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Abstract
We show that, for every fixed positive integers r and k, Max-Weight List r-Colorable Induced
Subgraph admits a polynomial-time algorithm on kP3-free graphs. This problem is a common gen-
eralization of Max-Weight Independent Set, Odd Cycle Transversal and List r-Coloring,
among others. Our result has several consequences.

First, it implies that, for every fixed r ≥ 5, assuming P ̸= NP, Max-Weight List r-Colorable
Induced Subgraph is polynomial-time solvable on H-free graphs if and only if H is an induced
subgraph of either kP3 or P5 + kP1, for some k ≥ 1. Second, it makes considerable progress toward
a complexity dichotomy for Odd Cycle Transversal on H-free graphs, allowing to answer a
question of Agrawal, Lima, Lokshtanov, Rzążewski, Saurabh, and Sharma [ACM Trans. Algorithms
2025]. Third, it gives a short and self-contained proof of the known result of Chudnovsky, Hajebi,
and Spirkl [Combinatorica 2024] that List r-Coloring on kP3-free graphs is polynomial-time
solvable for every fixed r and k.

We also consider two natural distance-d generalizations of Max-Weight Independent Set
and List r-Coloring and provide polynomial-time algorithms on kP3-free graphs for every fixed
integers r, k, and d ≥ 6.
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1 Introduction

A fundamental class of graph optimization problems consists in finding a maximum-weight
induced subgraph satisfying a certain fixed property Π. Lewis and Yannakakis [12] showed
that, whenever this fixed property Π is nontrivial and hereditary, the corresponding problem
is NP-hard. In this paper, we investigate the case where Π is the property of being list
r-colorable, leading to a meta-problem called Max-Weight List r-Colorable Induced
Subgraph. In order to properly define this problem, we first require some definitions.
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40:2 Maximum List r-Colorable Induced Subgraphs in kP3-Free Graphs

Let G = (V, E) be a finite simple graph. A coloring of G is a mapping ϕ : V → {1, 2, . . .}
that gives each vertex u ∈ V a color ϕ(u) in such a way that, for every two adjacent vertices
u and v in G, we have that ϕ(u) ̸= ϕ(v). For r ≥ 1, a coloring ϕ of G is an r-coloring if
ϕ(u) ∈ {1, . . . , r} for every u ∈ V , and a graph is r-colorable if it admits an r-coloring. For
r ≥ 1, an r-list assignment of G is a function L : V → 2{1,...,r} that assigns each vertex u ∈ V

a list L(u) ⊆ {1, . . . , r} of admissible colors for u. A coloring ϕ of G respects L if ϕ(u) ∈ L(u)
for every u ∈ V . We are finally ready to define Max-Weight List r-Colorable Induced
Subgraph, where r is a fixed positive integer.

Max-Weight List r-Colorable Induced Subgraph
Input: A graph G equipped with a weight function w : V (G) → Q+, and an r-list
assignment L of G.
Task: Find a subset F ⊆ V (G) such that:
1. The induced subgraph G[F ] admits a coloring that respects L, and
2. The weight w(F ) =

∑
v∈F w(v) is maximum subject to the condition above.

Max-Weight List r-Colorable Induced Subgraph is a common generalization of
several well-known and deeply investigated NP-hard problems, as we explain next. Max-
Weight List r-Colorable Induced Subgraph generalizes List r-Coloring and hence
r-Coloring as well, which are known to be NP-hard for all r > 2 [11]. Recall that, for
a fixed r ≥ 1, List r-Coloring is the problem to decide whether a given graph G with
an r-list assignment L admits a coloring that respects L. By setting L(u) = {1, . . . , r} for
every u ∈ V (G), we obtain r-Coloring. Note also that, for r1 ≤ r2, List r1-Coloring is
a special case of List r2-Coloring.

Several other NP-hard problems are special cases of Max-Weight List r-Colorable
Induced Subgraph for specific values of r. For example, for r = 1, Max-Weight List
r-Colorable Induced Subgraph is equivalent to Max-Weight Independent Set,
which is the problem of finding a maximum-weight subset of pairwise non-adjacent vertices of
an input graph G. For r = 2, Max-Weight List r-Colorable Induced Subgraph gener-
alizes the problem of finding a maximum-weight induced bipartite subgraph of an input graph
G which, by complementation, is equivalent to finding a minimum-weight subset of vertices
intersecting all odd cycles in G. The latter is the well-known Odd Cycle Transversal.

Given the hardness of Max-Weight List r-Colorable Induced Subgraph, it is
natural to investigate whether the problem becomes tractable for restricted classes of inputs.
The framework of hereditary graph classes (i.e., graph classes closed under vertex deletion)
is particularly well suited for this type of research, where the ultimate goal is to obtain
complexity dichotomies telling us for which hereditary graph classes the problem at hand
can or cannot be solved efficiently (under the standard complexity assumption that P ̸= NP).

We recall some relevant definitions. A graph G is H-free, for some graph H, if it
contains no induced subgraph isomorphic to H. For a set of graphs {H1, . . . , Hp}, a graph is
(H1, . . . , Hp)-free if it is Hi-free for every i ∈ {1, . . . , p}. The disjoint union G + H of graphs
G and H is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). We denote
the disjoint union of k copies of G by kG and let Ps denote the chordless path on s vertices.

