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Abstract
Quantum invariants in low-dimensional topology offer a wide variety of valuable invariants about knots
and 3-manifolds, presented by explicit formulas that are readily computable. Their computational
complexity has been actively studied and is tightly connected to topological quantum computing. In
this article, we prove that for any 3-manifold quantum invariant in the Reshetikhin-Turaev model,
there is a deterministic polynomial time algorithm that, given as input an arbitrary closed 3-manifold
M , outputs a closed 3-manifold M ′ with the same quantum invariant, such that M ′ is hyperbolic,
contains no low genus embedded incompressible surface, and is presented by a strongly irreducible
Heegaard diagram. Our construction relies on properties of Heegaard splittings and the Hempel
distance. At the level of computational complexity, this proves that the hardness of computing a
given quantum invariant of 3-manifolds is preserved even when severely restricting the topology and
the combinatorics of the input. This positively answers a question raised by Samperton [44].
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1 Introduction

Quantum invariants are topological invariants defined using tools from physics, explicitly,
from topological quantum field theories (TQFTs). These invariants have become of interest for
modeling phenomena in condensed matter physics [5, 19], topological quantum computing [29],
and experimental mathematics [14, 38], where many deep conjectures remain open. Thanks
to their diversity and discriminating power to distinguish between non-equivalent topologies,
they have also played an important role in the constitution of censuses of knots and 3-
manifolds [12]. The invariants are constructed from the data of a fixed algebraic object,
called a modular category, and a topological support, and take the form of a partition function,
whose value depends solely on the topological type of the support and not on its combinatorial
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presentation. Generally, quantum invariants are defined for presentations of either knots or
3-manifolds, although there are types of invariants, such as the Reshetikhin-Turaev, whose
definitions naturally encompass both objects.

The complexity of the exact and approximate computation of these invariants has
attracted much interest, particularly in connection with quantum complexity classes. Most
non-trivial quantum invariants turn out to be #P-hard to compute and, sometimes, even
#P-hard to approximate [3, 20, 30] within reasonable precision. This is the case of the Jones
polynomial for knots [20, 30] and the Turaev-Viro invariant of 3-manifolds associated with the
Fibonacci category [3, 20]. On the positive side, polynomial time quantum algorithms exist
for computing weak forms of approximations [2, 4, 20] and efficient parameterized algorithms
have been designed [11, 13, 34, 36, 39] leading to polynomial time algorithms on certain
families of instances. For the latter, the topology of the input knot or 3-manifold plays a
central role in measuring the computational complexity of the problem, either directly with
running times depending strongly on some topological parameter [15, 39], or indirectly where
simple topologies guarantee the existence of simple combinatorial representations [23, 25, 37]
that can be, in turn, algorithmically exploited.

There are other instances, however, where the hardness of computing the invariants
is preserved even if the topology and combinatorics of the input are restricted. In [30],
Kuperberg shows that, for certain quantum invariants that are hard to approximate on links,
the hardness is preserved when restricted to knots. In a follow-up work, Samperton [44]
proves that if computing a quantum invariant is hard for all input diagrams of any knot,
then the computation remains hard when restricting the input to hyperbolic knots given by
diagrams with a minimal number of crossings. In this article, we follow a similar path to
both [30] and [44], this time for quantum invariants of 3-manifolds, by proving the hardness
of computing invariants of irreducible presentations and hyperbolic manifolds.

We follow the strategy of Samperton [44], which consists of using Vafa’s theorem [54] to
efficiently complicate the topological structure of the input without changing the invariant.
Nonetheless, while Samperton’s process involves adding extra crossings to the knot diagrams,
we increase the Hempel distance of a Heegaard diagram of some 3-manifold. Although there
exists an extensive catalog of algorithms to increase Hempel distances [17, 22, 26, 28, 33, 42,
56], to the best of our knowledge, our work is the first to 1. explicitly compute the involved
complexities, ensuring polynomial time; and, 2. keep some 3-manifold invariant constant
throughout the process.

The main result is expressed in Theorem 1, whose precise statement can be found in
Section 4. Here and throughout the paper, we denote by Σg the closed surface of genus
g (unique up to homeomorphism) with some fixed orientation and assume g ≥ 2. When
referring to a general compact surface, potentially with boundary, we use Σ.

▶ Theorem 1. Let C be a modular category and M a closed 3-manifold represented by
a Heegaard diagram (Σg, α, β) of complexity m. There is a deterministic algorithm that
constructs, in time O(poly(m, g)) and uniformly on the choice of C, a strongly irreducible
Heegaard diagram (Σg+1, α′, β′) representing a hyperbolic 3-manifold M ′ that shares with M

the Reshetikhin-Turaev invariant over C. Moreover, for a fixed choice of k ∈ N, M ′ has no
embedded orientable and incompressible surface of genus at most 2k.

▶ Remark 2. Hyperbolicity has historically been used as both a simplifying structure and an
intermediate step for algorithms on 3-manifold, see for example [31, 50]. Similarly to [44] for
knots, our result proves that hyperbolicity is of no help for the computational complexity of
the quantum invariant. On the other hand, when producing hard instances of 3-manifolds
in computational topology – e.g., in complexity reduction [1, 6] or the construction of
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combinatorially involved manifolds [24] – it is common to produce Haken 3-manifolds with
low genus incompressible surfaces (generally, tori). It is an important open question to
understand the hardness of computation for non-Haken 3-manifolds. Our result shows that
the computational complexity of quantum invariants is preserved even when getting rid of
low-genus incompressible surfaces.

