
Bounded Weighted Edit Distance
Dynamic Algorithms and Matching Lower Bounds

Itai Boneh #

Reichman University, Herzliya, Israel
University of Haifa, Israel

Egor Gorbachev #

Saarland University and Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

Tomasz Kociumaka #

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
The edit distance ed(X, Y) of two strings X, Y ∈ Σ∗ is the minimum number of character edits
(insertions, deletions, and substitutions) needed to transform X into Y . Its weighted counter-
part edw(X, Y) minimizes the total cost of edits, where the costs of individual edits, depending on
the edit type and the characters involved, are specified using a function w, normalized so that each
edit costs at least one. The textbook dynamic-programming procedure, given strings X, Y ∈ Σ≤n

and oracle access to w, computes edw(X, Y) in O(n2) time. Nevertheless, one can achieve better
running times if the computed distance, denoted k, is small: O(n + k2) for unit weights [Landau and
Vishkin; JCSS’88] and Õ(n +

√
nk3)1 for arbitrary weights [Cassis, Kociumaka, Wellnitz; FOCS’23].

In this paper, we study the dynamic version of the weighted edit distance problem, where the
goal is to maintain edw(X, Y) for strings X, Y ∈ Σ≤n that change over time, with each update
specified as an edit in X or Y . Very recently, Gorbachev and Kociumaka [STOC’25] showed that
the unweighted distance ed(X, Y) can be maintained in Õ(k) time per update after Õ(n + k2)-time
preprocessing; here, k denotes the current value of ed(X, Y). Their algorithm generalizes to small
integer weights, but the underlying approach is incompatible with large weights.

Our main result is a dynamic algorithm that maintains edw(X, Y) in Õ(k3−γ) time per update
after Õ(nkγ)-time preprocessing. Here, γ ∈ [0, 1] is a real trade-off parameter and k ≥ 1 is an
integer threshold fixed at preprocessing time, with ∞ returned whenever edw(X, Y) > k. We
complement our algorithm with conditional lower bounds showing fine-grained optimality of our
trade-off for γ ∈ [0.5, 1) and justifying our choice to fix k.

We also generalize our solution to a much more robust setting while preserving the fine-grained
optimal trade-off. Our full algorithm maintains X ∈ Σ≤n subject not only to character edits but also
substring deletions and copy-pastes, each supported in Õ(k2) time. Instead of dynamically maintain-
ing Y , it answers queries that, given any string Y specified through a sequence of O(k) arbitrary
edits transforming X into Y , in Õ(k3−γ) time compute edw(X, Y) or report that edw(X, Y) > k.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Edit distance, dynamic algorithms, conditional lower bounds

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.45

Related Version Full Version: https://arxiv.org/abs/2507.02548v1 [6]

Funding Itai Boneh: supported by Israel Science Foundation grant 810/21.
Egor Gorbachev: This work is part of the project TIPEA that has received funding from the
European Research Council (ERC) under the European Unions Horizon 2020 research and innovation
programme (grant agreement No. 850979).

1 Henceforth, the Õ(·) notation hides factors poly-logarithmic in n.

© Itai Boneh, Egor Gorbachev, and Tomasz Kociumaka;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:itai.bone@biu.ac.il
https://orcid.org/0009-0007-8895-4069
mailto:egorbachev@cs.uni-saarland.de
https://orcid.org/0009-0005-5977-7986
mailto:tomasz.kociumaka@mpi-inf.mpg.de
https://orcid.org/0000-0002-2477-1702
https://doi.org/10.4230/LIPIcs.ESA.2025.45
https://arxiv.org/abs/2507.02548v1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

45:2 Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

1 Introduction

Among the most fundamental string processing problems is the task of deciding whether
two strings are similar to each other. A classic measure of string (dis)similarity is the edit
distance, also known as the Levenshtein distance [22]. The (unit-cost) edit distance ed(X, Y)
of two strings X and Y is defined as the minimum number of character edits (insertions,
deletions, and substitutions) needed to transform X into Y . In typical use cases, edits model
naturally occurring modifications, such as typographical errors in natural-language texts
or mutations in biological sequences. Some of these changes occur more frequently than
others, which motivated introducing weighted edit distance already in the 1970s [33]. In this
setting, each edit has a cost that may depend on its type and the characters involved (but
nothing else), and the goal is to minimize the total cost of edits rather than their quantity.
The costs of individual edits can be specified through a weight function w : Σ2 → R≥0,
where Σ = Σ ∪ {ε} denotes the alphabet extended with a symbol ε representing the lack of
a character. For a, b ∈ Σ, the cost of inserting b is w(ε, b), the cost of deleting a is w(a, ε),
and the cost of substituting a for b is w(a, b). (Note that the cost of an edit is independent
of the position of the edited character in the string.) Consistently with previous works, we
assume that w is normalized: w(a, b) ≥ 1 and w(a, a) = 0 hold for every distinct a, b ∈ Σ.
The unweighted edit distance constitutes the special case when w(a, b) = 1 holds for a ̸= b.