It is known that, for r = 2, Max-Weight List r-Colorable Induced Subgraph
admits no polynomial-time algorithm on H-free graphs unless H is a linear forest (i.e., a
disjoint union of paths). Indeed, Chiarelli et al. [3] showed that its special case Odd Cycle
Transversal is NP-hard on H-free graphs if H contains a cycle or a claw (the claw is
the 4-vertex star). In recent years, considerable work has been done toward classifying the



E. Galby, P. T. Lima, A. Munaro, and A. Nikabadi 40:3

complexity of Odd Cycle Transversal (and its generalizations) on graphs forbidding an
induced linear forest. In Theorem 1, we collect known results for Odd Cycle Transversal
and its two generalizations Max-Weight r-Colorable Induced Subgraph and Max-
Weight List r-Colorable Induced Subgraph on H-free graphs, where H is a linear
forest. The problems are listed in increasing order of generality. In particular, an NP-hardness
result for a certain problem implies NP-hardness for a more general problem. Note also that
the hardness results hold even in the unweighted setting.

▶ Theorem 1. The following hold:
(i) Odd Cycle Transversal on H-free graphs can be solved in polynomial time if

H = P5 (Agrawal et al. [1]), or
H = kP2 for all k ∈ N (Chiarelli et al. [3]), or
H = P3 + kP1 for all k ∈ N (Dabrowski et al. [7]),

and remains NP-hard if
H = (P6, P5 + P2) (Dabrowski et al. [7]).

(ii) Max-Weight r-Colorable Induced Subgraph on H-free graphs can be solved in
polynomial time if

H = P5 + kP1 for all k ∈ N (Henderson et al. [10]),
and remains NP-hard if

H = (P6, P5 + P2) for r = 2, or
H = 2P4 for all r ≥ 5 (Hajebi et al. [9]).

(iii) Max-Weight List r-Colorable Induced Subgraph on H-free graphs can be
solved in polynomial time if

H = P5 (Lokshtanov et al. [13]),
H = P5 + kP1 for all k ∈ N (Henderson et al. [10]),

and remains NP-hard if
H = (P6, P5 + P2) for r ≥ 2, or
H = P4 + P2 for all r ≥ 5 (Couturier et al. [6]).

Recently, Chudnovsky et al. [4] obtained the following complete complexity dichotomy
for List r-Coloring when r ≥ 5. Assuming P ̸= NP, List r-Coloring (r ≥ 5) can be
solved in polynomial time on H-free graphs if and only if H is an induced subgraph of either
kP3 or P5 + kP1, for some k ∈ N. Their main result toward this was showing that List
r-Coloring (r ≥ 1) can be solved in polynomial time on kP3-free graphs, for any k ∈ N,
and this was obtained building on a very technical result of Hajebi et al. [9, Theorem 5.1].

Motivated by the quest for a complexity dichotomy, Agrawal et al. [1] posed very recently
as an open problem to classify the computational complexity of Odd Cycle Transversal
on (P3 + P2)-free graphs, the unique minimal open case stemming from Theorem 1.

It should also be mentioned that classifying the complexity of Max-Weight Inde-
pendent Set on H-free graphs when H is a linear forest is a notorious open problem in
algorithmic graph theory (see [5] for the state of the art). Note however that Max-Weight
Independent Set substantially differs from Odd Cycle Transversal on H-free graphs,
in the sense that it is polynomial-time solvable on claw-free graphs.

In this paper, we also consider the distance-d generalizations of Max-Weight Inde-
pendent Set and List r-Coloring, defined as follows. For d ≥ 2, a distance-d independent
set of a graph G is a set of vertices of G pairwise at distance at least d in G. For fixed d ≥ 2,
Max-Weight Distance-d Independent Set (also known as d-Scattered Set) is the
problem to find a maximum-weight distance-d independent set of an input graph G.

ESA 2025
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Trivially, for every fixed d ≥ 2, Max-Weight Distance-d Independent Set is easy
on Pd+1-free graphs, and the following hardness results are known.

▶ Theorem 2. The following hold for Distance-d Independent Set on H-free graphs:
(i) It is NP-hard if H contains 2P(d+1)/2, for every fixed odd d ≥ 3 (Eto et al. [8]);
(ii) Assuming ETH, it admits no 2o(|V (H)|+|E(H)|)-time algorithm if H contains a cycle or

a claw, for every fixed d ≥ 3 (Bacsó et al. [2]).

For d ≥ 2, a (d, r)-coloring of a graph G is an assignment of colors to the vertices of G

using at most r colors such that no two distinct vertices at distance less than d receive the
same color. Thus, a (2, r)-coloring is nothing but an r-coloring. Similarly as above, for fixed
d ≥ 2 and r ≥ 1, we define (d, r)-Coloring as the problem of determining whether a given
graph G has a (d, r)-coloring. List (d, r)-Coloring is defined similarly but we require in
addition that every vertex u must receive a color from some given list L(u) ⊆ {1, . . . , r}.

Sharp [18] provided the following complexity dichotomy: For fixed d ≥ 3, (d, r)-Coloring
is polynomial-time solvable for r ≤ ⌊3d/2⌋ and NP-hard for r > ⌊3d/2⌋.

Our results. We prove three main algorithmic results for kP3-free graphs. The first result,
proven in Section 3, concerns Max-Weight List r-Colorable Induced Subgraph.

▶ Theorem 3. Let r ≥ 1 be a fixed integer. For every k ∈ N, Max-Weight List r-
Colorable Induced Subgraph can be solved in polynomial time on kP3-free graphs.

Theorem 3 has several interesting consequences. First, it immediately implies that Odd
Cycle Transversal can be solved in polynomial time on kP3-free graphs, for every k ∈ N,
thus solving a generalized version of the aforementioned open problem of Agrawal et al. [1].
Our result for Odd Cycle Transversal also complements the polynomial-time algorithms
for Feedback Vertex Set and Even Cycle Transversal on kP3-free graphs of Paesani
et al. [16]. Second, Theorem 3 generalizes the recent result of Chudnovsky et al. [4] that
List r-Coloring can be solved in polynomial time on kP3-free graphs for every r, k ∈ N.
Although partially inspired by their approach, as we explain below, our proof of the more
general Theorem 3 has the advantage of being considerably shorter and self-contained.