The paper is divided into four parts: a review of background material (Section 2),
the demonstration of some auxiliary algorithms (Section 3), the proof our main result
(Section 4), and some illustration of its computational consequences for the hardness of
computing quantum invariants (Section 5). Due to the conference’s constraints, some of the
demonstrations were omitted from this current article, but can be found in the extended
version of the paper1.

2 Background material

In the following review, we assume acquaintance with the basic ideas from geometric
topology, such as boundaries, compactness, homeomorphisms, (free) homotopies, isotopies,
and manifolds. For these topics, we refer the reader to [49] and [51]. Moreover, we shall use,
without properly defining, some well-known concepts belonging to the theories of curves and
surfaces, which can be found in [18].

2.1 Curves in surfaces
An arc in a surface Σ is the image of a proper embedding of the interval in Σ (i.e., its
endpoints lie both on ∂Σ). Similarly, a simple closed curve is the image of a proper embedding
S1 ↪! Σ. We will often refer to a simple closed curve by only closed curve or just curve. A
multicurve is a finite collection of disjoint properly embedded simple curves in Σ. We denote
by #γ its number of connected components. Whenever possible, we distinguish simple curves
from multicurves by using Greek letters to represent the latter.

A curve in the surface will be called essential if not homotopic to a point (or, equivalently,
if it does not bound a disk on the surface), a puncture, or a boundary component. A
multicurve is essential if all its components are essential. Unless otherwise stated, all curves
and multicurves will be assumed essential.

We will often be interested not in a curve s, but in the equivalence classes of s up to
isotopies in Σg, [s]. Being essential is preserved under isotopies, so we naturally extend the
definition of essential curves to their isotopy classes. For two curves s, t in some surface Σ,
their geometric intersection number is defined as the minimal number of their intersection
points up to isotopy, that is i(s, t) = min{|s′ ∩ t′| : s′ ∈ [s], t′ ∈ [t]}. Two curves in a surface
Σg are isotopic if and only if they are (free) homotopic [18].

The curve graph of a closed surface Σg, C(Σg), is the graph whose vertices are isotopy
classes of essential curves and any two vertices [s] and [t] are connected by an edge if and
only if i(s, t) = 0. The usual graph distance d defines a metric on the vertices of C(Σg)
that is interpreted as d([s], [t]) = n implying the existence a sequence of essential curves
r0, r1, . . . , rn with r0 ∈ [s], rn ∈ [t], and ri ∩ ri+1 = ∅ for 0 ≤ i < n. The definitions related
to the curve graph can be naturally extended to curves by identifying the elements of an
isotopy class to the same vertex; in particular, d(r, s) = 0 is equivalent to r and s being
isotopic.

1 Available at https://arxiv.org/abs/2503.02814.
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Figure 1 Illustration of the action of a Dehn twist about a curve s (blue) on some curve transversal
to it (red). The homeomorphism is only different from the identity on a regular neighborhood of s.

. . .

Figure 2 Diagram representing the Lickorish curves in a closed surface Σg, g ≥ 2.

We recall that for each surface Σg, its mapping class group, Mod(Σg), is the group of
orientation-preserving homeomorphisms Σg ! Σg up to isotopies. Its canonical action on
the surface conserves the geometric intersection number between curves [18], therefore acting
isometrically on (C(Σg), d) by the induced map ϕ · [s] = ϕ∗([s]). The mapping class groups
always contain the (isotopy classes of) Dehn twists, homeomorphisms τs : Σg ! Σg defined
by cutting off a local neighborhood of the (multi)curve s of Σg and gluing it back with a 2π

counterclockwise twist, determined by the orientation of the surface (Figure 1). In particular,
for each g ≥ 2, Mod(Σg) is generated as a group by (isotopy classes of) Dehn twists about
the 3g − 1 recursively defined Lickorish curves in Σg (Figure 2) [32]. We can, consequently,
always assume that an element of Mod(Σg) is of form ϕ = τnr

sr
◦ · · · ◦ τn1

s1
, where ni ∈ Z and

si are Lickorish curves for 1 ≤ i ≤ r.

2.2 Curves on handlebodies and Heegaard splittings
An essential multicurve γ ⊂ C(Σg) is a (full) system if no two components are isotopic to
each other and Σg − γ is a union of #γ − g + 1 punctured spheres (here the minus sign
indicates cutting the surface along γ). The minimum number of connected components that
a full system may have is g, in which case Σg − γ is a 2g-punctured sphere and γ is called a
minimum system. On the other extreme, a system γ is maximum or a pants decomposition
when #γ = 3g − 3 and Σg − γ is the union of 2g − 2 thrice punctured spheres, also known as
pairs of pants (see Figure 4). When every connected component of a system γ is isotopic to
a connected component of another system γ′, we say that γ is contained in γ′ and denote
that by γ ⊆ γ′. A minimum system γ can always be extended to a pants decomposition
ρ ⊇ γ, see Theorem 16.

The genus g handlebody defined for a full system γ in the surface Σg is the 3-manifold

Vγ = Σg × [0, 1] ∪γ×{0} 2-handles ∪ 3-handles

built by attaching the 2-handles along the curves γ in Σ × {0} and then filling any resulting
S2 boundary component with 3-handles. By construction ∂Vγ = Σg. Because the curves in
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the system γ are assumed to be essential, each of its components will bound (non-trivial)
compression disks in Vγ : they will be meridians of the handlebody. There are, however,
many other meridians in Vγ , as it will be implied by the following definition.

