. Here the goal is to maintain a (not
necessarily spanning) forest F' of the graph, but we must also be able to provide an edge
that connects two different trees if needed. Specifically, the DCS data structure supports the
following operations.

insertg(e). Inserts a new edge e to G.

insertp(e). Inserts an edge e to F, if e is an edge of G that has endpoints in different
trees of F'. Otherwise, F' stays the same.

deleteg(e). Deletes the edge e from G. If e is a tree edge in F, it is also deleted from F'.
deletep(e). Deletes the edge e from F (or reports that e is not an edge of F').
find_cutedge(v). Returns an edge of G (if it exists) that has one endpoint in the tree
of F' that contains v, and the other endpoint outside of that tree.

The main difference between DSF and DCS is that in DCS the user has absolute control over
the edges of the forest F. In both problems, the most challenging part is finding an edge
that connects two distinct trees of F'. In DCS this becomes more difficult because the data
structure must work with the forest that the user has created, whereas in DSF the spanning
forest is managed internally by the data structure. Both of these problems can be solved by
reducing them to the dynamic minimum spanning forest (MSF) problem, as shown in the
following Lemma 7.

» Lemma 7. The DSF problem can be reduced to the DCS problem within the same time
bounds. The DCS problem can be reduced to dynamic MSF with an additive O(logn) overhead
for every operation.

To realize these two data structures deterministically with worst-case time guarantees,
the only available solution at the moment is to make use of the reduction to the dynamic
MSF problem given in Lemma 7 and then employ the dynamic MSF data structure of
Chuzhoy et. al. [6], which supports every update operation in worst-case 0(1) time. Altern-
atively, one can solve both DSF and DCS deterministically with amortized time guarantees
using the data structures of Holm et. al. [15]. In that case, every update for DSF can be
performed in amortized O(log® n) time, and every operation for DCS can be performed in
amortized O(log4 n) time, by reduction to dynamic MSF. If one is willing to allow randomness,
one can solve both DSF and DCS in worst-case polylogarithmic time per operation, under
the assumption of an oblivious adversary with the data structure by Kapron et al. [16].

These different choices for realizing the dynamic MSF data structure give the following
lemma.

36:7

ESA 2025

36:8

Efficient Contractions of Dynamic Graphs — With Applications

» Lemma 8. The DSF and DCS data structures can be realized in either
1. deterministic worst-case O(1) update time, or

2. deterministic amortized O(1) update time, or

3. worst-case O(l) update time, assuming an oblivious adversary.

To handle the updates on G, any insertion or deletion of an edge is also applied in both
the DSF and the DCS data structure. In particular, for DCS we only use the inserts and
deleteq operations and keep its forest empty. At query time, we will build the DCS forest
from scratch and then fully delete it again. In order for this to be efficient, DCS needs to
have already processed all edges of G.

3.2 Queries: Efficiently Contracting a Dynamic Graph

The NMC sparsifier that we output for each query is a random 2-out contraction of the graph
at the current time. For this construction, we use our maintained forest data structures and
build upon the algorithm of Ghaffari et al. [10], who prove the following,.

» Theorem 9 (Weaker version of Theorem 2.1 of Ghaffari et al. [10]). Let G be a simple
graph with n vertices, m edges, and minimum degree §. In O(mlogn) time we can create
a contraction G of G that has O(n/8) vertices and O(n) edges w.h.p., and preserves all
non-trivial minimum cuts of G w.h.p.

Note that in particular, the contracted graph G created by the above theorem is an NMC
sparsifier, as desired. We first sketch the algorithm that yields Theorem 9 as described by
Ghaffari et al. [10]. Then we outline how we can adapt and improve this construction for
dynamic graphs, making use of the DSF and DCS data structures. Specifically, to answer
a query we show that we can build G in time proportional to the size of é, which may be
much lower than O(mlogn). The details and a formal analysis can be found in Section 4.

Random 2-out Contractions of Static Graphs

Ghaffari et al’s algorithm [10] works as follows (see also Algorithm 1). First, it creates a
collection of ¢ = O(logn) random 2-out contractions Gi,...,G, of G, where every G; is
created with independent random variables. Now, according to Theorem 2.4 in [10], each G;
for i € {1,...,q}, has O(n/§) vertices w.h.p., and preserves any fixed non-trivial minimum
cut of G with constant probability.