Theorem 3 also makes considerable progress toward a complete complexity dichotomy for
Max-Weight List r-Colorable Induced Subgraph and Odd Cycle Transversal
on H-free graphs. Indeed, paired with the recent result of [10], it completely settles the
complexity of Max-Weight List r-Colorable Induced Subgraph on H-free graphs for
r ≥ 5 (see Theorem 1 and the discussion preceding it):

▶ Theorem 4. Let r ≥ 5 be a fixed integer. Assuming P ̸= NP, Max-Weight List r-
Colorable Induced Subgraph on H-free graphs is polynomial-time solvable if and only
if H is an induced subgraph of either kP3 or P5 + kP1, for some k ≥ 1.

Moreover, paired with the results of [3, 7, 10] mentioned above, Theorem 3 leaves the case
H = k4P4 +k3P3 +k2P2 +k1P1, with k4 ≥ 1 and k4 +k3 ≥ 2, as the only remaining open case
toward a complete complexity dichotomy for Odd Cycle Transversal on H-free graphs.

We then consider the distance-d generalizations of Max-Weight Independent Set
and List r-Coloring, for d ≥ 6, and prove the following two results.

▶ Theorem 5. Let d ≥ 6 be a fixed integer. For every k ∈ N, Max-Weight Distance-d
Independent Set can be solved in polynomial time on kP3-free graphs.
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▶ Theorem 6. Let d ≥ 6 and r ≥ 1 be fixed integers. For every k ∈ N, List (d, r)-Coloring
can be solved in polynomial time on kP3-free graphs.

Paired with the aforementioned result of Eto et al. [8], Theorem 5 completely settles the
computational complexity of Max-Weight Distance-d Independent Set on kP3-free
graphs, except for the only remaining open case d = 4.

Technical overview. We now explain our approach toward Theorem 3, which combines
ideas from [14, 15] and [4]. It is instructive to first consider the special case of Odd Cycle
Transversal (by complementation, Max-Weight 2-Colorable Induced Subgraph) on
kP2-free graphs, where a very simple algorithm can be obtained. Indeed, kP2-free graphs have
polynomially many (inclusion-wise) maximal independent sets, and these can be enumerated
in polynomial time. Consequently, a maximum-weight induced bipartite subgraph can be
found by exhaustively enumerating all pairs of maximal independent sets [3]. However, it is
easily seen that even P3-free graphs (i.e., graphs whose connected components are cliques)
do not have polynomially many maximal independent sets. But it turns out that a weaker
property is enough for our purposes: Admitting a polynomial family of “well-behaved” vertex
sets such that every maximal independent set is contained in one of these sets. In our case,
“well-behaved” means inducing a P3-free subgraph. The intuition is that, given such a family,
we can efficiently guess the color classes, each of which will be a disjoint union of cliques,
and then match vertices to the possible color classes.

The following key notion, which we dub amiable family, was first introduced by Lozin
and Mosca [15]. For a graph G, a family S ⊆ 2V (G) of subsets of V (G) is an amiable family
if it satisfies the following two properties:

Each member of S induces a P3-free subgraph in G;
Each (inclusion-wise) maximal independent set of G is contained in some member of S.

Lozin and Mosca [15] showed that, when k = 2, every kP3-free graph G admits an amiable
family of size polynomial in |V (G)| and which can be computed in polynomial time. Later,
Lozin [14] observed how such property in fact holds for every k ≥ 2 (see Lemma 8 for a
formal statement). Given an amiable family S of polynomial size of a kP3-free graph G, we
would like to exhaustively solve Max-Weight List r-Colorable Induced Subgraph on
every possible r-tuple consisting of members of S. More precisely, let (S1, . . . , Sr) ∈ Sr be
an r-tuple of members of S. We would like to find a maximum-weight induced subgraph of
G[

⋃
i∈[r] Si] which admits an r-coloring respecting the given r-list assignment and such that,

for i = 1, . . . , r, all vertices colored i are contained in Si. To do this, we then extend an idea of
Chudnovsky et al. [4] as follows. We reduce our problem to that of finding a maximum-weight
matching in an auxiliary bipartite graph where one partition class Y consists of

⋃
i∈[r] Si, the

other class X consists of the connected components of the subgraphs G[Si], for i = 1, . . . , r,
and there is an edge between y ∈ Y and x ∈ X if and only if y belongs to the connected
component x. Since each weighted matching problem can be solved in polynomial time using
the Hungarian method (see, e.g., [17, Theorem 17.3]) and we build |S|r auxiliary problems,
which is a polynomial in |V (G)|, a solution to Max-Weight List r-Colorable Induced
Subgraph can be found in polynomial time.

In order to prove Theorems 5 and 6, we consider the following distance-d generalization
of the notion of amiable family. For a graph G, a family S ⊆ 2V (G) of subsets of V (G) is a
distance-d amiable family if it satisfies the following properties:

Each member of S induces a P3-free subgraph in G;
For each S ∈ S, the connected components of G[S] are pairwise at distance at least d in G;
Each (inclusion-wise) maximal distance-d independent set of G is contained in some
member of S.

ESA 2025



40:6 Maximum List r-Colorable Induced Subgraphs in kP3-Free Graphs

α

≥ d

β

≥ d

S1

S2

S3

Figure 1 Visualization for distance-d amiable family S = {S1, S2, S3}. Circles represent cliques
and α, β are maximal distance-d independent sets. Dashed lines depict paths of lengths at least d.