▶ Definition 3 (Disk graph and equivalent systems). Let Vγ be a handlebody constructed
over Σg. Then the disk graph of Vγ , Kγ , is the subgraph of C(Σg) whose vertices represent
(isotopy classes of) meridians of Vγ. We say that two full systems, γ and γ′, (potentially
with #γ ̸= #γ′) are equivalent if γ′ ⊂ Kγ and γ ⊂ Kγ′ .

Note that γ is equivalent to γ′ if and only if they define the same handlebody. In particular,
if γ ⊂ ρ, γ and ρ are equivalent.

In a seminal work, Hempel [22] studied the metric d of the disk graph canonically inherited
from C(Σg). This inspires the next definition. Here and throughout, whenever A, B ⊂ C(Σ)
and r is a curve in Σ, we let d(r, A) = min{d(r, s) : s ∈ A} and d(A, B) = min{d(s, t) : s ∈
A, t ∈ B}. We assume a curve s on a handlebody Vγ to be fully contained in ∂Vγ .

▶ Definition 4 (Diskbusting curves). An essential curve s on a handlebody Vγ is said to be
diskbusting if d(s, Kγ) ≥ 2, that is, if s intersects all meridians of Vγ .

[52] provides a combinatorial condition to verify if a curve on a handlebody is diskbusting,
which we quote using the language of [56]. Before, however, we will need a definition.

▶ Definition 5 (Seams and seamed curves). An arc in a pair of pants P is called a seam if it
has endpoints on two distinct components of ∂P . A curve s in a surface Σg with a pants
decomposition ρ is said to be seamed for ρ if, for every component P of Σg − ρ, s ∩ P has at
least one copy of each of the three types (up to isotopy) of seams in P .

▶ Theorem 6 (Theorems 1 of [52], Theorem 4.11 of [56]). Let s be a curve on the handlebody
Vγ . Then s is diskbusting in Vγ if and only if there is a pants decomposition ρ equivalent to
γ such that s is seamed for ρ.

A closed 3-manifold M is said to have a Heegaard splitting if it is the union of two
handlebodies intersecting only at their common boundary. It is well-known [45] that there
exists, for every closed 3-manifold M , a tuple (Σg, α, β) called a Heegaard diagram (of genus
g), where α and β are two full systems with the same cardinality in Σg, and a Heegaard
splitting M = Vα ∪Σg

Vβ . Note, on the other hand, that neither the Heegaard diagram nor
the splitting is unique: for example, isotopies to α or β yield the same splitting, whereas
given a diagram (Σg, α, β), one can define another splitting for the same manifold, this time
of diagram (Σg+1, α ∪{c}, β ∪{c′}), where c and c′ are curves with i(c, c′) = 1 fully contained
in the extra handle. This last process, known as stabilization, is topologically equivalent to
directly summing a copy of S3 to the original manifold M .

Some properties of 3-manifolds can be read straight-up from their Heegaard splittings.
For example, a splitting (Σg, α, β) is called irreducible if Vα and Vβ do not share a meridian.
Haken’s lemma [49, Theorem 6.3.5] implies that reducible closed 3-manifolds cannot have
irreducible Heegaard splittings. Similarly, a splitting (Σg, α, β) is strongly irreducible if there
are no two essential disjoint curves a and b in Σg such that a is a meridian of Vα and b is a
meridian of Vβ . Every strongly irreducible splitting is irreducible, but the converse is not
true (Haken manifolds provide a list of counterexamples [49]).

Given two handlebodies Vα and Vβ , we define their Hempel distance by d(Kα, Kβ). In
[22], Hempel argued that this distance could be seen as a measure of the complexity of a
Heegaard splitting Vα ⊔Σg Vβ , which is translated into the following theorem, whose proof (a
simple application of results by others) can be found in the full version of the paper.

ESA 2025
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▶ Theorem 7. Let (Σg, α, β) be a Heegaard diagram of distance d(Kα, Kβ) = k. Then
k ≥ 1 if and only if (Σg, α, β) is irreducible;
k ≥ 2 if and only if (Σg, α, β) is strongly irreducible;
if k ≥ 3, then M is hyperbolic;
M has no orientable and incompressible embedded surface of genus smaller than 2k.

▶ Remark 8. Scharlemann and Tomova [48] proved that, if Vα′ ∪Σg′ Vβ′ is Heegaard splitting
of genus smaller than k/2, then Vα ∪Σg

Vβ is isotopic to Vα′ ∪Σg′ Vβ′ , potentially after
finitely many stabilizations. In particular, if k > 2g + 2, the splitting is of minimum genus.
Unfortunately, as we will see in the proof of Theorem 1, our algorithm is not polynomial
time as function of k, which means that it does not imply an efficient reduction to a minimal
genus splitting for every input.

Our proof of Theorem 1 will mainly consist of increasing the Hempel distance so that
the hypotheses of Theorem 7 are satisfied. For such, we will extensively use the next two
theorems due to Yoshizawa.

▶ Theorem 9 (Theorem 5.8 of [56]). Consider the full systems of curves α and β in Σg and
n = max{1, d(Kα, Kβ)}. Let di = d(Ki, s) for i = α, β, assume di ≥ 2 and dα + dβ − 2 > n.
Then, for any k ∈ Z+,

min(k, dα + dβ − 2) ≤ d(Kα, Kτk+n+2
s (β)) ≤ dα + dβ . (1)

▶ Theorem 10 (Theorem 6.2 of [56]). Let γ = {c1, . . . , cg} be full in Σg and ρ a pants
decomposition containing γ. Suppose s is seamed for ρ and define the multicurve τ2

s (γ) of
components d1, . . . , dg. Then d(Kγ , τ2

dg
◦ · · · ◦ τ2

d1
(c1)) ≥ 3.