In a second step, they compute a (6 + 1)-forest decomposition G; of G;, for every
i €{1,...,q}, in order to ensure that G; has O(6 - (n/8)) = O(n) edges w.h.p. Because G
has minimum degree d, every non-trivial minimum cut has value at most 6. Hence, each G;
still maintains every fixed non-trivial minimum cut with constant probability.

Finally, they select a subset of edges F.on C E(G) to contract by a careful “voting”
process. Specifically, for every edge e of G, they check if it is an edge of at least r graphs
from Gy, ..., éq, where r is a carefully chosen parameter. If e does not satisfy this property,
then it is included in Fo,, the set of edges to be contracted. In the end, G is given by
contracting all edges from Feqp.

An Improved Construction using Dynamic Forests

We now give an overview of our algorithm for efficiently constructing the NMC sparsifier
G. Tt crucially relies on having the DSF and DCS data structures initialized to contain the
edges of the current graph G. For a fully dynamic graph, this is naturally ensured at query

M. Henzinger, E. Kosinas, R. Miink, and H. Racke

Algorithm 1 Construction of the contracted graph G in Theorem 9.

input: a simple graph G in adjacency list representation
choose parameters ¢, = O(logn) according to [10]
compute the minimum degree § of G
for i < 1 to q do
‘ construct a 2-out contraction GG; of G
foreach i € {1,...,q} do
construct a (8 + 1)-forest decomposition G; of G;
let Ecop < 0 // a set of edges of (G to contract
foreach edge e of G do
if e is preserved in less than r graphs from él, ceey @q then
‘ Econ < Econ U {6}
return the graph obtained from G by contracting the edges in Fcon

© 0 g o oA~ W N =

HoR e
N = O

time by maintaining the two forest data structures throughout the updates, as described
in Section 3.1. Since the goal is to output a graph G with O(n/§) vertices and O(n) edges
w.h.p., we aim for an algorithm that takes roughly O(n) time. The process is broken up into
three parts.

Part 1. First, we compute the 2-out contractions Gi,...,G, for ¢ = O(logn). Each G;
can be computed by sampling, for every vertex v of G, two random edges incident to v
(independently, with repetition allowed). Since the graph G is dynamic, the adjacency lists
of the vertices also change dynamically, and therefore this is not an entirely trivial problem.
However, in the full version of this paper we provide an efficient solution that relies on
elementary data structures. Specifically, we can support every graph update in worst-case
constant time, and every query for a random incident edge to a vertex in worst-case O(l)
time. Notice that each G, for i € {1,...,q}, is given by contracting a set E; of O(n) edges
of G.

Part 2. Next, we separately compute a (§ + 1)-forest decomposition G; of G, for every
i€{l,...,q}. Each G, is computed by only accessing the edges of E; plus the edges of the
output (which are O(n) w.h.p.). For this, we rely on the DCS data structure. Since in DCS
we have complete control over the maintained forest F', we can construct it in such a way,
that every connected component of G[E;] induces a subtree of F. Notice that the connected
components of G[E;] correspond to the vertices of G;. This process of modifying F' takes
O(|E;]) = O(n) update operations on the DCS data structure. Then, we have established the
property that the tree edges that connect vertices of different connected components of G[F;]
correspond to a spanning tree of G;. Afterwards, we just repeatedly remove the spanning tree
edges, and find replacements using the DCS data structure. These replacements constitute a
new spanning forest of G;. Thus, we just have to repeat this process § + 1 times to construct
the desired (0 + 1)-forest decomposition. Note that every graph G, is constructed in time
roughly proportional to its size (which is O(n) w.h.p.). Any overhead comes from the use of
the DCS data structure.

Part 3. Finally, we construct the graph G by contracting the edges E., of G that appear
in less than r graphs from Gi,..., éq. From Ghaffari et al. ([10], Theorem 2.4) it follows
that |E\ E<,| = |E>,| = O(gn) = O(nlogn). In the following we provide an algorithm for
constructing G with only O(n + |E>,|) operations of the DSF data structure.