Clearly, a distance-2 amiable family is nothing but an amiable family. Our main technical
contribution is the following Lemma 7, proven in Section 4. Although the algorithm for
Lemma 7 is inspired by the case d = 2 and hence by the work of Lozin and Mosca [15], its
proof of correctness is much more involved and requires genuinely new ideas.

▶ Lemma 7. Let d ≥ 6 be a fixed integer. For every k ∈ N, every kP3-free graph admits a
distance-d amiable family of size |V (G)|O(k), which can be computed in time |V (G)|O(k).

Equipped with Lemma 7, we immediately obtain Theorem 5. Indeed, in order to solve
Max-Weight Distance-d Independent Set on a kP3-free graph G, we simply find in
polynomial time a distance-d amiable family S of G as above and, for each member S ∈ S,
find a max-weight independent set in the P3-free graph G[S]. The latter can be clearly done
in polynomial time, thus proving Theorem 5. The proof of Theorem 6 is similar to that of
Theorem 3, the only difference being the use of a distance-d amiable family for d ≥ 6, and
hence omitted.

A remark about our approach, which combines ideas of Lozin and Mosca [14, 15] and
Chudnovsky et al. [4], is in place. The proof of Chudnovsky et al. [4] that List r-Coloring
(r ≥ 1) is polynomial-time solvable on kP3-free graphs generalizes the earlier result of Hajebi
et al. [9] that List 5-Coloring is polynomial-time solvable on kP3-free graphs, by replacing
the second step in the proof of Hajebi et al. (see [9, Theorem 4.3]) with a significantly simpler
argument (the aforementioned reduction to a bipartite matching problem) that, in addition,
works for all r ∈ N. However, their result still relies on the very technical first step of Hajebi
et al. (see [9, Theorem 5.1]). Our approach can be viewed as a step further in the direction
of simplifying and generalizing, as exemplified by our Theorems 3 and 6, which extend in
different ways the main result of Chudnovsky et al. [4] by means of an arguably elegant and
self-contained proof.

Proofs of statements marked with “⋆” are omitted due to space constraints.

2 Preliminaries

We denote the set of positive integers by N. For every n ∈ N, we let [n] := {1, . . . , n}.
Given a set A, we denote by Ar the set of all ordered r-tuples of elements of A, i.e.,
Ar = {(a1, . . . , ar) : ai ∈ A for i = 1, . . . , r}.
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All graphs in our paper are finite and simple. The empty graph is the graph with no
vertices. Let now G be a graph. For X ⊆ V (G), we denote the subgraph of G induced
by X as G[X], that is G[X] = (X, {uv : u, v ∈ X and uv ∈ E(G)}). We use NG(X) to
denote the neighbors in V \ X of vertices in X. For disjoint sets X, Y ⊆ V (G), we say
that X is complete to Y if every vertex in X is adjacent to every vertex in Y , and X is
anticomplete to Y if there are no edges between X and Y . For a subset X ⊆ V (G), the
anti-neighborhood of X, denoted by A(X), is the subset of vertices in V (G) \ X which
are anticomplete to X. With a slight abuse of notation, if X = {v1, . . . , vi}, we denote
A(X) = A({v1, . . . , vi}) by A(v1, . . . , vi). Given two subsets X, Y ⊆ V (G), an X, Y -path in
G is a path in G which has one end in X, the other end in Y , and whose inner vertices
belong to neither X nor Y . For vertices u, v ∈ V (G), we denote by dG(u, v) the distance
between u and v in G, i.e., the length of a shortest u, v-path in G. If no such path exists,
we let dG(u, v) = ∞. Moreover, for d ∈ N, we let N≥d

G (v) = {u ∈ V (G) : dG(v, u) ≥ d} and
N≤d

G (v) = {u ∈ V (G) \ {v} : dG(v, u) ≤ d}. Given two subsets X, Y ⊆ V (G), the distance
between X and Y in G is the quantity dG(X, Y ) = minx∈X,y∈Y dG(x, y), i.e., the length of a
shortest path in G between a vertex in X and a vertex in Y . Given u ∈ V (G) and Q ⊆ V (G),
we say that u is connected to Q in G if there exists a u, Q-path in G (possibly of length 0).

A clique of a graph is a set of pairwise adjacent vertices and an independent set is a set of
pairwise non-adjacent vertices. A matching of a graph is a set of pairwise non-adjacent edges.
A connected component of G is a maximal connected subgraph of G. For convenience, we
will often view a connected component as its vertex set rather than the subgraph itself. For
this reason, we will say for example that “a connected component is a clique” rather than “a
connected component is a complete subgraph”. Throughout the paper, we will repeatedly
make use of the fact that every connected component of a P3-free graph is a clique.

3 The proof of Theorem 3

In this section we prove Theorem 3. As mentioned in the introduction, the first step is to
obtain a polynomial-time algorithm for finding an amiable family (necessarily of polynomial
size) of a kP3-free graph. The second step consists then in reducing Max-Weight List
r-Colorable Induced Subgraph to polynomially many auxiliary weighted matching
problems. We do this in Lemma 9. We finally combine these two steps and prove Theorem 3.

▶ Lemma 8 (⋆). For every k ∈ N, every kP3-free graph G admits an amiable family of size
|V (G)|O(k), which can be computed in time |V (G)|O(k).