2.3 Quantum invariants for 3-manifolds
We will not review the technical construction of TQFTs here, referring the interested reader
to [53]. For our purposes, it is enough to know that, for a fixed choice of modular category C
(again, refer to [53] for the definition), the TQFT associates to every closed 3-manifold M

a complex scalar known as its Reshetikhin-Turaev (RT) invariant. The RT invariant can
be given as a function of a Heegaard diagram (Σg, α, β) of M and is denoted by ⟨M⟩RT

C or
⟨(Σg, α, β)⟩RT

C , depending on whether we want to emphasize the manifold or the diagram.
The algebraic structure imposed by the modular category sets some constraints on the

quantum invariants. The next theorem, for example, is already somewhat folklore in the
literature (see [41]) since it implies that non-homeomorphic 3-manifolds may share RT
invariants. It can be deduced from Theorem 5.1 of [16] and [43, 53].

▶ Theorem 11 (Vafa’s theorem for 3-manifold TQFTs). Let C be a modular category. Then
there is an N ∈ Z+, depending only on C, such that, for all k ∈ Z and every curve s in Σg,
⟨(Σg, α, β)⟩RT

C = ⟨(Σg, α, τkN
s (β))⟩RT

C .

For a fixed modular category, we call the integer N the category’s Vafa’s constant.

2.4 Relevant data structure
An embedded graph G = (V, E) in a surface Σ defines a cellular complex for Σ if Σ − G is a
union of open disks, which we call faces. Note that this implies that any boundary component
of Σ fully lies within some set of edges in E. The dual graph of G is another graph embedded
in Σ defined by assigning a vertex to each face of Σ − G and an edge between the vertices
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Figure 3 A triangulation of the disk with a curve represented by edge list (red), a standard curve
(green), and a normal arc (blue).

if and only if the corresponding faces are separated by an edge in E. As a data structure,
we represent a cellular embedding by the lists of faces, their incident edges, and vertices,
allowing us to reconstruct Σ by gluing the appropriate pieces. Using this structure, one can
compute the dual graph of the cellular embedding in linear time on the number of faces.

A (generalized) triangulation T = (V, E) of a surface Σ is a cellular complex where all
faces are bounded by exactly 3 edges. We denote the number of triangles in a triangulation by
|T |; note that |T | = O(|E|). We will most often consider oriented triangulations by giving an
orientation to each triangle consistent with the orientation of the surface; we orient a triangle
by imposing an order to its vertices as in the right-hand rule. We say that a triangulation T ′

of a surface Σ is a subtriangulation of another triangulation T of Σ, denoting T ≤ T ′, if the
graph of T is embedded on T ′ (i.e., each vertex of T is a vertex of T ′ and each edge of T is a
union of edges in T ′). ’If T and T ′ are oriented, we also require the induced order of the
vertices to be the same. Every face of T ′ is naturally contained in a face of T .

Using a triangulation T = (V, E) of a surface Σ, we can describe an arc, curve, or
multicurve s in Σ lying fully within the edges E by the list of the edges in E ∩ s (the red
curve in Figure 3). We will call this list an edge list representation of the curve s, denote it
by ET (s), and say that the number of edges in E ∩ s is the edge complexity, ∥ET (s)∥. We
can always assume that ∥ET (s)∥ ≤ |T |.

For any fixed triangulation T of the surface Σ, there are always, however, isotopy classes
of curves in Σ not representable as a subset of edges of T . To deal with this hindrance, we
say, for a fixed oriented triangulation T = (V, E) of the surface Σ, that a curve s is standard
(to T ) if it intersects T only transversely and at edges (green curve of Figure 3). If s is
standard, we may represent it as an intersection word IT (s), taking E as an alphabet and
traversing s along some arbitrary direction and, whenever we meet an edge e ∈ E, we append
e to IT (s) if e is crossed according to the orientation of Σ and e−1 otherwise. While the
edge representation is well-defined at the curve level, intersection words are defined only
up to isotopies inside the triangulation’s faces. Furthermore, isotopy classes of IT (s) are
closed under cyclic permutations and taking inverses. The complexity of an intersection
word IT (s), ∥IT (s)∥, is its length (i.e., the number of edges of T intersected by s, counted
with multiplicity). If γ is a multicurve, we let IT (γ) be the set of #γ intersection words
representing each component. Similarly, the complexity of a Heegaard diagram (Σg, α, β),
where α and β are standard multicurves, equals ∥IT (α)∥+∥IT (β)∥. Standard arcs are treated
accordingly.

A standard curve, multicurve or arc s is normal if no intersection word IT (s) contains
a substring of form ee−1 or e−1e where e ∈ E (the blue curve in Figure 3). When normal,
the intersections of s and the faces of the triangulation are arcs connecting distinct edges

ESA 2025
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of each triangle, which we call fundamental arcs. Normal curves are more convenient for
tracing than their more general standard counterparts (refer to Proposition 14); moreover,
any standard curve s can be made normal in time O(∥IT (s)∥), see the proof of Theorem 15.
▶ Remark 12. When a curve is normal for a triangulation, its isotopy class is fixed by the
number of times it intersects each labeled edge of E [46], meaning that it can be described
through a vector in N|E| called the curve’s normal coordinates [8, 9, 46, 47], but whose
introduction is unnecessary to the results of Section 4.