The textbook dynamic-programming algorithm [32, 25, 26, 33] takes O(n2) time to
compute the edit distance of two strings of length at most n, and some of its original
formulations incorporate weights [26, 33, 27]. Unfortunately, there is little hope for much faster
solutions: for any constant δ > 0, an O(n2−δ)-time algorithm would violate the Orthogonal
Vectors Hypothesis [1, 7, 2, 5], and hence the Strong Exponential Time Hypothesis [16, 17].
The lower bound holds already for unit weights and many other fixed weight functions [7].

Bounded Edit Distance. On the positive side, the quadratic running time can be improved
when the computed distance is small. For unweighted edit distance, the algorithm by Landau
and Vishkin [21], building upon the ideas of [30, 24], computes k := ed(X, Y) in O(n + k2)
time for any two strings X, Y ∈ Σ≤n. This running time is fine-grained optimal: for any δ > 0,
a hypothetical O(n + k2−δ)-time algorithm, even restricted to instances satisfying k = Θ(nκ)
for some constant κ ∈ (0.5, 1], would violate the Orthogonal Vectors Hypothesis.

As far as the bounded weighted edit distance problem is concerned, a simple optimization
by Ukkonen [30] improves the quadratic time complexity of the classic dynamic-programming
algorithm to O(nk), where k := edw(X, Y). Recently, Das, Gilbert, Hajiaghayi, Kociumaka,
and Saha [12] developed an O(n+k5)-time solution and, soon afterwards, Cassis, Kociumaka,
and Wellnitz [8] presented an Õ(n +

√
nk3)-time algorithm. Due to the necessity to read

the entire input, the latter running time is optimal for k ≤ 3
√

n. More surprisingly, there
is a tight conditional lower bound for

√
n ≤ k ≤ n [8], valid already for edit costs in the

real interval [1, 2]. For any constants κ ∈ [0.5, 1] and δ > 0, an O(
√

nk3−δ)-time algorithm
restricted to instances satisfying k = Θ(nκ) would violate the All-Pairs Shortest Paths
Hypothesis [31]. The optimal complexity remains unknown for 3

√
n < k <

√
n, where the

upper bound is Õ(
√

nk3), yet the lower-bound construction allows for an Õ(n + k2.5)-time
algorithm.

Dynamic Edit Distance. Over the last decades, the edit distance problem has been studied
in numerous variants, including the dynamic ones, where the input strings change over time.
The most popular dynamic (weighed) edit distance formulation is the following one [9, 15].

I. Boneh, E. Gorbachev, and T. Kociumaka 45:3

▶ Problem 1.1 (Dynamic Weighted Edit Distance). Given an integer n and oracle access to a
normalized weight function w : Σ2 → R≥0, maintain strings X, Y ∈ Σ≤n subject to updates
(character edits in X and Y) and report edw(X, Y) after each update.2

The time complexity of Problem 1.1 is already well understood if it is measured solely in
terms of the string length n. In case of unit weights, the algorithm of Charalampopoulos,
Kociumaka, and Mozes [9] (building upon the techniques by Tiskin [28]) is characterized
by Õ(n) update time and O(n2) preprocessing time; any polynomial-factor improvement
would violate the lower bound for the static edit distance problem. As far as arbitrary
weights are concerned, the approach presented in [9, Section 4] achieves Õ(n

√
n) update

time after Õ(n2)-time preprocessing, and there is a matching fine-grained lower bound [8,
Section 6] conditioned on the All-Pairs Shortest Paths Hypothesis.

In this work, we aim to understand Problem 1.1 for small distances:

How fast can one dynamically maintain edw(X, Y) when this value is small?

Very recently, Gorbachev and Kociumaka [15] settled the parameterized complexity of
Problem 1.1 in the unweighted case. Their solution achieves Õ(n + k2) preprocessing time
and Õ(k) update time; improving either complexity by a polynomial factor, even for instances
satisfying k = Θ(nκ) for some κ ∈ (0, 1], would violate the Orthogonal Vectors Hypothesis.

