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Abstract
We present an efficient algorithm for the min-max correlation clustering problem. The input is a
complete graph where edges are labeled as either positive (+) or negative (−), and the objective is
to find a clustering that minimizes the ℓ∞-norm of the disagreement vector over all vertices.

We address this problem with an efficient (3 + ϵ)-approximation algorithm that runs in nearly
linear time, Õ(∣E+∣), where ∣E+∣ denotes the number of positive edges. This improves upon the
previous best-known approximation guarantee of 4 by Heidrich, Irmai, and Andres [37], whose
algorithm runs in O(∣V ∣2 + ∣V ∣D2) time, where ∣V ∣ is the number of nodes and D is the maximum
degree in the graph (V, E

+).
Furthermore, we extend our algorithm to the massively parallel computation (MPC) model

and the semi-streaming model. In the MPC model, our algorithm runs on machines with memory
sublinear in the number of nodes and takes O(1) rounds. In the streaming model, our algorithm
requires only Õ(∣V ∣) space, where ∣V ∣ is the number of vertices in the graph.

Our algorithms are purely combinatorial. They are based on a novel structural observation about
the optimal min-max instance, which enables the construction of a (3 + ϵ)-approximation algorithm
using O(∣E+∣) neighborhood similarity queries. By leveraging random projection, we further show
these queries can be computed in nearly linear time.
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1 Introduction

In the correlation clustering problem, we are given a complete graph where each edge is
labeled as either “+” or “-”. A “+” edge indicates that the two vertices are similar, while a
“-” edge indicates they are dissimilar. For any partition of the graph, an edge is considered
to be in disagreement if it is a negative edge and its endpoints belong to the same cluster, or
if it is a positive edge and its endpoints belong to different clusters. It is typical to assume
that the input graph is G

+
= (V, E

+), where E
+ is the set of positive edges, and to obtain

time bounds in terms of properties of G
+, such as m = ∣E+∣ and D, the maximum degree of

G
+. This is because, in many practical applications, the number of positive edges is often

much smaller than the number of negative edges [23].
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41:2 Min-Max Correlation Clustering via Neighborhood Similarity

Given a clustering (partition), the disagreement ρ(v) for any node v is defined as the
number of edges incident to v that are in disagreement with respect to the clustering. The
goal of the correlation clustering problem is to find a clustering that minimizes an objective
function capturing the disagreement of edges.

Puleo and Milenkovic [41] introduced the objective of minimizing the ℓp-norm of the

disagreements over the vertices, which is defined as (∑v∈V ρ(v)p)
1/p

. This objective general-

izes the correlation clustering problem proposed by Bansal, Blum, and Chawla [8], which
corresponds to the case p = 1, where the goal is to minimize the total number of disagree-
ments. Significant progress has been made on the ℓ1-norm objective [21, 3, 22, 27, 26], Cao,
Cohen-Addad, Lee, Li, Newman, and Vogl [14] present a 1.437-approximate algorithm for
ℓ1-norm objective. For the case p = ∞, it corresponds to the min-max correlation clustering
problem, where the goal is to minimize the maximum disagreements over all vertices. While
the p = 1 case captures scenarios in which minimizing overall disagreements is desired, the
p = ∞ case caters to situations where the quality of every individual needs to be ensured
– for example, in community detection problems where no “antagonists” are allowed, with
an antagonist referring to an individual whose properties are inconsistent with those of too
many other members.

Compared to the p = 1 case where significant progress has been made, the p = ∞
case remains relatively unexplored. Puleo and Milenkovic [41] proposed an algorithm
that achieves a 48-approximation ratio. Their approach uses the standard metric linear
programming formulation followed by a rounding algorithm. Later, Charikar, Gupta, and
Schwartz [20] improved this result to a 7-approximation using the same framework, and
Kalhan, Makarychev, and Zhou [39] further reduced it to a 5-approximation. Davies, Moseley,
and Newman [29] designed a combinatorial algorithm that achieves a 40-approximation ratio
with a runtime of O(n2 log n), where n = ∣V ∣ is the number of vertices in the graph. The
best known approximation ratio to date is 4, achieved by Heidrich, Irmai, and Andres [37],
who also used a combinatorial approach with a runtime of O(n2 + nD

2), where D is the
maximum degree of the G

+.
Concerning efficiency, the ultimate goal of an efficient algorithm is to achieve a running

time that is nearly linear in m = ∣E+∣. However, none of the aforementioned algorithms
has yet achieved such a goal. Recently, Cao, Li, and Ye [16] proposed an nearly linear-
time algorithm that achieves a 63.3-approximation ratio. While their algorithm is fast, the
approximation ratio is far from optimal. This naturally leads to the question:

Can we design a nearly linear algorithm for min-max correlation clustering with a
small approximation ratio?

We give a nearly linear algorithm for the problem that achieves a (3 + ϵ)-approximation.
Moreover, it can be made exactly 3-factor approximation with additional running time.

▶ Theorem 1. Let G = (V, E
+) be a min-max correlation clustering instance, ϵ > 0 be a

small constant, and OPT be the value of the optimal solution. There exist:
1. A randomized O(m log2

n/ϵ
2)-time algorithm that outputs a clustering C with obj(C) ≤

(3 + ϵ) ⋅ OPT w.h.p.1

2. A deterministic O(mD log n)-time sequential algorithm that outputs a clustering C with
obj(C) ≤ 3 ⋅ OPT, where D is the maximum degree of G

+
= (V, E

+).

1 With high probability, which refers to with probability at least 1− 1/n
c for a sufficiently large constant c.
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1.1 Semi-Streaming and MPC Settings
For large graphs, it can be infeasible to store the graph G entirely on a single machine and
then compute the solution. A substantial body of research has focused on massively parallel
computation (MPC) algorithms for the p = 1 case [10, 40, 31, 11, 25, 7, 12, 15, 28]. Very
recently, Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, Vogl, Yan, and Zhang [13]
gave an O(1)-round MPC algorithm that achieves a (1.437 + ϵ)-approximation ratio.

Moreover, several constant-round semi-streaming algorithms with n polylog n space com-
plexity have been developed [23, 2, 25, 9]. The first single-pass semi-streaming algorithm
was given by Ahn, Cormode, Guha, McGregor, and Wirth [2], and it was later improved by
multiple works [7, 9, 18, 28]. Very recently, a breakthrough result of Assadi, Khanna, and
Putterman [5] showed that it is possible to obtain a (αbest + o(1))-approximation in a single
pass using n polylog n space, where αbest denotes the best approximation ratio achievable by
polynomial-time sequential algorithms. Currently, it is known that αbest ≤ 1.437 [14].