3 Algorithms for curves in surfaces and handlebodies

3.1 Converting between representations of curves
In Section 2.4, we saw two representations of curves in a surface: edge lists and intersection
words. While some topological operations such as cutting along a curve are easier to
implement using edge list representations (one needs only to delete the edges crossing ET (s)
from the dual graph of T to cut along s), others, such as doing Dehn twists (Theorem 15)
are more suited to curves intersecting the triangulation transversely. Therefore, it will be
convenient to have procedures to convert from one representation to the other.

First, we describe an algorithm to transform curves represented by edge lists into intersec-
tion words. For an edge list ET (s) not in a boundary of an oriented surface Σ, there are two
choices of normal curves isotopic to s created by slightly displacing it either to the left or to
the right of the edges (with respect to the orientation of Σ and some arbitrary orientation of
s); we call them twins born from s. Given a choice of twin for s, say left, one can compute
its intersection word by traversing s and appending the letters representing adjacent edges
coming from the left side of the triangulation graph when embedded in Σ. If, however, s

lies either partially or fully on the boundary of Σ, we can only consistently displace it to
one side, which can be determined in time O(∥ET (s)∥). This algorithm does not change the
triangulation. For convenience, we state this argument as the following proposition.

▶ Proposition 13. Suppose ET (s) is an edge list representation of an arc, curve, or multicurve
s in Σ. Then there is an algorithm to compute an intersection word IT (s) of complexity
O(|T |) in time O(|T |).

The next result, whose proof is in the paper’s full version, describes an algorithm for the
other direction, that is, for going from an intersection word to an edge list representation.

▶ Proposition 14. Suppose that s is a normal arc, curve, or multicurve to some triangulation
T , with ∥IT (s)∥ = m. Then, there exists an algorithm that constructs, in time O(m + |T |), a
new triangulation T ′ ≥ T of size O(m + |T |) with s in the edges of T ′.

3.2 Basic operations on curves, handlebodies, and Heegaard splittings
Before proceeding with the main results, we will establish algorithms for some basic operations.
The first of these is only a minor modification of [47], whereas the second, in the context of
curves in surfaces, is mostly due to [55, Theorem 7.1]. The proofs of both theorems are in
the paper’s full version.

▶ Theorem 15. Suppose t and s are normal (multi)curves for some fixed triangulation T

of Σg, given through intersection words IT (s) and IT (t) with m = max{∥IT (s)∥, ∥IT (t)∥}.
Then an intersection word for τk

s (t) for all k ∈ Z, with ∥IT (τk
s (t))∥ ≤ |k|m3, can be computed

in time O(|k|m3).
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Figure 4 Left: the three types of seams, up to isotopy, on a pair of pants. Two connected
components (a red and a blue one) of the multicurve σ are highlighted. Right: a surgery to connect
the two distinct components.

▶ Theorem 16. Suppose γ is a minimal system of edge curves in Σg. Then one can compute,
in time O(g|T |), a triangulation T ′ ≥ T of size O(m|T |) and a pants decomposition ρ in the
edges of T ′, with ∥ET ′(ρ)∥ = O(g|T |), such that ρ contains γ.

▶ Theorem 17. Suppose γ is a normal minimal system in Σg with respect to a triangulation
T , with ∥IT (γ)∥ = m. Then there is an algorithm that outputs, in time O((m + |T |)g2),
a disksbuting curve s for the disk graph Kγ, which is normal to T and is represented by
intersection word of complexity O(g|T |).

Proof. Use Proposition 14 to get an edge list representation of γ in a new triangulation T ′

of complexity O(m + |T |) and then Theorem 16 for an equivalent pants decomposition ρ ⊇ γ

of complexity O(g|T ′|) as an edge list in another triangulation T ′′ of Σg. We will construct a
multicurve σ, seamed for the pants decomposition ρ, intersecting each component twice.

For each component r of ρ, select two edges contained in ET (r) to be points of intersection
with σ. For every connected component P of Σg − ρ (i.e., P is a pair of pants), we connect
each intersection point of a boundary component of P to other intersection points in the
two other components of ∂P . To avoid self-intersections of σ, we separately draw in each
pair of pants a seam at a time, using breadth-first search in the dual graph, recording the
intersection words, and changing the dual graph so that no seam can cross a previously traced
seam (see the proof of Theorem 16). Even though we change the dual graph, making it more
complicated at each drawing of a seam, because the seams are local within pairs of pants,
each application of breadth-first search considers only O(|T ′′|) nodes and edges. At the end
of the process, we have a multicurve σ that, although seamed for the pants decomposition ρ,
may have up to g + 1 connected components. It therefore remains to modify σ so it has just
a single component.

Whenever there are still disconnected components in σ, there exists a pair of pants
intersected by at least two distinct components of σ, refer to Figure 4. We can then do the
surgery on the right side of Figure 4 to connect the two components. Using breadth-first,
this takes a total time of O(g|T ′′|) and yields a connected curve s of intersection word IT ′′(s).
Because, by construction, s is seamed for each pair of pants from Σg − ρ, by Theorem 6,
s is diskbusting for γ. Finally, we compute an intersection word of s with respect to T

in time O(|T ′′|) by deleting the edges in T ′′\T . Note that s is already normal for T as,
by construction, s is standard to T ′′ ≥ T ′ ≥ T and, since all paths are shortest, no cyclic
reductions are possible. ◀

The proof of the following (slightly technical) result is also carried in the paper’s extended
version.
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▶ Lemma 18. Suppose (Σg, α, β) is a Heegaard diagram, with α and β given as intersection
words in a triangulation T of Σg, where we m = max{∥IT (α)∥, ∥IT (β)∥}. One can find, in
time O(m), a triangulation T ′ and new multicurves α′, β′ which represent a stabilization
(Σg+1, α′, β′) of the original diagram, with O(|T ′|) = O(|T |) and ∥IT ′(α′)∥, ∥IT ′(β′)∥ = O(m).