Interestingly, the approach of [15] builds upon the static procedure for bounded weighted
edit distance [8] and, as a result, the dynamic algorithm seamlessly supports small integer
weights, achieving O(W 2k) update time for edit costs in [1. .W]. Unfortunately, [15] does
not provide any improvements for arbitrary weights; in that case, the results of [8] yield a
solution to Problem 1.1 with Õ(n) preprocessing time and Õ(min(k3,

√
nk3)) update time.

This is far from satisfactory: for k ≥ 3
√

n, the algorithm simply recomputes edw(X, Y) from
scratch after every update, and for k < 3

√
n, it does not store (and reuse) anything beyond a

dynamic data structure for checking the equality between fragments of X and Y .

Our Results: Lower Bounds

The reason why the approach of [15] is incompatible with large weights, e.g., W = Ω(k), is
that their presence allows a single update to drastically change edw(X, Y). Our first result
strengthens the lower bound of [8] and shows that the Õ(n +

√
nk3)-time static algorithm

is fine-grained optimal already for instances that can be transformed from a pair of equal
strings using four edits. The ideas behind the following theorem are presented in Section 5.

▶ Theorem 1.2. Let κ ∈ [0.5, 1] and δ > 0 be real parameters. Assuming the APSP
Hypothesis, there is no algorithm that, given two strings X, Y ∈ Σ≤n satisfying ed(X, Y) ≤ 4,
a threshold k ≤ nκ, and oracle access to a normalized weight function w : Σ2 → R≥0, in
time O(n0.5+1.5κ−δ) decides whether edw(X, Y) ≤ k.

As a simple corollary, we conclude that significantly improving upon the naïve update
time of Õ(

√
nk3) for

√
n ≤ k ≤ n requires large preprocessing time.

▶ Corollary 1.3. Suppose that Problem 1.1 admits a solution with preprocessing time
TP (n, edw(X, Y)) and update time TU (n, edw(X, Y)) for some non-decreasing functions TP

and TU . If TP (n, 0) = O(n0.5+1.5κ−δ) and TU (n, nκ) = O(n0.5+1.5κ−δ) hold for some real
parameters κ ∈ [0.5, 1] and δ > 0, then the APSP Hypothesis fails.

2 For clarity, the introduction focuses on the version of the problem where the value edw(X, Y) is reported
after every update. In Theorem 1.7, we address a more general setting where queries may occur less
frequently, allowing us to distinguish between update time and query time.

ESA 2025

45:4 Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

Proof idea. For an instance (X, Y) of the static problem of Theorem 1.2, we initialize the
dynamic algorithm with (X, X) and transform one copy of X into Y using four updates. ◀

As discussed in the full version of the paper [6], instead of initializing the dynamic
algorithm with (X, X), we can initialize it with a pair of empty strings and gradually
transform this instance to (X, X) using O(n) updates while keeping the weighted edit
distance between 0 and 2 at all times. Hence, as long as the preprocessing of (ε, ε) takes
nO(1) time and is not allowed to access the entire weight function (e.g., weights are revealed
online when an update introduces a fresh character for the first time) , we can replace
TP (n, 0) = O(n0.5+1.5κ−δ) with TU (n, 2) = O(n1.5κ−0.5−δ) in the statement of Corollary 1.3.

Overall, we conclude that, in order to support updates with relatively large distances
faster than naively (i.e., by computing edw(X, Y) from scratch using a static algorithm),
one needs to pay a lot for both preprocessing and updates while edw(X, Y) is still very
small. In particular, we should decide in advance how large distances need to be supported
efficiently. This justifies a simplified variant of Problem 1.1, where the parameter k is fixed at
preprocessing time. Here, instead of edw(X, Y), the algorithm reports the following quantity:

edw
≤k(X, Y) =

{
edw(X, Y) if edw(X, Y) ≤ k,

∞ otherwise.

▶ Problem 1.4 (Dynamic Weighted Edit Distance with Fixed Threshold). Given integers
1 ≤ k ≤ n and oracle access to a normalized weight function w : Σ2 → R≥0, maintain strings
X, Y ∈ Σ≤n subject to updates (character edits in X and Y) and report edw

≤k(X, Y) upon
each update.

Corollary 1.3 can be rephrased in terms of Problem 1.4, but its major limitation is that
it only applies to k ≥

√
n. To overcome this issue, we compose multiple hard instances from

Theorem 1.2. This results in the following theorem, discussed in Section 5.