▶ Lemma 9. Let r ≥ 1 and d ≥ 2 be fixed integers. Let G be a graph with weight function
w : V (G) → Q+, L an r-list assignment of G, and S a distance-d amiable family of G.
Given an r-tuple (S1, . . . , Sr) ∈ Sr, there exists an O(((r + 1)|V (G)|)3)-time algorithm that
finds a maximum-weight induced subgraph H of G[

⋃
i∈[r] Si] which admits a (d, r)-coloring

ϕ : V (H) → [r] satisfying the following:
1. For every v ∈ V (H), ϕ(v) ∈ L(v);
2. For every i ∈ [r], {v ∈ V (H) : ϕ(v) = i} ⊆ Si.

Proof. Consider an r-tuple (S1, . . . , Sr) ∈ Sr. For every i ∈ [r], let ci be the number of
connected components of G[Si] and let S1

i , . . . , Sci
i be an arbitrary ordering of the connected

components of G[Si]. By definition of distance-d amiable family, each such connected
component of G[Si] is a clique and any two of them are pairwise at distance at least d in G.

ESA 2025
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The first step of our algorithm consists in preprocessing the graph G[
⋃

i∈[r] Si] as follows.
For every i ∈ [r], if there exists a vertex v ∈ Si such that i /∈ L(v), then we remove v from
Si, that is, we set Si = Si \ {v}. Observe that this preprocessing is safe. Indeed, if H is an
induced subgraph of G[

⋃
i∈[r] Si] for which there exists a (d, r)-coloring ϕ satisfying both 1

and 2, then surely ϕ(v) ̸= i if v ∈ V (H).
We next show that finding such an induced subgraph of G[

⋃
i∈[r] Si] of maximum weight

boils down to finding a maximum-weight matching in an auxiliary weighted bipartite graph
B constructed as follows. The graph B has bipartition X ∪ Y and edge set E(B), where

X =
{

xSj
i

: i ∈ [r], j ∈ [ci]
}

, Y =
{

yv : v ∈
⋃

i∈[r]

Si

}
and E(B) =

r⋃
i=1

ci⋃
j=1

{
yvxSj

i
: v ∈ Sj

i

}
.

Moreover, for each v ∈
⋃

i∈[r] Si, every edge of B incident to yv is assigned the weight w(v).
Note that |V (B)| = |

⋃
i∈[r] Si| +

∑
i∈[r] ci ≤ |V (G)| + r|V (G)| = (r + 1)|V (G)|.

▷ Claim 10 (⋆). Let m ∈ Q+. The graph G[
⋃

i∈[r] Si] has an induced subgraph H with
w(V (H)) = m and which admits a (d, r)-coloring satisfying both 1 and 2 if and only if B

has a matching of weight m.

Now, by Claim 10, our problem reduces to finding a maximum-weight matching in the
bipartite graph B, which can be done in O(|V (B)|3)-time using the Hungarian method (see
[17, Theorem 17.3]). Since |V (B)| ≤ (r + 1)|V (G)|, this completes the proof of Lemma 9. ◀

We can finally sketch the proof of Theorem 3.

Proof of Theorem 3. Given a kP3-free graph G and an r-list assignment L of G, the following
algorithm outputs, in polynomial time, an induced subgraph H of G admitting a coloring
that respects L and such that H is of maximum weight among all such subgraphs of G.
1. Compute an amiable family S of G of size |V (G)|O(k).
2. For each r-tuple (S1, . . . , Sr) ∈ Sr, find a maximum-weight induced subgraph H of

G[
⋃

i∈[r] Si] which admits a coloring ϕ : V (H) → [r] satisfying 1 and 2 of Lemma 9.
3. Among all induced subgraphs computed in Step 2, output one of maximum weight. ◀

4 Distance-d amiable families: The proof of Lemma 7

In this section we prove Lemma 7, which is used for the proof of Theorem 6. To make our
inductive proof of Lemma 7 work, we show in fact something more general, which requires
the following definition. Given a graph G and a subset F ⊆ V (G), a subset S ⊆ V (G) is
F -avoiding if S ∩ F = ∅. By extension, a family S ⊆ 2V (G) is F -avoiding if each member
of S is F -avoiding. For a graph G, a family S ⊆ 2V (G) of subsets of V (G) is an F -avoiding
distance-d amiable family if it satisfies the following properties:

S is F -avoiding;
Each member of S induces a P3-free subgraph in G;
For each S ∈ S, the connected components of G[S] are pairwise at distance at least d in G;
Each (inclusion-wise) maximal F -avoiding distance-d independent set of G is contained
in some member of S.

Note that a distance-d amiable family of G is nothing but an F -avoiding distance-d amiable
family of G for F = ∅. As we shall see, our proof of Lemma 7 in fact shows that, for every
kP3-free graph G and every F ⊆ V (G), the graph G admits an F -avoiding distance-d amiable
family of size |V (G)|O(k) and which can be computed in time |V (G)|O(k).
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u v w

Q1 Q2 P1 P2

Figure 2 The case d ≤ 5 (paths in blue are of length d − 3, those in red, d − 2).

Before formally proving Lemma 7, let us discuss why our approach fails for 3 ≤ d ≤ 5
(recall however that the failure for d ∈ {3, 5} is to be expected given the hardness results in
Theorem 2). The algorithm for computing a distance-d amiable family is, in essence, similar
to the one for computing an amiable family (so d = 2): it enumerates all P3’s uvw in the
graph, “guesses” which vertex in the path is in the independent set and recursively calls
the algorithm on (roughly) the anti-neighborhood of {u, v, w}, which is (k − 1)P3-free. The
main difference (and difficulty) is in ensuring that the family computed recursively satisfies
the distance requirement: the connected components of each member in this family could in
principle be closer in the original graph. Consider, for instance, the case where u is picked in
the independent set, and there are four connected components Q1, Q2, P1, P2 in a member
of the recursively computed family with shortest paths between Q1 and Q2, and P1 and P2
as shown in Figure 2. Then, for d ≤ 5, Q1 and Q2 can end up at a distance less than d,
while P1 and P2 are at a distance at least d. Since there is a priori no way of “distinguishing”
these two cases, we have to take d “large enough”. The precise argument appears in the
proof of Lemma 7 (Claim 12). We finally restate Lemma 7.