In contrast, less work in such directions have been done for the p = ∞ setting. For the
MPC setting, the only known work is by Cao, Ye, and Li [16], who proposed an algorithm
that achieves a 63.3-approximation ratio in O(log3

n) rounds and another algorithm that
achieves a 360-approximation ratio in O(1) rounds. For the semi-streaming setting, to our
knowledge, we are not aware of any existing work on semi-streaming algorithms. Most of the
aforementioned streaming algorithms for p = 1 were specifically tailored for this case, and
the sparsification technique of [5] does not seem to generalize obviously to other values of p.

In addition to our sequential algorithm, we give a constant-round MPC algorithm and a
single-pass semi-streaming algorithm that achieve a (3 + ϵ)-approximation for the problem:

▶ Theorem 2. Let G = (V, E
+) be a min-max correlation clustering instance, ϵ > 0 be a

small constant, and OPT be the value of the optimal solution. In the following models, there
exist randomized algorithms that output a clustering C with obj(C) ≤ (3 + ϵ) ⋅ OPT w.h.p.:
1. (MPC model) An O(1)-round algorithm using O(nδ) memory per machine and total

memory O(m log n/ϵ
2) for any constant 0 < δ < 1.

2. (Semi-streaming model) A single-pass streaming algorithm that uses O(n log n/ϵ
2) space.

1.2 Technical Overview
Better Approximation. Our first main technical contribution is a newly achieved approxim-
ation factor of 3. Given a guess for the optimal objective value ϕ, if OPT ≤ ϕ, [37] observed
that if the neighborhoods of u and v share at least 2ϕ elements, then they must belong to
the same cluster in the optimal solution. Similarly, if neighborhoods of u and v differ by
more than 2ϕ elements, then they must belong to different clusters in the optimal solution.

Furthermore, they observed that these properties can be used to determine the clusters for
vertices of degrees at least 4ϕ. Specifically, if d(x) ≥ 4ϕ, then for every other vertex y, either
∣N[x]∩ N[y]∣ ≥ 2ϕ or ∣N[x]∆N[y]∣ ≥ 2ϕ. Here, N[x] = N(x)∪ {x} represents the closed
neighborhood of vertex x. The remaining vertices can then be placed in singleton clusters,
as the disagreements per vertex will be upper bounded by their degrees, 4ϕ. Therefore,
a clustering of disagreements upper bounded by 4ϕ can be constructed, resulting in a
4-approximation algorithm.

To achieve a 3-approximation, we first observe that if two vertices x and y have degrees
greater than 3ϕ, then it is also the case either ∣N[x] ∩ N[y]∣ ≥ 2ϕ or ∣N[x]∆N[y]∣ ≥ 2ϕ

holds. In other words, whether x and y belong to the same cluster is uniquely determined in
the optimal solution. Therefore, the clustering induced on the high-degree vertices (vertices
with d > 3ϕ) is uniquely determined.

ESA 2025
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Now the question lies in the placement of the low-degree vertices, that is, vertices with
degrees upper-bounded by 3ϕ. It is unclear whether they should be placed in singleton
clusters, as it is possible that they need to be included in the same cluster with certain
high-degree vertices. Otherwise, the disagreements associated with the high-degree vertices
could become too large.

We show that the low-degree vertices can be placed in the high-degree clusters to achieve
a maximum disagreements of 3ϕ, provided OPT ≤ ϕ. A key structural result we show is that
if a low-degree vertex w belongs to some cluster C in an optimal solution, then no vertex
v outside C can have similar neighborhood with w, i.e., ∣N[v]∆N[w]∣ ≤ 2ϕ. Using this
structural result, we show the following algorithm constructs a clustering with maximum
disagreement upper bounded by 3ϕ (presented slightly differently here than in the main body
for the sake of intuition):

1. Form clusters for high-degree vertices based on whether ∣N[u]∆N[v]∣ ≤ 2ϕ for all
high-degree vertices u, v (abort if any inconsistency occurs). 2. Choose an arbitrary vertex u

in each cluster and have it send proposal messages to low-degree neighboring vertices whose
neighborhoods are similar to u. 3. For each low-degree vertex that receives at least one
proposal, pick one arbitrary proposal and join the cluster containing the vertex that sent it.
4. Place all low-degree vertices that do not receive a proposal into singleton clusters.

Efficient Implementations. The remaining question is how such an algorithm can be
implemented efficiently, particularly in time (and total memory) nearly linear in ∣E+∣. A
main technical challenge lies in Step 1. To implement it within the aforementioned time
bound, we can only afford to conduct similarity tests (i.e. to test whether ∣N[u]∆N[v]∣ ≤ 2ϕ)
for O(∣E+∣) times. However, it is possible for two vertices that are endpoints of a negative
edge to have similar neighborhoods and thus need to be placed in the same cluster to achieve
a good clustering.

Using the structural result, we further show that two high-degree vertices u and v are in
the same cluster in the optimal solution if and only if there are at least ϕ + 1 disjoint paths
of length 2 connecting u and v in Esim, where Esim ⊆ E

+ consists of all the edges in E
+

whose endpoints have similar neighborhoods. This property enables us to develop efficient
algorithms for the sublinear MPC model and the sequential model.

The remaining question lies in how to find Esim efficiently. To this end, for each vertex
u, we treat its neighborhood set N[u] as a point in an n-dimensional space. Then, we
apply the (discrete) random projection technique [1] developed for the Johnson-Lindenstrauss
transform [38] to reduce the dimension to O(log n/ϵ

2) while preserving the ℓ2 distance (up to
a (1 ± ϵ) factor) between the points. For 0/1 vectors, the square of the ℓ2 distance is exactly
the symmetric difference. Since the dimension is O(log n/ϵ

2), it takes O(log n/ϵ
2) time to

compute the difference. To our knowledge, this is the first time that random projection
techniques have been applied to computing efficient solutions for correlation clustering and
problems alike. This may be of independent interest, as neighborhood similarity is known to
be used in various tools such as almost-clique decompositions [36, 19, 33, 34, 32, 4, 30, 6, 24, 7].

Single-Pass Semi-Streaming. While the above techniques are sufficient for getting our MPC
and sequential algorithms, the single-pass semi-streaming algorithm introduces additional
technical difficulties. The main difficulty for a single-pass semi-streaming to work here lies
in Step 2, where an arbitrarily chosen high-degree vertex in each cluster proposes to its
neighbors who have similar neighborhoods. For convenience, we call the chosen high-degree
vertices pivots here.
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To be able to do this, we need to memorize the neighbors of all the chosen vertices using
n polylog(n) space. Suppose that OPT ≤ ϕ, it can be shown that each cluster in the optimal
clustering containing at least one low-degree vertex has size of Θ(ϕ). As a result, any vertex
from these clusters has degree at most O(ϕ). Since we pick a pivot per cluster, O(ϕ ⋅ (n/ϕ))
is the space we need to store the neighbors of the pivots.