36:9

ESA 2025

36:10

Efficient Contractions of Dynamic Graphs — With Applications

We now rely on the spanning forest F' of G that is maintained by the DSF data structure.
We pick the edges of F' one by one, and check for every edge whether it is contained in E_,
(it is easy to check for membership in E., in O(logn) time). If it is not contained in E.,.,
then we store it as a candidate edge, i.e., an edge that possibly is in G. In this case, we also
remove it from F, and the DSF data structure will attempt to fix the spanning forest by
finding a replacement edge. Otherwise, if e € E_,., then we “fix” it in F', and do not process
it again.

In the end all “fixed” edges of F' form a spanning forest of the connected components of
G[E<,]. Note that the algorithm makes continuous progress: in each step it either identifies
an edge of Es,, or it “fixes” an edge of F' (which can happen at most n — 1 times). Thus, it
performs O(n + |F>,|) = O(n) DSF operations. Since we have arrived at a spanning forest
of G[E..,], we can build G by contracting the candidate edges stored during this process.

4 Analysis

Our main technical tools are Propositions 10 and 11. Proposition 10 allows us to create a
forest decomposition of a contracted graph without accessing all the edges of the original
graph, but roughly only those that are included in the output, and those that we had
to contract in order to get the contracted graph. Proposition 11 has a somewhat reverse
guarantee: it allows us to create a contracted graph by accessing only the edges that are
preserved during the contraction (plus only a small number of additional edges).

In this section we assume that G is a fully dynamic graph that currently has n vertices.
We also assume that we have maintained a DCS and a DSF data structure on G, which
support every operation in Ucg and Ugr time, respectively (cf. Section 3.1). The proofs of
all theorems and propositions in this section can be found in the full version of this paper.

4.1 A k-Forest-Decomposition of the Contraction

Given a set of edges to contract, the following proposition shows how to compute a k forest
decomposition of the induced contracted graph. Crucially, the contracted graph H does not
have to be given explicitly, but it is sufficient to know only a set of edges whose contraction
yields H. Thus, the running time of the construction is independent of the number of edges
of H. The whole procedure is shown in Algorithm 2.

» Proposition 10. Let H be a contraction of G that results from contracting a given set E o,
of edges in G. Let further k be a positive integer and ng be the number of vertices in H. Then
we can construct a k-forest decomposition of H in time O((n + kng) - Ucs + |Econllog n)

Note that the number of DCS operations depends only on (1) the number n of vertices of G,
(2) the number ny of vertices of H, and (3) the number k of forests that we want to build.

4.2 Building the Contracted Graph

A contracted graph can naturally be computed from its defining set of contraction edges
E¢on in time proportional to the size of this set |Econ|. Recall that in our case Ecop is the
result of the “voting” procedure across all generated d-forest decompositions (cf. Section 3.2),
which is rather expensive to compute. We hence use a different construction that does not
need to know FE., explicitly. Instead, it relies on an efficient oracle to certify that a given
edge is not contained in Eqy,.

M. Henzinger, E. Kosinas, R. Miink, and H. Racke

Algorithm 2 Compute a k-forest decomposition of the graph that is formed by contracting a
set of edges E’ of G.

1 let F be the empty DCS forest
2 foreach edge e € E' do

3 if the endpoints of e belong to different trees of F' then

4 ‘ DCS.insertp(e)

5 let V be a set that consists of one vertex from every tree of F'
6 set S+ 0

7 for i < 1 to k do

8 set L<+ @ // L will contain the edges of the current spanning forest
9 foreach v € V do

10 let e <~ DCS.find_cutedge(v)

11 while e # 1 do

12 DCS.insertp(e), and append e to L

13 e < DCS.find_cutedge(v)
14 foreach e € L do

15 ‘ DCS.deleteg(e), and append e to S

16 use DCS.deletep to remove all the edges from F

17 foreach e € S do

18 ‘ DCS.insertg(e) // restore DCS to its original state
19 return S

» Proposition 11. Let H be a contraction of G that results from contracting a set E o of
edges in G and let Ep.. be the set of edges of G that are preserved in H. Suppose that there
is a set of edges Ecpeck With Epre C Ecpect and Ecpeck N Econ = 0, for which we can check
membership in time p. Then we can construct H in time O(nu + |Ecpeck| - (Usk + p)).