▶ Theorem 1.5. Suppose that Problem 1.4 admits a solution with preprocessing time TP (n, k)
and update time TU (n, k) for some non-decreasing functions TP and TU . If TP (n, nκ) =
Õ(n1+κ·γ) and TU (n, nκ) = O(nκ·(3−γ)−δ) hold for some parameters γ ∈ [0.5, 1), κ ∈
(0, 1/(3 − 2γ)], and δ > 0, then the APSP Hypothesis fails.

Theorem 1.5 indicates that (conditioned on the APSP Hypothesis and up to subpolynomial-
factor improvements), for a dynamic algorithm with preprocessing time Õ(nkγ) for γ ∈ [0.5, 1),
the best possible update time is Õ(k3−γ). The lower bound does not extend to κ > 1/(3−2γ);
precisely then, the Õ(

√
nk3)-time static algorithm improves upon the Õ(k3−γ) update time.

Our Results: Algorithms

Our main positive result is an algorithm that achieves the fine-grained-optimal trade-off.

▶ Theorem 1.6. There exists an algorithm that, initialized with an extra real parameter
γ ∈ [0, 1], solves Problem 1.4 with preprocessing time Õ(nkγ) and update time Õ(k3−γ).

As a warm-up, in Section 3, we prove Theorem 1.6 for γ = 1. Similarly to [15], the main
challenge is that updates can make X and Y slide with respect to each other. If we interleave
insertions at the end of Y and deletions at the beginning of Y , then, after Ω(k) updates, for
every character X[i], the fragment Y [i − k. .i + k] containing the plausible matches of X[i]
changes completely. The approach of [15] was to restart the algorithm every Θ(k) updates.

I. Boneh, E. Gorbachev, and T. Kociumaka 45:5

Our preprocessing time is too large for this, so we resort to a trick originating from
dynamic edit distance approximation [20]: we maintain a data structure for aligning X with
itself. Instead of storing Y , we show how to compute edw

≤k(X, Y) for any string Y specified
using O(k) edits (of arbitrary costs) transforming X into Y . To find such edits in the original
setting of Problem 1.4, one can use a dynamic unweighted edit distance algorithm. Already
the folklore approach, based on [21, 23], with Õ(k2) time per update is sufficiently fast.

In Section 4, we discuss how to generalize our dynamic algorithm to arbitrary γ ∈ [0, 1].
This is our most difficult result – it requires combining the techniques of [8] and their
subsequent adaptations in [15] with several new ideas, including a novel shifted variant of
self-edit distance. We derive Theorem 1.6 as a straightforward corollary of the following
result, which demonstrates that the same fine-grained optimal trade-off can be achieved in a
much more robust setting compared to the one presented in Problem 1.4.

▶ Theorem 1.7. There is a dynamic algorithm that, initialized with a real parameter
γ ∈ [0, 1], integers 1 ≤ k ≤ n, and O(1)-time oracle access to a normalized weight function
w : Σ2 → R≥0, maintains a string X ∈ Σ≤n and, after Õ(nkγ)-time preprocessing, supports
the following operations (updates and queries):

Apply a character edit, substring deletion, or copy-paste to X in Õ(k2) time.
Given u edits transforming X into a string Y , compute edw

≤k(X, Y) in Õ(u + k3−γ) time.

We remark that our query algorithm for γ = 1 extends a subroutine of [11], where the
string X is static. In [11], this result is used for approximate pattern matching with respect
to weighted edit distance. If the pattern is far from periodic, which is arguably true in most
natural instances, the trade-off of Theorem 1.7 yields a faster pattern matching algorithm.

Open Problems

Recall that Theorem 1.5 proves fine-grained optimality of Theorem 1.6 only for γ ∈ [0.5, 1).
The omission of γ ∈ [0, 0.5) stems from a gap between algorithms and lower bounds for
the underlying static problem. Hence, we reiterate the open question of [8] asking for the
complexity of computing edw(X, Y) when 3

√
n < edw(X, Y) <

√
n. Since our lower bounds

arise from Theorem 1.2, it might be instructive to first try designing faster algorithms for the
case of ed(X, Y) ≤ 4. Before this succeeds, one cannot hope for faster dynamic algorithms.