However, we do not know beforehand how the clusters of high-degree vertices look like,
so the pivots cannot be chosen at the beginning of the stream. Without knowing what the
pivots are beforehand, it is difficult to store their neighbors in the same pass.

As a result, we sample each vertex (both high-degree and low-degree vertices) independ-
ently with probability O(log n/d(v)) so that w.h.p. each cluster in the optimal clustering
has O(log n) sampled vertices. Then we store the neighbors of all the sampled vertices. This
poses another problem: low-degree vertices may be chosen as pivots. However, a low-degree
vertex is exempted from our structural result – using it as a pivot may steal vertices from
other clusters in an optimal clustering.

To resolve this, we do the following. For each sampled vertex y, we first try to recover
the high-degree portion L of the cluster containing y in the optimal solution. We construct
a candidate set Cand(L) that contains vertices that would not be added to other clusters.
When using y as a pivot, we restrict it to consider only the intersection with the candidate
set, N[y] ∩ Cand(L) to ensure that it does not steal vertices from other clusters.

Roughly speaking, the candidate set Cand(L) contains all the low-degree vertices that
have similar neighborhood with every vertex in L but have different neighborhood with
every vertex in any other cluster L

′ (as a result, Cand(L) ∩ Cand(L′) = ∅). We show such
a modification does not affect the approximation ratio. Furthermore, since the candidate
sets are defined based on similarity of neighborhoods, they can be constructed by the
aforementioned dimension reduction technique, which takes O(n log n/ϵ

2) space.

2 Preliminaries

▶ Definition 3. Given u ∈ G
+
= (V, E

+), let N(u) denote the neighbors of u ∈ G
+. Define

N[u] = N(u) ∪ {u}. d(u) = ∣N(u)∣ is the number of neighbors of u ∈ G
+. We use NH(u)

,NH[u] and dH(u) to denote the the corresponding quantities in graph H when H ≠ G
+.

▶ Definition 4. Let A and B be sets. The symmetric difference between A and B, A∆B, is
defined as A∆B = (A \ B) ∪ (B \ A).

In general, we say A and B are similar if ∣A∆B∣ is small.

▶ Lemma 5 (Triangle Inequality [35]). Let A, B, C be sets. Then: ∣A∆C∣ ≤ ∣A∆B∣+ ∣B∆C∣.

▶ Definition 6. Given any clustering C and any vertex u, Cu is defined to be the cluster of C
containing u.

▶ Definition 7. Given clustering C, define ρC(x) as the number of disagreements incident to
vertex x. More precisely:

ρC(x) = ∣Cx \ N[x]∣ + ∣N[x] \ Cx∣ = ∣N[x]∆Cx∣ = ∣N(x) ∆ Cx∣ − 1

▶ Definition 8. Given a clustering C, the objective value of C, obj(C) = maxu ρC(u), is
defined as the maximum incident disagreements over every vertex.

ESA 2025
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The MPC Model. In the MPC model, computation proceeds in synchronous parallel rounds
across multiple machines. Each machine has memory S. At the beginning of the computation,
data is arbitrarily partitioned across the machines. During each round, machines process
data locally, exchange messages with other machines, and send or receive messages of total
size S. The efficiency of an algorithm in this model is measured by the number of rounds
required for the algorithm to terminate and the size S of the memory available to each
machine.

In this paper, we focus on the most practical and challenging regime, also known as the
strictly sublinear regime, where each machine has S = O(nδ) local memory. Here, n represents
the number of vertices, and 0 < δ < 1 is an arbitrary constant. Under this assumption, the
input assigned to each machine and the messages exchanged during any round are of size
O(nδ).

The Semi-Streaming Model. In the semi-streaming model, the input is a stream of edges
in E

+. We are allowed to use n polylog n space, where the space complexity is the number of
words used and a word consists of O(log n) bits. A solution is expected to be output at the
end of the stream.

3 Algorithm

▶ Definition 9. For any 0 ≤ η < 1, an η-similarity query ∆η(u, v, t) returns:

∆η(u, v, t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if ∣N[u]∆N[v]∣ > (1 + η)t.
0 or 1, if t < ∣N[u]∆N[v]∣ ≤ (1 + η)t.
1, if ∣N[u]∆N[v]∣ ≤ t.

.

▶ Definition 10. (Shorthand for η-similarity query) For readability, we use ∣N[u]∆N[v]∣ ≤η

t to denote that an η-similarity query ∆η(u, v, t) has been conducted and returned 1. We use
∣N[u]∆N[v]∣ ≰η t to denote that the query ∆η(u, v, t) returned 0.

The parameter η was introduced to accommodate the error induced by an approximate
test of whether ∣N[u]∆N[v]∣ ≤ 2ϕ. For the sake of simplicity, we urge the readers to assume
η = 0 when reading for the first time. When η = 0, ∣N[u]∆N[v]∣ ≤η 2ϕ if and only if
∣N[u]∆N[v]∣ ≤ 2ϕ.

▶ Definition 11. Define Vlow ← {w ∈ V ∣ d(w) ≤ (3 + η)ϕ} and Vhigh ← V \ Vlow, where we
call the vertices in Vlow and Vhigh as low-degree and high-degree vertices, respectively.

Algorithm Description. Algorithm 1 takes two parameters ϕ and 0 ≤ η < 1, where ϕ is
a guess on the upper bound of OPT and η is an error control parameter. The goal of the
algorithm is to output a solution of value (3 + η)ϕ provided OPT ≤ ϕ. Note that we use η

instead of ϵ here to indicate that it can be set to zero (at the cost of computing the more
expensive exact neighborhood similarity).

The algorithm works as follows: first, we form a clustering of high-degree vertices L based
on the similarity between the neighborhood of vertices. If two high-degree vertices u and v

have similar neighborhood (i.e. N[u]∆N[v]∣ ≤η 2ϕ) then they will be placed in the same
cluster.