4 Restricting the topology of 3-manifolds

Given a Heegaard diagram (Σg, α, β) and a fixed k ∈ Z+, the algorithm of Theorem 1 uses
Theorems 9 and 11 to construct a new diagram (Σg+1, α, τn

s (β)) with Hempel distance at
least k, without altering the associated RT-invariant in the process, where n is some integer
multiple of the associated Vafa’s constant and s is a curve distant enough from both Kα

and Kβ . The main challenge of the algorithm comes, however, from building such a curve
s. We address the problem by first computing, through Proposition 20, two curves, say sα

and sβ , of distance at least k from Kα and Kβ , respectively. We then use these two curves
in Proposition 22 to construct a single curve s, whose distances to Kα and Kβ satisfy the
hypotheses of Theorem 9.

We establish Proposition 20 incrementally, first using Theorem 17 to find a curve s

diskbusting to Kγ , increasing d(Kγ , s) to at least 3 using Lemma 19, and finally making the
distance bigger than k.

▶ Lemma 19. Let γ be a minimal system in Σg, normal to a triangulation T of Σg, and given
by an intersection word IT (γ) with ∥IT (γ)∥ = m. One can compute, in time O((gm|T |)9),
an intersection word of a normal curve s′, of complexity O((gm|T |)9), with d(Kγ , s) ≥ 3.

This result is simply an application of Theorem 17 followed by Theorem 10; the details are
carried out in the extended version.

▶ Proposition 20. Let γ be a minimal system in Σg, normal with respect to some triangulation
T . Then, for a fixed 3 ≤ k ∈ Z+, one can compute, in time c

O(kc1 )
2 log k, where c1 = log 3

and c2 = O(gm|T |k), the intersection word of a curve s, normal to T and of complexity
c

O(kc2 )
1 , for which d(Kγ , s) > k.

Proof. Start using Lemma 19 to find an intersection word of a curve s0 with d(Kγ , s0) ≥ 3. If
k = 3 we are done, so assume otherwise. Define M = ∥IT (s0)∥; recall that M = O((gm|T |)9).
Let c be any connected component of γ and recursively define si+1 = τki+3

si
(c), where

ki = 2i+1 + 2. We claim that, for any ℓ ∈ Z+, d(Kγ , sℓ) ≥ kℓ−1. We prove this inducting on
ℓ: for ℓ = 1, k0 = 4 and, by Theorem 9 with α = β = γ and n = min{d(Kγ , Kγ), 1} = 1, we
have that

d(Kγ , s1) = d(Kγ , τk0+n+2
s0

(c)) ≥ d(Kγ , K
τ

k0+n+2
s0 (γ)) ≥ 4.

Now assume d(Kγ , sℓ) ≥ 2ℓ + 2. Again, by Theorem 9,

d(Kγ , sℓ+1) = d(Kγ , τkℓ+3
sℓ

(c)) ≥ d(Kγ , K
τ

kℓ+3
sℓ

(γ)) ≥ 2d(Kγ , sℓ)−2 ≥ 2(2ℓ+2)−2 = 2ℓ+1+2,

so, by induction, d(Kγ , sℓ) ≥ kℓ−1. Setting the total number of iterations at ℓ = ⌈log(k − 2)⌉
and s = sℓ, we have that d(Kγ , s) ≥ k.

We now estimate the total computational time and the output’s complexity of the
algorithm. First, we note that, by Theorem 15, ∥IT (si+1)∥ ≤ (ki + 3)∥IT (si)∥3. Recursively,
this gives
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∥IT (s)∥ ≤ M3ℓ

(k0 + 3)3ℓ−1
(k1 + 3)3ℓ−2

. . . (kℓ−1 + 3)

≤ M3ℓ

(21 + 5)3ℓ−1
(22 + 5)3ℓ−2

. . . (2ℓ + 5)

≤ M3ℓ

(2ℓ + 5)3ℓ−1
(2ℓ + 5)3ℓ−2

. . . (2ℓ + 5)

≤ M3ℓ

(2ℓ + 5)3ℓ−1+3ℓ−2+···+30

≤ M3ℓ

(2ℓ + 5) 1
2 ×(3ℓ−1)

≤ M3log(k−2)+2
(2log(k−2)+2 + 5) 1

2 ×(3log(k−2)+2−1)

≤ M9×3log(k−2)
(4k − 3)9/2×3log(k−2)

≤ M9(k−2)log 3
(4k)5(k−2)log 3

≤ M9kc1 (4k)5kc1

where we used the geometric series in the fifth line, ⌈log(k−2)⌉ ≤ log(k−2)+2 in the sixth line,
the relation alog b = 2log a log b = blog a for any real a, b > 1 in the eighth line, and c1 = log 3
in the last line. The time complexity for computing IT (s) can be (very coarsely) estimated
at O(ℓ × (kℓ−1 + 3)∥IT (sℓ−1)∥3) = O(log k × ∥IT (s)∥) = O((gm|T |)81kc1 (4k)5kc1 log k) by
noting that ∥IT (si)∥ ≤ ∥IT (sℓ−1)∥ and ki ≤ kℓ−1 = k for all 1 ≤ i ≤ n. ◀

We now show Proposition 22, starting with the following technical lemma, whose proof
(a simple application of the triangle inequality) is carried out in the paper’s full version.