▶ Lemma 7. Let d ≥ 6 be a fixed integer. For every k ∈ N, every kP3-free graph admits a
distance-d amiable family of size |V (G)|O(k), which can be computed in time |V (G)|O(k).

Proof of Lemma 7. To prove the lemma, we provide, for every d ≥ 6 and every k ≥ 1, an
algorithm Λd

k which takes as input a kP3-free graph G, together with an arbitrary ordering
of V (G), and a subset F ⊆ V (G), and outputs an F -avoiding distance-d amiable family
Λd

k(G, F ) of G. The pseudo-code of the algorithm is given in Algorithm 1. Note that, if the
input graph G is the empty graph, Λd

k correctly outputs Λd
k(G) = {∅}.

In the following, we prove three claims (Claims 11–13) which altogether show that, for
every d ≥ 6 and every k ≥ 1, if G is a kP3-free graph and F ⊆ V (G), then the family
Λd

k(G, F ) is indeed an F -avoiding distance-d amiable family. We will then show that Λd
k(G, F )

has size |V (G)|O(k) and that the algorithm Λd
k has running time |V (G)|O(k). Taking F = ∅,

will prove the lemma.
Given a graph G on n vertices and an ordering v1, . . . , vn of V (G), we let Gi =

G[{v1, . . . , vi}]. Moreover, an induced path in G with vertex set {x1, x2, . . . , xℓ} and edge
set {x1x2, x2x3, . . . xℓ−1xℓ} is denoted by listing its vertices in the natural order x1x2 · · · xℓ.

▷ Claim 11 (⋆). For every d ≥ 6 and every k ≥ 1, if G is a kP3-free graph and F ⊆ V (G),
then Λd

k(G, F ) is F -avoiding.

▷ Claim 12. For every d ≥ 6 and k ≥ 1, if G is a kP3-free graph, F ⊆ V (G), and
S ∈ Λd

k(G, F ), then G[S] is P3-free and its connected components are pairwise at distance at
least d in G.

Proof of Claim 12. For fixed d ≥ 6, we proceed by induction on k. The statement holds for
k = 1, since for every P3-free graph G and every F ⊆ V (G), Λd

1(G) = {V (G) \ F}. Suppose
now that k > 1 and that the statement holds for k − 1. Let G be an n-vertex kP3-free
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Algorithm 1 Λd
k.

Input: A kP3-free graph G, an arbitrary ordering v1, . . . , vn of V (G), and a subset F ⊆ V (G).
Output: An F -avoiding distance-d amiable family of G.

1: Initialize S = {∅}.
2: for i = 1, . . . , n do
3: if vi /∈ F then
4: for every member S ∈ S do
5: if G[S ∪ {vi}] is P3-free and its connected components are pairwise at distance

at least d in G then
6: Set S = S ∪ {vi}.
7: for every induced P3 uvw in Gi such that u /∈ F do
8: Compute C := Λd

k−1(G[N≥4
G (u)], (F ∩ N≥4

G (u)) ∪ (N≥4
G (u) ∩ N≤d−1

G (u))).
9: for every C ∈ C do

10: Set S = S ∪ {C ∪ {u}}.
11: for every induced P3 uvw in Gi such that v /∈ F do
12: Compute C := Λd

k−1(G[N≥4
G (v)], (F ∩ N≥4

G (v)) ∪ (N≥4
G (v) ∩ N≤d−1

G (v))).
13: for every C ∈ C do
14: Set S = S ∪ {C ∪ {v}}.
15: return Λd

k(G, F ) := S.

graph and let F ⊆ V (G) as in input. For every i ∈ [n], let Si be the state of the family
S at the end of the i-th iteration of the main loop. We show by induction on i that each
member of Si induces a P3-free subgraph of G whose connected components are pairwise at
distance at least d in G. The case i = 1 trivially holds, since either v1 ∈ F in which case
S1 = {∅}, or v1 /∈ F in which case S1 = {{v1}}. Thus, suppose that i > 1 and that the
statement holds for i − 1.

Consider S ∈ Si. If S ∈ Si−1 then, by the induction hypothesis, G[S] is P3-free
and its connected components are pairwise at distance at least d in G. Thus, we may
assume that S /∈ Si−1. This implies that S is added to Si in one of the three inner loops
during the i-th iteration of the main loop. If S is added in line 6 as an extension of a
member of Si−1, then the statement holds by construction. Suppose next that S is added
to Si in line 10. Hence, there exist an induced P3 uvw in Gi such that u /∈ F and a
set C ∈ Λd

k−1(G[N≥4
G (u)], (F ∩ N≥4

G (u)) ∪ (N≥4
G (u) ∩ N≤d−1

G (u))) such that S = C ∪ {u}.
Observe now that since G is kP3-free and (NG(v) ∪ NG(w)) ∩ N≥4

G (u) = ∅, the graph
G[N≥4

G (u)] is (k − 1)P3-free, and thus, by the induction hypothesis on k − 1, every member
of Λd

k−1(G[N≥4
G (u)], (F ∩ N≥4

G (u)) ∪ (N≥4
G (u) ∩ N≤d−1

G (u))) induces a P3-free subgraph of G

whose connected components are pairwise at distance at least d in G[N≥4
G (u)]. We claim

that then, the connected components of G[C] are in fact pairwise at distance at least d in G.
Suppose, to the contrary, that there exist two connected components Q1 and Q2 of G[C] such
that dG(Q1, Q2) ≤ d − 1. Since the distance in G[N≥4