Once the high-degree clusters are formed, we go through each cluster Li ∈ L. For each Li,
we pick an arbitrary pivot ui ∈ Li. For each neighbor w of ui that remains unclustered (i.e. in
Vi), we include it in R(ui) if w and ui have similar neighborhoods (i.e. N[w]∆N[ui]∣ ≤η 2ϕ).
Then we set our cluster Ci to be Li ∪ R(ui). Then we update the unclustered vertices to be
Vi+1 = Vi \ R(ui).
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Algorithm 1 ClusterPhi(G+
= (V, E

+), ϕ, η).
Input: A graph G

+ and parameters ϕ and 0 ≤ η < 1.
Output: A clustering C with obj(C) ≤ (3 + η)ϕ or “OPT > ϕ”

1: function ClusterPhi(G+
= (V, E

+), ϕ, η)
2: Vlow ← {w ∣ d(w) ≤ (3 + η)ϕ}, Vhigh ← V \ Vlow
3: for u, v ∈ Vhigh do ▷ uv not necessarily in E

+.
4: if ∣N[u]∆N[v]∣ ≤η 2ϕ then
5: E

′
← E

′ ∪ {uv}.
6: end if
7: end for
8: V1 = Vlow

9: Let L = {Li}∣L∣
i=1 be the partition formed by the connected components in (Vhigh, E

′).
10: for i from 1 to ∣L∣ do
11: Choose any node ui ∈ Li.
12: Compute R(ui) = {w ∈ Vi ∩ N(ui) ∣ ∣N[w]∆N[ui]∣ ≤η/2 2ϕ}
13: Ci ← Li ∪ R(ui)
14: Vi+1 ← Vi \ R(ui)
15: end for
16: Let C = {Ci}∣L∣

i=1 ∪⋃v∈V∣L∣+1
{{v}}

17: if for some i there exists u ∈ Ci such that ρC(u) > (3 + η)ϕ then
18: return “OPT > ϕ”
19: else
20: return C.
21: end if
22: end function

Once we went through every Li, there might be still some unclustered low-degree vertices
(i.e. those in V∣L∣+1). For each such vertex, we put it in a singleton cluster. Then, we check if
the clustering we have obtained has an objective value at most (3 + η)ϕ or not. If it does,
then we are done. If not, we conclude that OPT > ϕ, so we would need to set our guess of ϕ

larger.

▶ Theorem 12. Suppose that OPT ≤ ϕ, Algorithm 1 outputs a clustering C with obj(C) ≤
(3 + η)ϕ.

Proof. Let C∗ be an optimal solution so obj(C∗) ≤ ϕ. In the next subsections, we show the
following:
1. (High-Degree Nodes Clustering). For any u ∈ Vhigh, Lu ∩ Vhigh = C∗

u ∩ Vhigh.
2. (No Stealing on Low-Degree Nodes). For each i ∈ [1, ∣L∣], let C

∗
i be the cluster in C∗

such that Li∩Vhigh = C
∗
i ∩Vhigh. We have C

∗
i ∩Vi = C

∗
i ∩Vlow. That is, those low-degree

vertices in C
∗
i are not taken by other clusters Cj for j < i.

3. (Low-Degree Nodes Inclusion). For any i ∈ [1, ∣L∣], C
∗
i ∩ N(ui) ⊆ Ci.

4. (Closeness). For any i ∈ [1, ∣L∣], ∣N[ui]∆Ci∣ ≤ ϕ and ∣C∗
i ∆Ci∣ ≤ ϕ.

Once we have shown the above, we can see that obj(C) ≤ (3 + η)ϕ as follows. Consider
a component Ci of C. If Ci is a singleton {v} with d(v) ≤ (3 + η)ϕ, then obviously,
ρC(v) ≤ (3 + η)ϕ. Otherwise, Ci contains some vertex x with d(x) > (3 + η)ϕ. By Item 1,
there must exist C

∗
i such that Ci ∩ Vhigh = C

∗
i ∩ Vhigh.

ESA 2025
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Let v be any vertex in Ci. We will show that ρC(v) ≤ 3ϕ. Suppose that v ∈ C
∗
i ∩ Ci, we

have:

ρC(v) = ∣N[v]∆Ci∣ ≤ ∣N[v]∆C
∗
i ∣ + ∣C∗

i ∆Ci∣ by Lemma 5
= ρC∗(v) + ∣C∗

i ∆Ci∣ ≤ ϕ + ϕ = 2ϕ

Otherwise, if v ∉ C
∗
i ∩ Ci then it must be the case that v ∈ Ci \ C

∗
i . In such a case, v must

be a vertex in R(ui) added to Ci in Line 12 to Line 13. This implies ∣N[v]∆N[ui]∣ ≤η/2 2ϕ

and thus ∣N[v]∆N[ui]∣ ≤ (1 + η/2) ⋅ 2ϕ. Therefore:

ρC(v) = ∣N[v]∆Ci∣ ≤ ∣N[v]∆N[ui]∣ + ∣N[ui]∆Ci∣ by Lemma 5
≤ (1 + η/2) ⋅ 2ϕ + ϕ = (3 + η)ϕ ◀

▶ Remark 13. To get a (3 + ϵ)-approximation algorithm, O(log n) calls of Algorithm 1 are
sufficient, as we can perform a binary search on ϕ in the range of [0, n] with η = ϵ and take
the solution output by the algorithm with the smallest ϕ. For a 3-approximation algorithm,
it can also be achieved within O(log n) calls of Algorithm 1 by setting η = 0.

We prove each of the four items in the proof in the following subsections. Note that the
no-stealing property of low-degree vertices (Theorem 17 in Section 3.2) is the main structural
result, which not only leads to a guarantee on the approximation ratio, but it is also crucial
in the design of efficient algorithms in the subsequent sections.

3.1 High-Degree Nodes Clustering
Recall that ϕ is our guess of the upper bound of the optimal solution. In this subsection,
we show if ϕ is indeed such an upper bound, then there is a unique way to form clustering
on high-degree nodes in the optimal solution. Our algorithm clusters the high-degree nodes
using the unique way. The following two lemmas are observed by [37].

▶ Lemma 14. Suppose that ∣N[x]∩ N[y]∣ > t. If there is a clustering C ′ such that x and y

are in different clusters, then obj(C ′) > t/2.

Proof.

t < ∣N[x] ∩ N[y]∣ ≤ ∣N[x] ∩ N[y] \ C ′
y∣ + ∣N[x] ∩ N[y] \ C ′

x∣ ≤ ρC′(y) + ρC′(x)

Therefore, obj(C ′) ≥ max(ρC′(x), ρC′(y)) ≥ (ρC′(x) + ρC′(y))/2 > t/2. ◀

▶ Lemma 15. Suppose that ∣N[x]∆N[y]∣ > t. If there is a clustering C ′ such that x and y

are in the same clusters, then obj(C ′) > t/2.

Proof. Let C be the cluster containing x and y. By Lemma 5, we have:

t < ∣N[x]∆N[y]∣ ≤ ∣N[x]∆C∣ + ∣N[y]∆C∣ = ρC′(x) + ρC′(y)

Therefore, obj(C ′) ≥ max(ρC′(x), ρC′(y)) ≥ (ρC′(x) + ρC′(y))/2 > t/2. ◀

▶ Lemma 16. Let C∗ be a clustering with obj(C∗) ≤ ϕ. For any u ∈ Vhigh, Lu ∩ Vhigh =

C∗
u ∩ Vhigh.
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Proof. Suppose on the contrary that Lu ∩ Vhigh ≠ C∗
u ∩ Vhigh. Then there exists some node

x such that x ∈ (Lu ∩ Vhigh)∆(C∗
u ∩ Vhigh).