Note that the number of DSF operations is proportional to the number of edges in Ecpeck
(the set Ecopn is not required as input to the algorithm). Thus, this algorithm becomes more
efficient if only few edges are contained in E(G) \ Egon (since Egheck € E(G) \ Econ). In our
application, we will have u = O(logn).

4.3 Constructing an NMC sparsifier

We can now state our result for computing an NMC sparsifier of a simple graph using
Propositions 10 and 11. Compare this to Theorem 9 and note how Theorem 12 requires
initialized DSF and DCS data structures but has a running time that is independent of the
number of edges in G. An outline of this procedure is given in Section 3.2.

» Theorem 12. Let G be a simple graph with n vertices that has minimum degree § > 0
and is maintained in a DSF and a DCS data structure. Then, with high probability we can
construct an NMC' sparsifier of G that has O(n/d) vertices and O(n) edges. W.h.p this takes

O(n - (Usg + Ucs)) time.

4.4 Fully Dynamic Graphs

The result of Theorem 12 can easily be extended to fully dynamic simple graphs by maintaining
the DSF and DCS data structures throughout the updates of the graph. These forest data
structures can be realized in different ways, as described in Section 3.1. Depending on this
choice we get a different result, and this is how we derive Theorem 1.

36:11

ESA 2025

36:12

Efficient Contractions of Dynamic Graphs — With Applications

If G is disconnected, all minimum cuts have value 0 and an NMC sparsifier H is by
definition only required to have no edges between different connected components of G.
Crucially, this implies that there is no guarantee that any information of the minimum cuts
within each connected component of G is preserved in H. In this case, however, we can
easily strengthen the result by applying Theorem 12 to each connected component of G
individually.

5 Applications

5.1 A Cactus Representation of All Minimum cuts in Dynamic Graphs

It is well-known that a graph with n vertices has O(n?) minimum cuts, all of which can be
represented compactly with a data structure of O(n) size that has the form of a cactus graph
(for more details, see [23]). As a first immediate application of our main Theorem 1, we
show how the NMC sparsifier G of any fully dynamic simple graph G can be used to quickly
compute this cactus representation. This result is summarized in Theorem 2; see the full
version of this paper for a detailed construction.

To obtain just a single minimum cut of G, one can apply the deterministic minimum cut
algorithms of [14, 19] on G, which yields a minimum cut C' of G in time O(|G|) = O(n). To
transform C' into a minimum cut of G, we compare its size with the minimum degree ¢ of
any node in G: If |C| < §, then we get a minimum cut of G by simply mapping the edges
from C back to the corresponding edges of G. Otherwise, a minimum cut of G is given by
any vertex of G that has degree § (which is easy to maintain throughout the updates).

5.2 Computing the Maximal k-Edge-Connected Subgraphs

The data structure of Theorem 1 can also be used to improve the time bounds for computing
the maximal k-edge-connected subgraphs of a simple graph, in for cases where k is a sufficiently
large polynomial of n. Specifically, we get an improvement for k& = Q(n'/®), c.f. Section 1.

A general strategy for computing these subgraphs is the following. Let G be a simple
graph with n vertices and m edges, and let k be a positive integer. The basic idea is to
repeatedly find and remove cuts with value less than k from G. First, as long as there are
vertices with degree less than k, we repeatedly remove them from the graph. Now we are
left with a (possibly disconnected) graph where every non-trivial connected component has
minimum degree at least k. If we perform a minimum cut computation on a non-trivial
connected component S of G, there are two possibilities: either the minimum cut is at least
k, or we will have a minimum cut C' with value less than k. In the first case, S is confirmed
to be a maximal k-edge-connected subgraph of G. In the second case, we remove C' from .5,
and thereby split it into two connected components S; and S;. Then we recurse on both
S1 and S,. Since the graph is simple and S has minimum degree at least k, it is a crucial
observation that both S; and Sy contain at least k vertices (see e.g. [19]). Therefore the
number of nodes decreases by at least k with every iteration and hence the total recursion
depth is O(n/k).