G (u)] between Q1 and Q2 is at least d,
every shortest path in G from Q1 to Q2 contains at least one vertex of V (G) \ N≥4

G (u); let
P be such a shortest path and let x ∈ V (G) \ N≥4

G (u) be an arbitrary vertex on P . Clearly,
dG(u, x) ≤ 3. Now, by Claim 11, C ∩ ((F ∩ N≥4

G (u)) ∪ (N≥4
G (u) ∩ N≤d−1

G (u))) = ∅ which
implies, in particular, that C ⊆ N≥d

G (u). It follows that for j ∈ [2],

d ≤ dG(u, Qj) ≤ dG(u, x) + dG(x, Qj) ≤ 3 + dG(x, Qj) and thus,
dG(Q1, Q2) = dG(Q1, x) + dG(x, Q2) ≥ 2(d − 3).
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Since, by assumption, dG(Q1, Q2) ≤ d − 1, we conclude that 2(d − 3) ≤ d − 1, that is, d ≤ 5,
a contradiction. Thus, the connected components of G[C] are pairwise at distance at least
d in G. Since C ⊆ N≥d

G (u), as previously observed, and G[C] is P3-free, it follows that
S = C ∪ {u} induces a P3-free graph whose connected components are pairwise at distance
at least d in G. We conclude similarly in the case where S is added to Si in line 14. ◁

▷ Claim 13. For every d ≥ 6 and k ≥ 1, if G is a kP3-free graph and F ⊆ V (G), then every
F -avoiding distance-d independent set of G is contained in a member of Λd

k(G, F ).

Proof of Claim 13. For fixed d ≥ 6, we proceed by induction on k. The statement clearly
holds for k = 1, since for every P3-free graph G and every F ⊆ V (G), Λd

1(G, F ) = {V (G)\F}.
Suppose now that k > 1 and that the statement holds for k − 1. Let G be a kP3-free graph
and let F ⊆ V (G) as in input. For every i ∈ [n], let Si be the state of the family S at the end
of the i-th iteration of the main loop. Furthermore, given a distance-d independent set I of
G such that I ⊆ V (Gi), we say that I is Gi-compatible if for every u ∈ I and every connected
component Q of Gi such that u is connected to Q in G, there exists a shortest u, Q-path
Pu,Q in G such that N≤2

G (u) ∩ V (Pu,Q) ⊆ V (Gi). We now show, by induction on i, that
for every Gi-compatible F -avoiding distance-d independent set I of G such that I ⊆ V (Gi),
there exists S ∈ Si such that I ⊆ S. Note that this is enough to prove our statement for k,
since any F -avoiding distance-d independent set of G = Gn is surely Gn-compatible.

The base case i = 1 trivially holds, since either v1 ∈ F and S1 = {∅} in which case ∅ is
the only G1-compatible F -avoiding distance-d independent of G1, or v1 /∈ F and S1 = {{v1}}
in which case {v1} is the only maximal G1-compatible F -avoiding distance-d independent
set of G1. Thus, suppose that i > 1 and that the statement holds for i − 1.

Consider a Gi-compatible F -avoiding distance-d independent set I of G such that I ⊆
V (Gi). If I ⊆ V (Gi−1) and I is Gi−1-compatible then, by the induction hypothesis, there
exists S ∈ Si−1 such that I ⊆ S. Observe now that, by construction, there then exists S′ ∈ Si

such that S ⊆ S′ and hence I ⊆ S′. Thus, assume that this does not hold. This implies that
either I ̸⊆ V (Gi−1), or I ⊆ V (Gi−1) but I is not Gi−1-compatible. We distinguish these two
cases and argue that we can always find S ∈ Si such that I ⊆ S.
Case 1. I ̸⊆ V (Gi−1).
Hence, vi ∈ I. Since I is F -avoiding, vi /∈ F . We claim that I \ {vi} is Gi−1-compatible.
Indeed, since I is Gi-compatible, for every u ∈ I \ {vi} and every connected component Q

of Gi such that u is connected to Q in G, there exists a shortest u, Q-path Pu,Q in G such
that N≤2

G (u) ∩ V (Pu,Q) ⊆ V (Gi). But vi is at distance at least d ≥ 6 from u in G and so
vi /∈ (N≤2

G (u) ∩ V (Pu,Q)), that is, N≤2
G (u) ∩ V (Pu,Q) ⊆ V (Gi−1) which proves our claim. By

the induction hypothesis, there exists S ∈ Si−1 such that I \{vi} ⊆ S. If G[S∪{vi}] is P3-free
and its connected components are pairwise at distance at least d in G, then S ∪ {vi} ∈ Si by
construction (cf. line 6) and I ⊆ S ∪ {vi}. Thus, we may assume that this does not hold.
Hence, either G[S ∪ {vi}] contains at least one induced P3, or G[S ∪ {vi}] is P3-free but at
least two of its connected components are at distance strictly less than d in G.
Case 1.1. G[S ∪ {vi}] contains at least one induced P3.
By Claim 12, G[S] is P3-free and thus, any induced P3 in G[S ∪ {vi}] must contain vi. We
distinguish two cases. Suppose first that there exist a connected component Q of G[S]
and a vertex u ∈ Q such that vi is adjacent to u but not complete to Q, say w ∈ Q is
nonadjacent to vi. Note that at some point during the i-th iteration of the main loop, the
induced P3 viuw is considered in the second inner loop, since vi /∈ F . Furthermore, since
G is kP3-free and (NG(u) ∪ NG(w)) ∩ N≥4

G (vi) = ∅, the graph G[N≥4
G (vi)] is (k − 1)P3-free.