Suppose that there exists a node x such that x ∈ Lu ∩ Vhigh but x ∉ C∗
u ∩ Vhigh. Then

there must exist y ∈ C∗
u such that (x, y) ∈ E

′. This implies ∣N[x]∆N[y]∣ ≤η 2ϕ and so
∣N[x]∆N[y]∣ ≤ (1 + η)2ϕ. Therefore,

∣N[x] ∩ N[y]∣ = (d(x) + 1 + d(y) + 1 − ∣N[x]∆N[y]∣)/2
> ((3 + η)ϕ + 1 + (3 + η)ϕ + 1 − (1 + η)2ϕ)/2
= (6ϕ + 2 − 2ϕ)/2 = 2ϕ + 1

By Lemma 14, obj(C∗) > ϕ, a contradiction.
Otherwise, it must be the case that x ∈ C∗

u ∩ Vhigh but x ∉ Lu ∩ Vhigh. In this case, there
exists y ∈ C∗

u such that (x, y) ∉ E
′. This implies that ∣N[x]∆N[y]∣ ≰η 2ϕ, which in turns

implies ∣N[x]∆N[y]∣ > 2ϕ. By Lemma 15, obj(C∗) > ϕ, a contradiction. ◀

3.2 No Stealing on Low-Degree Nodes
In the algorithm, low-degree nodes (i.e. nodes with degree at most (3 + η)ϕ) are added to
the clusters formed by high-degree nodes iteratively. In this subsection, we show that if a
low-degree node degree node y belongs to C

∗
i for some i, then it will not be included in Cj

for j < i. This implies that y ∈ Vi, the candidate set of vertices to be added Ci. Then in the
next subsection, we show that it will be added to Ci.

▶ Theorem 17. Let C∗ be a clustering with obj(C∗) ≤ ϕ. Let u and v be vertices of degree
greater than (3 + η)ϕ where C∗

u ≠ C∗
v , and w be a vertex with d(w) ≤ (3 + η)ϕ. If w ∈ C∗

u

then ∣N[v]∆N[w]∣ > (1 + η)2ϕ and so ∣N[v]∆N[w]∣ ≰η 2ϕ.

A representative case that illustrates the intuition of why the theorem holds is when
∣N[u] ∩ N[v] ∩ N[w]∣ ≤ ϕ, i.e. the three sets have small intersections. Since they have
small intersection, together with the fact that u and v have degrees greater than (3 + η)ϕ, it
cannot be the case that both the symmetric differences N[u]∆N[w] and N[v]∆N[w] are
small, as illustrated in Figure 1. We will refer the case that ∣N[u] ∩ N[v] ∩ N[w]∣ ≤ ϕ as
the easy case.

When the three sets have a large intersection, with a more sophisticated argument on the
relations among N[u], N[v], and N[w], it can also be shown that N[w] and N[u] will not
intersect a lot. We will refer to the case that ∣N[u] ∩ N[v] ∩ N[w]∣ > ϕ as the hard case.

3.2.1 The easy case
We will first show the theorem for the easy case as follows.

▶ Lemma 18. Let C∗ be a clustering with obj(C∗) ≤ ϕ. Let u and v be vertices of degree
greater than (3+ η)ϕ where C∗

u ≠ C∗
v , and w be a vertex with d(w) ≤ (3+ η)ϕ. If w ∈ C∗

u and
∣N[v] ∩ N[u] ∩ N[w]∣ ≤ ϕ, then ∣N[v]∆N[w]∣ > (1 + η)2ϕ and so ∣N[v]∆N[w]∣ ≰η 2ϕ.

Proof. We will show that ∣N[v]∆N[w]∣+ ∣N[u]∆N[w]∣ is greater than (1+η)4ϕ. Figure 1
gives a high level illustration of why this should be true. To show this formally, first note
that:

∣N[v] ∩ N[w] ∩ N[u]∣ + ∣N[w] \ N[u]∣ + ∣N[v] \ N[w]∣
≥ ∣N[v] ∩ N[w] ∩ N[u]∣ + ∣(N[v] ∩ N[w]) \ N[u]∣ + ∣N[v] \ N[w]∣
= ∣N[v] ∩ N[w]∣ + ∣N[v] \ N[w]∣ = ∣N[v]∣
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Figure 1 A pictorial illustration of the proof of Lemma 18 when η = 0. It shows that if
N[u]∩N[v]∩N[w] is small, then either N[w]∆N[v] or N[w]∆N[u] has to be large, since ∣N[u]∣
and ∣N[v]∣ are more than 3ϕ.

Re-arranging, we have:

∣N[w] \ N[u]∣ + ∣N[v] \ N[w]∣ ≥ ∣N[v]∣ − ∣N[v] ∩ N[w] ∩ N[u]∣
> (3 + η)ϕ − ϕ = (2 + η)ϕ (1)

By the same reasoning, we have

∣N[w] \ N[v]∣ + ∣N[u] \ N[w]∣ > (2 + η)ϕ (2)

Now consider the following:

∣N[v]∆N[w]∣ + ∣N[u]∆N[w]∣
= ∣N[v] \ N[w]∣ + ∣N[w] \ N[v]∣ + ∣N[u] \ N[w]∣ + ∣N[w] \ N[u]∣
> (2 + η)ϕ + (2 + η)ϕ by (1) and (2)
= (4 + 2η)ϕ

Therefore, assume to the contrary that ∣N[v]∆N[w]∣ ≤η 2ϕ and so ∣N[v]∆N[w]∣ ≤

(1 + η)2ϕ. Then, it must be the case that ∣N[u]∆N[w]∣ > (4 + 2η)ϕ − ∣N[v]∆N[w]∣ ≥ 2ϕ.
By the fact that w ∈ C∗

v and Lemma 15, obj(C∗) > ϕ, a contradiction. ◀

3.2.2 The hard case
Now we consider the case where ∣N[w] ∩ N[u] ∩ N[v]∣ > ϕ. To illustrate the idea of proof,
suppose that ∣N[w]∩N[u]∩N[v]∣ = ϕ+ t for some t > 0. If we follow the same argument as
Lemma 18, we would only be able to show that ∣N[w]∆N[v]∣+∣N[w]∆N[u]∣ > (4+2η)ϕ−2t

as opposed to (4 + 2η)ϕ.
However, if this is the case, we can show that ∣N[w]∆N[u]∣ ≤ 2(ϕ − t), as stated in

Lemma 19. This would make ∣N[w]∆N[v]∣ > (1 + η)2ϕ.
The high-level idea of the proof of Lemma 19 is illustrated in Figure 2. First, we observe

that at most ϕ vertices in ∣N[u]∩N[v]∩N[w]∣ can be contained in C∗
u ; otherwise the vertex v

would have disagreements greater than ϕ. This implies the contribution of disagreement from
N[u]∩N[w] to u (and to w) is already at least t. If the symmetric difference ∣N[u]∆N[w]∣
is too large, i.e. larger than 2(ϕ − t), then it would force the disagreements of either u or w

to be too large.
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Figure 2 A pictorial illustration of the proof of Lemma 19 when η = 0. This means that
N[u] ∩ N[v] ∩ N[w] must contribute at least t disagreements to both u and v. Additionally, each
element in ∣N[u]∆N[w]∣ contributes a disagreement to at least one of u or w, so ∣N[u]∆N[w]∣
cannot exceed (ϕ − t)/2; otherwise, the disagreement of u or w would exceed ϕ.