The minimum cut computation takes time Ty, = O(m) [17], hence the worst-case running
time of this approach is ©(n/k - Tine) = O(mn/k). We can use Theorem 1 to bring the time
down to O(m + n?/k) w.h.p.

» Theorem 3. Let G be a simple graph with n vertices and m edges, and let k be a positive
integer. We can compute the maximal k-edge-connected subgraphs of G w.h.p. in O(m+n?/k)
time w.h.p.

M. Henzinger, E. Kosinas, R. Miink, and H. Racke

Through a reduction to simple graphs, Theorem 3 implies Corollary 4, which is a similar

result with slightly worse time bounds for undirected multigraphs. Finally, the method that
establishes Theorem 3 naturally extends to the case of fully dynamic simple graphs, which
yields Theorem 5.

—— References

1

10

11

Anders Aamand, Adam Karczmarz, Jakub Lacki, Nikos Parotsidis, Peter M. R. Rasmussen,
and Mikkel Thorup. Optimal decremental connectivity in non-sparse graphs. In Kousha
Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Auto-
mata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany,
volume 261 of LIPIcs, pages 6:1-6:17. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2023. doi:10.4230/LIPIcs.ICALP.2023.6.

Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. STAM
Journal on Computing, 41(6):1704-1721, 2012. doi:10.1137/090772873.

Andrés A. Benczir and David R. Karger. Approximating s-¢ minimum cuts in O(n2) time.
In Gary L. Miller, editor, Proceedings of the Twenty-FEighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 47-55. ACM,
1996. doi:10.1145/237814.237827.

Andrés A. Benczar and David R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. STAM J. Comput., 44(2):290-319, 2015. doi:10.1137/070705970.
Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Veronika Loitzenbauer, and
Nikos Parotsidis. Faster algorithms for computing maximal 2-connected subgraphs in sparse
directed graphs. In Philip N. Klein, editor, Proceedings of the Twenty-Fighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 1900-1918. STAM, 2017. doi:10.1137/1.9781611974782.124.

Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Sara-
nurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity,
flows, and beyond. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1158-1167.
IEEE, 2020. doi:10.1109/F0CS46700.2020.00111.

Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Computing and testing small connectivity in near-linear time and
queries via fast local cut algorithms. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 2046-2065. STAM, 2020. doi:10.1137/1.9781611975994.126.

Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. STAM J. Comput., 48(4):1196-1223, 2019. doi:
10.1137/16M1091666.

Loukas Georgiadis, Giuseppe F. Italiano, Evangelos Kosinas, and Debasish Pattanayak. On
maximal 3-edge-connected subgraphs of undirected graphs. CoRR, abs/2211.06521, 2022.
doi:10.48550/arXiv.2211.06521.

Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge con-
nectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1260-1279. STAM, 2020. doi:10.1137/1.9781611975994.77.
Gramoz Goranci, Monika Henzinger, Danupon Nanongkai, Thatchaphol Saranurak, Mikkel
Thorup, and Christian Wulff-Nilsen. Fully dynamic exact edge connectivity in sublinear time.
In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2028 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
70-86. STAM, 2023. doi:10.1137/1.9781611977554.ch3.

36:13

ESA 2025

https://doi.org/10.4230/LIPIcs.ICALP.2023.6
https://doi.org/10.1137/090772873
https://doi.org/10.1145/237814.237827
https://doi.org/10.1137/070705970
https://doi.org/10.1137/1.9781611974782.124
https://doi.org/10.1109/FOCS46700.2020.00111
https://doi.org/10.1137/1.9781611975994.126
https://doi.org/10.1137/16M1091666
https://doi.org/10.1137/16M1091666
https://doi.org/10.48550/arXiv.2211.06521
https://doi.org/10.1137/1.9781611975994.77
https://doi.org/10.1137/1.9781611977554.ch3

36:14

Efficient Contractions of Dynamic Graphs — With Applications

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Zhongtian He, Shang-En Huang, and Thatchaphol Saranurak. Cactus representation of
minimum cuts: Derandomize and speed up. In David P. Woodruff, editor, Proceedings of the
2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 202/, Alexandria, VA, USA,
January 7-10, 2024, pages 1503-1541. STAM, 2024. doi:10.1137/1.9781611977912.61.
Monika Henzinger, Sebastian Krinninger, and Veronika Loitzenbauer. Finding 2-edge and
2-vertex strongly connected components in quadratic time. In Magnis M. Halldérsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 713-724.
Springer, 2015. doi:10.1007/978-3-662-47672-7_58.

Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge connectivity.
SIAM J. Comput., 49(1):1-36, 2020. doi:10.1137/18M1180335.

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):7237760, 2001. doi:10.1145/502090.502095.

Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1131-1142. STAM, 2013. doi:10.1137/1.9781611973105.81.
David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46-76, 2000. doi:
10.1145/331605.331608.

David R. Karger and Debmalya Panigrahi. A near-linear time algorithm for constructing a
cactus representation of minimum cuts. In Claire Mathieu, editor, Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA,
January 4-6, 2009, pages 246-255. STAM, 2009. doi:10.1137/1.9781611973068.28.
Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear
time. J. ACM, 66(1):4:1-4:50, 2019. doi:10.1145/3274663.

Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear
time. SIAM Journal on Computing, 47(6):2315-2336, 2018. doi:10.1137/16M1061850.
On-Hei Solomon Lo, Jens M. Schmidt, and Mikkel Thorup. Compact cactus representations of
all non-trivial min-cuts. Discret. Appl. Math., 303:296-304, 2021. doi:10.1016/J.DAM.2020.
03.046.

Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583-596, 1992.
doi:10.1007/BF01758778.

Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic Aspects of Graph Connectivity, volume
123 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2008.
doi:10.1017/CB09780511721649.

Chaitanya Nalam and Thatchaphol Saranurak. Maximal k-edge-connected subgraphs in
weighted graphs via local random contraction. In Nikhil Bansal and Viswanath Nagarajan,
editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023, pages 183-211. SIAM, 2023. doi:10.1137/1.
9781611977554 . ch8.

Thatchaphol Saranurak and Wuwei Yuan. Maximal k-edge-connected subgraphs in almost-
linear time for small k. In Inge Li Ggrtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz
Herman, editors, 81st Annual European Symposium on Algorithms, ESA 2023, September 4-6,
2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 92:1-92:9. Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik, 2023. doi:10.4230/LIPIcs.ESA.2023.92.

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913-1926, 2011. doi:10.1137/080734029.

Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981-1025, 2011. doi:10.1137/08074489X.

Mikkel Thorup. Fully-dynamic min-cut. Comb., 27(1):91-127, 2007. doi:10.1007/
s00493-007-0045-2.

https://doi.org/10.1137/1.9781611977912.61
https://doi.org/10.1007/978-3-662-47672-7_58
https://doi.org/10.1137/18M1180335
https://doi.org/10.1145/502090.502095
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/331605.331608
https://doi.org/10.1137/1.9781611973068.28
https://doi.org/10.1145/3274663
https://doi.org/10.1137/16M1061850
https://doi.org/10.1016/J.DAM.2020.03.046
https://doi.org/10.1016/J.DAM.2020.03.046
https://doi.org/10.1007/BF01758778
https://doi.org/10.1017/CBO9780511721649
https://doi.org/10.1137/1.9781611977554.ch8
https://doi.org/10.1137/1.9781611977554.ch8
https://doi.org/10.4230/LIPIcs.ESA.2023.92
https://doi.org/10.1137/080734029
https://doi.org/10.1137/08074489X
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/s00493-007-0045-2

	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 Outline of Our Approach
	3.1 Updates: Data Structures for Dynamic Forests
	3.2 Queries: Efficiently Contracting a Dynamic Graph

	4 Analysis
	4.1 A k-Forest-Decomposition of the Contraction
	4.2 Building the Contracted Graph
	4.3 Constructing an NMC sparsifier
	4.4 Fully Dynamic Graphs

	5 Applications
	5.1 A Cactus Representation of All Minimum cuts in Dynamic Graphs
	5.2 Computing the Maximal k-Edge-Connected Subgraphs