Thus, by the induction hypothesis on k − 1 and since I \ {vi} ⊆ N≥d
G (vi) \ F , there exists
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C ∈ Λd
k−1(G[N≥4

G (vi)], (F ∩ N≥4
G (vi)) ∪ (N≥4

G (vi) ∩ N≤d−1
G (vi))) such that I \ {vi} ⊆ C. But

then, C ∪ {vi} ∈ Si and I ⊆ C ∪ {vi}. The case where, for every connected component Q of
G[S] the vertex vi is either complete or anticomplete to Q, is handled similarly.
Case 1.2. G[S ∪{vi}] is P3-free but at least two of its connected components are at distance
strictly less than d in G.
By Claim 12, the connected components of G[S] are pairwise at distance at least d in G and
so there must exist a connected component Q of G[S ∪ {vi}] at distance strictly less than d in
G to the connected component of G[S ∪ {vi}] containing vi. Now, since vi is connected to Q

in G and vi ∈ I, the assumption that I is Gi-compatible implies that there exists a shortest
vi, Q-path Pvi,Q in G such that N≤2

G (vi) ∩ V (Pvi,Q) ⊆ V (Gi). Let u1, u2 ∈ V (Gi) be the two
vertices on Pvi,Q at distance one and two, respectively, from vi. Note that at some point
during the i-th iteration of the main loop, the induced P3 viu1u2 is considered in the second
inner loop, since vi /∈ F . Moreover, since G is kP3-free and (NG(u1)∪NG(u2))∩N≥4

G (vi) = ∅,
the graph G[N≥4

G (vi)] is (k − 1)P3-free. Thus, by the induction hypothesis on k − 1 and since
I ⊆ N≥d

G (vi) \ F , there exists C ∈ Λd
k−1(G[N≥4

G (vi)], (F ∩ N≥4
G (vi)) ∪ (N≥4

G (vi) ∩ N≤d−1
G (vi)))

such that I \ {vi} ⊆ C. But then, C ∪ {vi} ∈ Si and I ⊆ C ∪ {vi}.
Case 2. I ⊆ V (Gi−1) but I is not Gi−1-compatible.
Hence, there must exist u ∈ I and a connected component Q of Gi to which u is connected
in G such that vi ∈ N≤2

G (u) ∩ V (Pu,Q), where Pu,Q is a shortest path in G from u to Q

given by the Gi-compatibility of I. Let u1, u2 ∈ V (Gi) be the vertices on Pu,Q at distance
one and two, respectively, from u. Note that at some point during the i-th iteration of
the main loop, the induced P3 uu1u2 is considered in the second inner loop, since vi /∈ F .
Moreover, since G is kP3-free and (NG(u1) ∪ NG(u2)) ∩ N≥4

G (u) = ∅, the graph G[N≥4
G (u)] is

(k − 1)P3-free. Thus, by the induction hypothesis on k − 1 and since I ⊆ N≥d
G (u) \ F , there

exists C ∈ Λd
k−1(G[N≥4

G (u)], (F ∩ N≥4
G (u)) ∪ (N≥4

G (u) ∩ N≤d−1
G (u))) such that I \ {u} ⊆ C.

But then, C ∪ {u} ∈ Si and I ⊆ C ∪ {u}.
Since in all cases we found S ∈ Si with I ⊆ S, this concludes the proof of Claim 13. ◁

It follows now from Claims 11–13 that, for every d ≥ 6 and every k ≥ 1, if G is a kP3-free
graph and F ⊆ V (G), then the family Λd

k(G, F ) is indeed an F -avoiding distance-d amiable
family. It remains to show that Λd

k(G, F ) has size at most |V (G)|O(k) and that the running
time of the algorithm Λd

k is |V (G)|O(k). To this end, let

fd(n, k) = max{|Λd
k(G, F )| : |V (G)| ≤ n, F ⊆ V (G) and G is kP3-free}.

Clearly, fd(n, 1) = 1 for every n ∈ N. We claim that, for every n ∈ N and k > 1,
fd(n, k) ≤ 2n4 ·fd(n, k−1). Indeed, for every n-vertex kP3-free graph G and every F ⊆ V (G),
a member of Λd

k(G, F ) can only be created during an i-th iteration of the main loop (for
some i ∈ [n]) in one of the inner loops from an induced P3 of Gi and some set resulting from
a call to Λd

k−1. Since for each i ∈ [n] there are at most i3 such copies of P3 in Gi, at most
2i3 · fd(n, k − 1) new members are added in the i-th iteration of the main loop. It follows
that fd(n, k) ≤

∑
i∈[n] 2i3 · fd(n, k − 1) ≤ 2n4 · fd(n, k − 1) and thus fd(n, k) ≤ 2k−1n4(k−1).

Similarly, for every d ≥ 6 and every n, k ∈ N, if Td(n, k) denotes the running time of the
algorithm Λd

k on an n-vertex kP3-free graph, then clearly Td(n, 1) = O(n). Furthermore, we
obtain the following recurrence for Td(n, k), where we use the fact that checking if an n-vertex
graph is P3-free can be done in O(n3) time and determining if the connected components of
an n-vertex graph are pairwise at distance at least d can be done in O(n3) time (using an
all-pair-shortest-path algorithm):

Td(n, k) ≤ cn ·(fd(n, k) ·n3 +2n3 ·(Td(n, k−1)+fd(n, k−1))) ≤ 2cn4 ·Td(n, k−1)+O(n4k),

for some constant c > 0. We conclude that Td(n, k) ≤ nO(k). ◀
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