▶ Lemma 19. Let C∗ be a clustering with obj(C∗) ≤ ϕ. Let u and v be vertices of degree
greater than (3 + η)ϕ where C∗

u ≠ C∗
v , and w ∈ C∗

u be a vertex with d(w) ≤ (3 + η)ϕ. Suppose
that ∣N[w] ∩ N[v] ∩ N[u]∣ = ϕ + t for some t > 0. Then, ∣N[w]∆N[u]∣ ≤ 2(ϕ − t).

Proof. Let S = N[w]∩N[v]∩N[u]. First we claim that at most ϕ vertices in S can be in C∗
u .

This in turns implies that vertices in S contributes at least t disagreements to vertex u and
vertex w. To see why this holds, suppose to the contrary that ∣S ∩ C∗

u∣ > ϕ. Since S ⊆ N[v]
and C∗

v ≠ C∗
u , it must be the case that ρC∗(v) ≥ ∣N[v] \ C

∗
v ∣ ≥ ∣S \ C

∗
v ∣ ≥ ∣S ∩ C∗

u∣ > ϕ, a
contradiction. Therefore, we conclude that:

∣S \ C∗
u∣ ≥ t (3)

Now note that the disagreements of u and w are at least:

ρC∗(u) ≥ ∣S \ C∗
u∣ + ∣(N[w] \ N[u]) ∩ C∗

u∣ + ∣(N[u] \ N[w]) \ C∗
u∣

ρC∗(w) ≥ ∣S \ C∗
u∣ + ∣(N[u] \ N[w]) ∩ C∗

u∣ + ∣(N[w] \ N[u]) \ C∗
u∣

Using the fact ρC∗(u), ρC∗(w) ≤ ϕ and summing up the above two inequalities, we have:

2ϕ ≥ ρC∗(u) + ρC∗(w)
≥ 2∣S \ C∗

u∣ + ∣(N[w] \ N[u]) ∩ C∗
u∣ + ∣(N[u] \ N[w]) \ C∗

u∣+
∣(N[u] \ N[w]) ∩ C∗

u∣ + ∣(N[w] \ N[u]) \ C∗
u∣

= 2∣S \ C∗
u∣ + ∣(N[w]∆N[u]) ∩ C∗

u∣ + ∣(N[u]∆N[w]) \ C∗
u∣

= 2∣S \ C∗
u∣ + ∣(N[w]∆N[u])∣

≥ 2t + ∣(N[w]∆N[u])∣

Therefore, ∣N[w]∆N[v]∣ ≤ 2(ϕ − t). ◀

▶ Lemma 20. Let C∗ be a clustering with obj(C∗) ≤ ϕ. Let u and v be vertices of degree
greater than (3+η)ϕ where C∗

u ≠ C∗
v , and w be a vertex with deg(w) ≤ (3+η)ϕ. If w ∈ C∗

u and
∣N[v] ∩ N[u] ∩ N[w]∣ > ϕ, then ∣N[v]∆N[w]∣ > (1 + η)2ϕ and so ∣N[v]∆N[w]∣ ≰η 2ϕ.
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Proof. By (1) in the proof of Lemma 18, we have:

∣N[w] \ N[u]∣ + ∣N[v] \ N[w]∣ ≥ ∣N[v]∣ − ∣N[v] ∩ N[w] ∩ N[u]∣
> (3 + η)ϕ − (ϕ + t) = (2 + η)ϕ − t

∣N[w] \ N[v]∣ + ∣N[u] \ N[w]∣ ≥ ∣N[u]∣ − ∣N[v] ∩ N[w] ∩ N[u]∣
> (3 + η)ϕ − (ϕ + t) = (2 + η)ϕ − t

Therefore,

∣N[v]∆N[w]∣ + ∣N[u]∆N[w]∣ = ∣N[v]\N[w]∣ + ∣N[w]\N[v]∣
+ ∣N[u]\N[w]∣ + ∣N[u]\N[w]∣

> (4 + 2η)ϕ − 2t

By Lemma 19, we have ∣N[u]∆N[w]∣ ≥ 2(ϕ − t), therefore:

∣N[v]∆N[w]∣ > (4 + 2η)ϕ − 2t − 2(ϕ − t) = (1 + η)2ϕ

Hence, ∣N[v]∆N[w]∣ ≰η 2ϕ. ◀

Lemma 18 and Lemma 20 complete the proof of Theorem 17. Theorem 17 immediately
implies the following:

▶ Corollary 21. Let C
∗
i be the cluster in C∗ such that Li ∩ Vhigh = C

∗
i ∩ Vhigh. For any i,

C
∗
i ∩ Vi = C

∗
i ∩ Vlow.

3.3 Low-Degree Nodes Inclusion
Here, we show that all the vertices in C∗

i have similar neighborhoods with ui. As a result, if
they are neighbors of ui, they will be added to Ci.

▶ Lemma 22. Let C
∗
i be the cluster in C∗ such that Li ∩ Vhigh = C

∗
i ∩ Vhigh. For any i,

C
∗
i ∩ N(ui) ⊆ Ci.

Proof. If w ∈ C
∗
i ∩ Vhigh, then w ∈ Ci because Ci = Li ∪ R(ui) and Li ∩ Vhigh = C

∗
i ∩ Vhigh

by Lemma 16. Now it remains to consider the case w ∈ C
∗
i ∩ Vlow ∩ N(ui). It suffices for us

to show that w ∈ R(ui), where R(ui) = {w ∈ Vi ∩ N(ui) ∣ ∣N[w]∆N[ui]∣ ≤η 2ϕ}, as R(ui)
will be added to Ci.

By Corollary 21, we have w ∈ C
∗
i ∩ Vi ∩ N(ui), which means w is not going to be stolen

by other clusters. To show that w ∈ Ci, now it suffices to show that ∣N[w]∆N[ui]∣ ≤η 2ϕ

always holds. This is indeed true, because:

∣N[w]∆N[ui]∣ ≤ ∣N[w]∆C
∗
i ∣ + ∣C∗

i ∆N[ui]∣ by Lemma 5
≤ ϕ + ϕ ≤ 2ϕ ui, w ∈ C

∗
i , ρC∗(w), ρC∗(ui) ≤ ϕ ◀

3.4 Closeness
In the following, we will show that the cluster we constructed Ci will be similar to C

∗
i and

N[ui]. Intuitively, this holds because the low-degree part of Ci will be sandwiched between
the low-degree part of C

∗
i ∩N[ui] and N[ui], i.e. C

∗
i ∩N[ui]∩Vlow ⊆ Ci∩Vlow ⊆ N[ui]∩Vlow.