▶ Lemma 21. Consider some full systems γ and γ′ in the surface Σg with d(Kγ , Kγ′) ≥ 4
and a curve s with d(Kγ , s) < 2. Then d(Kγ′ , s) ≥ 2.

▶ Proposition 22. Fix an integer k ≥ 4. Consider some minimal systems α and β in the
surface Σg for which d(Kα, Kβ) = 0. Then there is a curve s and some full minimal system
β′ (potentially β′ = β) in Σg such that

min
i=α,β′

{d(Ki, s)} ≥ 2, max
i=α,β′

{d(Ki, s)} ≥ k, d(Kα, s) + d(Kβ′ , s) − 2 > n,

and ⟨(Σg, β)⟩RT
C = ⟨(Σg, β′)⟩RT

C , (2)

where n = min{d(Kα, Kβ′), 1}. Moreover, if m = max{∥IT (α)∥, ∥IT (β)∥}, then IT (s) and
IT (β′) will have complexity Nkc

O(kc1 )
2 and are computed in similar time for any choice of

Vafa’s constant N ∈ Z+, where c1 = log 3 and c2 = O(gm|T |k).

Proof. We use Proposition 20 to find two curves, sα and sβ , such that d(Kα, sα) and
d(Kβ , sβ) are larger than k. Note that if sα is diskbusting in Kβ , we are done, as we can let
s = sα, β′ = β, and

d(Kα, s) ≥ k, d(Kβ′ , s) = d(Kβ , sα) ≥ 2, and d(Kα, s) + d(Kβ′ , s) − 2 > 1.

Therefore, assume d(Kβ , sα) < 2.
By applying Theorem 15, we compute an intersection word for β̃ = τ

N(k+3)
sβ (β). Note

that ∥IT (β̃)∥ = O(Nk∥IT (sβ)∥3) = O(Nk(gm|T |)243kc1 (4k)15kc1 ) and, by Theorem 9,
d(Kβ , Kβ′) ≥ k. Moreover, because β′ was constructed by applying a power of Dehn
twists multiple of N to β, by Theorem 11, ⟨(Σg, β)⟩RT

C = ⟨(Σg, β′)⟩RT
C .

Pick any component b̃ of β̃. If b̃ is diskbusting for Kα, then s = b̃ and β′ = β have the
desired properties. In particular, notice that

d(Kα, s) ≥ 2, d(Kβ′ , s) ≥ d(Kβ , K
β̃
) ≥ k, and d(Kα, s) + d(Kβ′ , s) − 2 > 1.
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If, however, b̃ is not diskbusting for Kα, it means that d(Kα, K
β̃
) ≤ d(Kα, b̃) < 2. Letting

s = sα and β′ = β̃ gives

d(Kα, s) ≥ k, d(Kβ′ , s) ≥ 2, and d(Kα, s) + d(Kβ′ , s) − 2 ≥ k ≥ 3 > d(Kα, Kβ′),

where the second inequality comes from d(Kβ , sα) < 2 and d(Kβ , K
β̃
) ≥ k ≥ 4 applied to

Lemma 21. ◀

We can, once again, combine the above result with Theorem 9 to prove our main reduction.

▶ Theorem 1. Let (Σg, α, β) be a Heegaard diagram of a closed 3-manifold M of complexity
m to a triangulation T of Σg. Choose a modular category C with Vafa’s constant N and
fix an integer k ≥ 4. Then there is a set of three Heegaard diagrams, computed in time
Ok(poly(g, m, |T |, N)) (of degree depending on k), representing manifolds with RT invariant
over C equal to ⟨M⟩RT

C , one of them guaranteed to be hyperbolic and with no embedded
incompressible orientable surface of genus at most 2k.

Proof. We start by using Lemma 18 to compute a stabilized splitting (Σg+1, α′, β′); note
that d(Kα′ , Kβ′) = 0. Construct two curves sα and sβ as in the proof of Proposition 22. Let
β1 = β′ and s1 = sα.

We proceed as in the proof of Proposition 22, computing an intersection word of a new
minimal system β̃ = τ

N(k+3)
sβ (β′) and defining β2 = β′ and β3 = β̃, s2 as any component of

β̃, and s3 = sα. By Proposition 20, for at least one 1 ≤ j ≤ 3

min
i=α′,βj

{d(Ki, sj)} ≥ 2, max
i=α′,βj

{d(Ki, sj)} ≥ k, d(Kα′ , sj) + d(Kβj
, sj) − 2 > n

where n = max{d(Kα′ , Kβj
), 1}. Applying, once again, Theorems 15 and 9, we conclude

that one of the splittings (Σg, α′, τ
N(k+3)
sj (βj)) has a Hempel distance of, at least, k and an

intersection word for τ
N(k+3)
sj (βj) can be found in time O(Nk(max{∥IT (βj)∥, ∥IT (sj)∥})3)

= O(N4k4(gm|T |)729kc1 (4k)45kc1 ). Theorem 7 finishes the proof. ◀

5 Computational reduction for quantum invariants

Theorem 1 gives a polynomial time algorithm to change a general closed 3-manifold into
another manifold with very restricted topology without altering the RT invariant in the
process. Therefore, the problems of either exactly computing or approximating the invariant
of general 3-manifolds reduce, in a Cook-Turing sense, to the problems of exactly computing
or approximating the invariant when the manifolds are assumed to have the properties of
Theorem 1. Ultimately, this means that the hardness of computation is not altered in this
restricted topology scenario.