Also, we know that N[ui] and C
∗
i are close (i.e. ∣N[ui]∆C

∗
i ∣ ≤ ϕ), so somehow Ci cannot

be too far away from C
∗
i and N[ui]. Note that the high-degree parts of Ci and C

∗
i coincide.
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▶ Lemma 23. Let C
∗
i be the cluster in C∗ such that Li ∩ Vhigh = C

∗
i ∩ Vhigh. For any i,

∣N[ui]∆Ci∣ ≤ ϕ and ∣C∗
i ∆Ci∣ ≤ ϕ.

Proof. We first show that ∣N[ui]∆Ci∣ ≤ ϕ.

∣Vlow ∩ (N[ui]∆Ci)∣ = ∣Vlow ∩ (N[ui] \ Ci)∣ (Vlow ∩ Ci) ⊆ N[ui]
≤ ∣Vlow ∩ (N[ui] \ C

∗
i )∣ by Lemma 22

≤ ∣Vlow ∩ (N[ui]∆C
∗
i )∣ (4)

Moreover, since C
∗
i ∩ Vhigh = Ci ∩ Vhigh, it must be the case that

∣(N[ui]∆Ci) ∩ Vhigh∣ = ∣(N[ui]∆C
∗
i ) ∩ Vhigh∣ (5)

Therefore,

∣N[ui]∆Ci∣
= ∣(N[ui]∆Ci) ∩ Vlow∣ + ∣(N[ui]∆Ci) ∩ Vhigh∣
≤ ∣(N[ui]∆C

∗
i ) ∩ Vlow∣ + ∣(N[ui]∆C

∗
i ) ∩ Vhigh∣ by (4) and (5)

= ∣N[ui]∆C
∗
i ∣ ≤ ϕ ui ∈ C

∗
i and ρC∗(ui) ≤ ϕ

Now we show that ∣C∗
i ∆Ci∣ ≤ ϕ.

∣C∗
i ∆Ci∣

= ∣Vlow ∩ (C∗
i ∆Ci)∣ C

∗
i ∩ Vhigh = Ci ∩ Vhigh

= ∣Vlow ∩ (C∗
i \ Ci)∣ + ∣Vlow ∩ (Ci \ C

∗
i )∣

= ∣Vlow ∩ (C∗
i ∩ N[ui] \ Ci)∣ + ∣Vlow ∩ (C∗

i \ N[ui] \ Ci)∣
+ ∣Vlow ∩ (Ci \ C

∗
i )∣

= ∣Vlow ∩ (C∗
i ∩ N[ui] \ Ci)∣ + ∣Vlow ∩ (C∗

i \ N[ui])∣
+ ∣Vlow ∩ (Ci \ C

∗
i )∣ Vlow ∩ Ci ⊆ Vlow ∩ N[ui]

= ∣Vlow ∩ (C∗
i \ N[ui])∣ + ∣Vlow ∩ (Ci \ C

∗
i )∣ C

∗
i ∩ N[ui] ⊆ Ci

≤ ∣Vlow ∩ (C∗
i \ N[ui])∣ + ∣Vlow ∩ (N[ui] \ C

∗
i )∣ Vlow ∩ Ci ⊆ Vlow ∩ N[ui]

= ∣Vlow ∩ (C∗
i ∆N[ui])∣ ≤ ∣C∗

i ∆N[ui]∣ ≤ ϕ ◀

4 Efficient Algorithms for the Sequential and MPC Models

To make the algorithm efficient in the sequential and MPC settings, we need to address
several challenges. First, we need to compute the graph E

′ for high-degree nodes. Second,
we need to be able to conduct approximate neighborhood similarity queries efficiently. We
will address these issues one by one.

4.1 Computing the Clustering for High-Degree Nodes
In this section, we show that although E

′ may be significantly larger than E
+, it is sufficient

to make only O(∣E+∣) = O(m) neighborhood similarity queries to identify the high-degree
clusters. Algorithm 2 describes how to form a clustering F for high-degree vertices by
conducting O(m) similarity queries.
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Algorithm 2 HighDegreeClustering(G+
= (V, E

+), ϕ, η).
Input: A graph G

+, a parameter ϕ, a parameter 0 ≤ η < 1.
Output: A clustering F = {Li}∣L∣

i=1 of Vhigh such that F = L.

1: function HighDegreeClustering(G+
= (V, E

+), ϕ, η)
2: Let Gsim = (V, Esim), where Esim = {uv ∈ E

+ ∣ ∣N[u]∆N[v]∣ ≤η 2ϕ}.
3: Assign each vertex V with an unique ID, ID(v).
4: Every vertex v ∈ V sets min(v) ← minx∈NGsim [v]∩Vhigh ID(x)
5: Every vertex v ∈ V sends a token of value min(v) to the neighbor of v in Gsim.
6: If a vertex v ∈ Vhigh receives at least ϕ + 1 tokens of the same value, set cluster(v)

to be the minimum such value.
7: Let F be a clustering where each cluster is formed by vertices with the same cluster

values.
8: end function

Algorithm Description. In Algorithm 2, we first perform O(m) neighborhood queries to
construct Gsim = (V, Esim), where Esim ⊆ E

+ consists of those endpoints who have similar
neighborhoods. Then we assign every vertex u with a unique identifier, ID(u). By sending
the ID of every high-degree vertex to its neighbors in Gsim, every vertex u can learn ID of
the high-degree vertex with the smallest ID in its closed neighborhood in Gsim (Line 4) and
then set min(u) to be such an ID. Now, every vertex u (including low-degree vertices) sends
a token with value min(u) to all the neighbors of u in Gsim. Then, if a vertex u recieved at
least ϕ+ 1 tokens of the same value, it will set its cluster ID, cluster(u), to be the minimum
value that occurs at least ϕ + 1 times. Finally, we assign all high-degree vertices with the
same cluster ID to be in the same cluster.

In Lemma 24, we show that if OPT ≤ ϕ, then the output F is exactly L. The proof is
based on showing that if two high-degree vertices u, v are in the same cluster in C∗, then
there will be at least ϕ + 1 disjoint paths of length two in Gsim.

▶ Lemma 24. efficienthighdeg Suppose that OPT ≤ ϕ. Algorithm 2 outputs a clustering F
such that F = L.

Proof. Let C∗ be a clustering with obj(C∗) ≤ ϕ. Let u be a vertex in Vhigh. Let u∗ be the
vertex with the minimum ID in Lu. We will show that
1. Every vertex x ∈ Lu ∩ Vhigh will receive at least ϕ + 1 tokens of values ID(u∗) in Line 6.
2. In addition, if x received at least ϕ + 1 tokens of value T , then T ≥ ID(u∗).

Once these two points are established, every vertex x ∈ Lu ∩ Vhigh will be assigned
cluster(x) = ID(u∗). Consequently, this ensures that Fu = Lu. Now we start with the first
point, since x, u∗ ∈ C∗

u , ∣N[u∗]∆N[x]∣ ≤ 2ϕ; for otherwise obj(C∗) > ϕ by Lemma 15. This
implies:

∣N[u∗] ∩ N[x]∣ = (∣N[x]∣ + ∣N[u∗]∣ − ∣N[u∗]∆N[x]∣)/2
≥ (3ϕ + 2 + 3ϕ + 2 − 2ϕ)/2 = 2ϕ + 2

Also, since u∗ ∈ C∗
u and by definition of ρC∗(u∗), we have:

ϕ ≥ ρC∗(u∗) ≥ ∣N[u∗]∣ − ∣(C∗
u ∩ N[u∗])∣ (6)
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Therefore,

∣(C∗
u ∩ N[u∗]) ∩ N[x]∣ = ∣N[x] ∩ N[u∗]∣ − ∣N[x] ∩ (N[u∗] \ (C∗

u ∩ N[u∗]))∣
≥ ∣N[x] ∩ N[u∗]∣ − ∣N[u∗] \ (C∗

u ∩ N[u∗])∣
≥ (2ϕ + 2) − ϕ by (6)
≥ ϕ + 2

Hence:

∣(C∗
u ∩ N[u∗]) ∩ N(x)∣ ≥ ∣(C∗

u ∩ N[u∗]) ∩ N[x]∣ − 1 ≥ ϕ + 1

Note that all vertices in (C∗
u ∩N[u∗]) must have their min(⋅) values equal to ID(u∗). This is

because if v ∈ (C∗
u ∩N[u∗]) and v ∈ Vhigh, then (NGsim(v)∩Vhigh) ⊆ C∗

u . If v ∈ (C∗
u ∩N[u∗])

and v ∉ Vhigh, then it must be the case that v ∈ NGsim(u∗). Moreover, NGsim[v] ∩ Vhigh
cannot contain any cluster nodes outside C∗

u by Theorem 17. Thus, min(v) = ID(u∗). This
implies x will receive at least ϕ + 1 tokens with value ID(u∗).

Next we show that if there is a value T such that x receives from at least ϕ + 1 tokens,
then T ≥ ID(u∗). Suppose to the contrary that T < ID(u∗). First note that if v ∈ N(x)
has min(v) = T , then it cannot be the case that v ∈ Vhigh. Otherwise, u∗, v, and a vertex
whose ID is T , would all be in C∗

u , which contradict with the fact ID(u∗) is the smallest ID
in Lu = C∗

u ∩ Vhigh. Therefore, it must be the case that vertices v ∈ N(x) with min(v) = T

are all in Vlow.
Now note that if v ∈ C∗

u then by Theorem 17, v can only be connected to vertices in C∗
u

in Gsim. In this case, min(v) ≥ ID(u∗) so min(v) ≠ T by the assumption of ID(u∗). So the
only possibility for v to have min(v) = T is when v ∉ C∗

u . However, as ρC∗(x) ≤ ϕ, there are
at most ϕ neighbors of x not in C∗

x . This implies x will receive less than ϕ + 1 tokens whose
value equals to T . ◀

4.2 Approximate Neighborhood Similarity Testing by Random Projection
We show that for 0 < η < 1, w.h.p. the queries ∆η(x, y, 2ϕ) for all xy ∈ E

+ can be answered
in O(m log n/η

2) time and thus Gsim can be constructed in O(m log n/η
2) time.

▶ Definition 25. Given a vertex x, let N⃗[x] ⊆ {0, 1}n denote the characteristic vector of
N[x].
▶ Lemma 26. Given ϵ > 0, let k = C ⋅ (log n/ϵ

2) for some large enough constant C > 0.
Let A be a k × n matrix where each entry is drawn from {−1,+1} uniformly at random.
W.h.p. for every two vertices x and y, we have:

(1 − ϵ) ⋅ ∣N[x]∆N[y]∣ ≤ ∣∣A ⋅ N⃗[x] − A ⋅ N⃗[y]∣∣22/k ≤ (1 + ϵ) ⋅ ∣N[x]∆N[y]∣
Proof. By the Johnson-Lindenstrauss lemma [1, 38], w.h.p. for every x and y, we have:

(1 − ϵ) ⋅ ∣∣N⃗[x] − N⃗[y]∣∣22 ≤ ∣∣A ⋅ N⃗[x] − A ⋅ N⃗[y]∣∣22/k ≤ (1 + ϵ) ⋅ ∣∣N⃗[x] − N⃗[y]∣∣22
The lemma follows by observing that ∣N[x]∆N[y]∣ = ∣∣N⃗[x] − N⃗[y]∣∣22. ◀

▶ Lemma 27. Let ϵ = Θ(η) be such that (1 + η) = (1 + ϵ)/(1 − ϵ), k = O(log n/ϵ
2), and set:

∆η(x, y, t) = {0 if ∣∣A ⋅ N⃗[x] − A ⋅ N⃗[y]∣∣22/((1 + ϵ)k) > t

1 otherwise

W.h.p. the above implementation returns a correct answer for ∆η(x, y, t).
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Proof. It suffices to show that if ∣N[x]∆N[y]∣ ≤ t then w.h.p. we will set ∆η(x, y, t) to be
0 and if ∣N[x]∆N[y]∣ > (1 + η)t, then w.h.p. we will set ∆η(x, y, t) to be 1.

If ∣N[x]∆N[y]∣ ≤ t, then w.h.p.

∣∣A ⋅ N⃗[x] − A ⋅ N⃗[y]∣∣22/((1 + ϵ)k) ≤ ∣N[x]∆N[y]∣ ≤ t

Thus, ∆η(x, y, t) returns 1.
On the other hand, if ∣N[x]∆N[y]∣ > (1 + η)t then w.h.p.

∣∣A ⋅ N⃗[x] − A ⋅ N⃗[y]∣∣22/((1 + ϵ)k) ≥ 1 − ϵ
1 + ϵ

⋅ (∣N[x]∆N[y]∣) > 1 − ϵ
1 + ϵ

(1 + η) ⋅ t = t

Thus, ∆η(x, y, t) returns 0. ◀

We have presented the key ingredients that lead to efficient sequential and MPC algorithms.
The details of their implementations are presented in the full version [17]. For the semi-
streaming algorithm, different challenges arise. The necessary modifications and details are
also included in the full version.
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