We illustrate this reduction by showing that value-distinguishing approximations of the
Reshetikhin–Turaev and the Turaev-Viro invariants are #P-hard, even for manifolds with the
properties of Theorem 1, when we take C to be the category of representations of the quantum
group SOr(3), for some prime r ≥ 5 (in this case, one can use N = 4r for Vafa’s constant).
We note that, by a value-distinguishing approximation, we mean the ability to determine
whether the approximated quantity c ∈ R+ is a > c or b < c for any fixed 0 < a < b where
we assume, as a premise, one of the two to hold. In particular, multiplicative approximations
are value-distinguishing, although other less restrictive schemes also are [30].
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5.1 Reshetikhin–Turaev invariant
For every Heegaard diagram (Σg, α, β), there is an orientation-preserving homeomorphism
ϕ : Σg ! Σg such that β = ϕ(α) [18, 56]. A lthough not unique, this map is well-defined on
Mod(Σg), so it can be described by a word on Lickorish generators. We do not differentiate
between the notation of the homomorphism ϕ from its equivalence class in Mod(Σg).

▶ Theorem 23 ([3, 20]). Consider the problem P of determining a value-distinguishing
approximation of the SOr(3)-RT invariant, r ≥ 5 prime, of a manifold M , represented
through a Heegaard splitting described by a word ϕ ∈ Mod(Σg) for some known g ≥ 2. Then
P is #P-hard in the sense of a Cook-Turing reduction.

Before applying Theorem 1 to this result, we need to find an algorithm to convert the
pair (Σg, ϕ) into a proper Heegaard diagram (Σg, β). This cannot be done through brute
force computing β = ϕ(α), since, as we saw in the proof of Proposition 20, it can lead
to exponential bottlenecks. We fix the problem with the following lemma at the cost of
potentially increasing the value of g. The proof of the next, as well as all other results of
this section (except for Corollary 25), is found in the paper’s full version.

▶ Lemma 24. Consider a Heegaard splitting described by a word ϕ ∈ Mod(Σg) for some
known g ≥ 2. Then it is possible to compute, in time O(poly(g, ϕ)), a Heegaard diagram
(Σg′ , β) representing the same manifold, with β normal to a triangulation T of Σg′ .

▶ Corollary 25. Fix a prime r ≥ 5. Consider the problem P of, given a Heegaard diagram
(Σg, β) of a closed 3-manifold M , returning a value-distinguishing approximation of its
SOr(3)-RT invariant if M has the properties of Theorem 1, otherwise remaining silent. Then
P is #P-hard in the sense of a Cook-Turing reduction.

Proof. Let O be an oracle machine that solves P and consider the problem P ′ of finding a
value-distinguishing approximation of a general Heegaard splitting given as a pair (Σg, ϕ) for
ϕ ∈ Mod(Σg). We will show that O solves P ′ with only a polynomial overhead. Because O
solves P and, by Theorem 23, P ′ is #P-hard, then so is P.

Let (Σg, ϕ) encode a Heegaard splitting of a manifold M , not necessarily with the
properties of Theorem 1. Using Lemma 24, we transform (Σg, ϕ) into a Heegaard diagram
(Σg′ , β) in polynomial time. Then apply the algorithm of Theorem 1 to this diagram, returning
three new diagrams as output. We run the oracle O in parallel to these three diagrams,
stopping the program whenever it halts for one of them. In the end, this gives, in polynomial
time, a value-distinguishing approximation of ⟨M⟩RT

SOr(3), concluding the proof. ◀

▶ Remark 26. We note that the sort of reduction assumed by the statement of Corollary
25 is related to what is often called in the complexity literature by a semi-decision problem,
that is, an oracle that cannot return an incorrect answer, but may not halt for some inputs.
Although weaker than the more common approach in which we assume that P can give
incorrect approximation of the invariant if the input does not have the expected properties,
this sort of oracle has also already been discussed for algorithm on 3-manifolds, e.g. see the
Definition 1.3 in [35].

5.2 Turaev-Viro invariant
A compact 3-manifold can also be combinatorially described by a set of tetrahedra T ,
together with rules on how to glue their triangular faces [10, 40]. This description is called a
triangulation of the 3-manifold, but it should not be confused with triangulations of surfaces.
Nonetheless, if M has a boundary, T naturally defines a (surface) triangulation for ∂M . For
each g ≥ 1, there exists a one-vertex triangulation of the handlebody of genus g [27].
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The Turaev-Viro invariant (TV) is another quantum invariant for closed 3-manifolds. It is
defined for spherical categories (which include modular categories) and is computed directly
from a triangulation [7]. The Turaev-Walker theorem [53] states that, given a manifold M ,
|⟨M⟩RT

C |2 = ⟨M⟩T V
C , provided C is a modular category. We show that an approximation of

the SOr(3)-TV invariant can be used to compute an approximation of SOr(3)-RT [3]. For
such, we use the next theorem due to [21].

▶ Theorem 27. Suppose β is a normal minimal system with respect to a one-vertex triangu-
lation of the standard embedding of the genus g handlebody in R3, with ∥IT (β)∥ = m. There
is an algorithm to compute, in time poly(m, g), a triangulation of the 3-manifold of Heegaard
diagram (Σg, β).

▶ Corollary 28. Fix a prime r ≥ 5. Consider the problem P of, given a triangulation of
a closed 3-manifold M , returning a value-distinguishing approximation of its SOr(3)-TV
invariant if M has the properties of Theorem 1, otherwise remaining silent. Then P is
#P-hard in the sense of Cook-Turing reduction.
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