Wider gaps in our understanding of Problem 1.4 remain in the regime of large preprocessing
time. It is open to determine the optimal update time for γ = 1 and to decide whether γ > 1
can be beneficial. As far as γ = 1 is concerned, we believe that [9, Section 4] can be used to
obtain Õ(k

√
n) update time, which improves upon Theorem 1.6 for k ≥

√
n. Moreover, by

monotonicity, the lower bound of [8, Section 6] excludes update times of the form O(k1.5−δ).
Finally, we remark that all our lower bounds exploit the fact that edw(X, Y) can change

a lot as a result of a single update. It would be interesting to see what can be achieved if the
weights are small (but fractional) or when the update time is parameterized by the change
in edw(X, Y). In these cases, we hope for non-trivial applications of the approach of [15].

2 Preliminaries3

A string X ∈ Σn is a sequence of |X| := n characters over an alphabet Σ. We denote
the set of all strings over Σ by Σ∗, we use ε to represent the empty string, and we write
Σ+ := Σ∗ \ {ε}. For a position i ∈ [0. .n), we say that X[i] is the i-th character of X. We

3 In this section, we partially follow the narration of [8, 15].

ESA 2025

45:6 Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

say that a string X occurs as a substring of a string Y , if there exist indices i, j ∈ [0. .|Y |]
satisfying i ≤ j such that X = Y [i] · · · Y [j − 1]. The occurrence of X in Y specified by i

and j is a fragment of Y denoted by Y [i. .j), Y [i. .j − 1], Y (i − 1. .j − 1], or Y (i − 1. .j).

Weighted Edit Distances and Alignment Graphs

Given an alphabet Σ, we set Σ := Σ ∪ {ε}. We call w a normalized weight function if
w : Σ × Σ → R≥1 ∪ {0} and, for a, b ∈ Σ, we have w(a, b) = 0 if and only if a = b. Note
that w does not need to satisfy the triangle inequality nor does w need to be symmetric.

We interpret weighted edit distances of strings as distances in alignment graphs.

▶ Definition 2.1 (Alignment Graph, [8]). For strings X, Y ∈ Σ∗ and a normalized weight
function w : Σ2 → R≥0, we define the alignment graph AGw(X, Y) to be a weighted directed
graph with vertices [0. .|X|] × [0. .|Y |] and the following edges:

a horizontal edge (x, y) → (x + 1, y) of cost w(X[x], ε) representing a deletion of X[x],
for every (x, y) ∈ [0. .|X|) × [0. .|Y |],
a vertical edge (x, y) → (x, y + 1) of cost w(ε, Y [y]) representing an insertion of Y [y], for
every (x, y) ∈ [0. .|X|] × [0. .|Y |), and
a diagonal edge (x, y) → (x + 1, y + 1) of cost w(X[x], Y [y]) representing a substitution
of X[x] into Y [y] or, if X[x] = Y [y], a match of X[x] with Y [y], for every (x, y) ∈
[0. .|X|) × [0. .|Y |).

We visualize the graph AGw(X, Y) as a grid graph with |X| + 1 columns and |Y | + 1 rows,
where (0, 0) and (|X|, |Y |) are the top-left and bottom-right vertices, respectively.

Alignments between fragments of X and Y can be interpreted as paths in AGw(X, Y).

▶ Definition 2.2 (Alignment). Consider strings X, Y ∈ Σ∗ and a normalized weight function
w : Σ2 → R≥0. An alignment A of X[x. .x′) onto Y [y. .y′), denoted A : X[x. .x′) Y [y. .y′),
is a path from (x, y) to (x′, y′) in AGw(X, Y), often interpreted as a sequence of vertices.
The cost of A, denoted by edw

A(X[x. .x′), Y [y. .y′)), is the total cost of edges belonging to A.

The weighted edit distance of strings X, Y ∈ Σ∗ with respect to a weight function w

is edw(X, Y) := min edw
A(X, Y) where the minimum is taken over all alignments A of X

onto Y . An alignment A of X onto Y is w-optimal if edw
A(X, Y) = edw(X, Y).

We say that an alignment A of X onto Y aligns fragments X[x. .x′) and Y [y. .y′)
if (x, y), (x′, y′) ∈ A. In this case, we also denote the cost of the induced alignment (the
subpath of A from (x, y) to (x′, y′)) by edw

A(X[x. .x′), Y [y. .y′)).
A normalized weight function satisfying w(a, b) = 1 for distinct a, b ∈ Σ gives the

unweighted edit distance (Levenshtein distance [22]). In this case, we drop the superscript w.

▶ Definition 2.3 (Augmented Alignment Graph, [15]). For strings X, Y ∈ Σ∗ and a weight
function w : Σ2 → [0, W], the augmented alignment graph AGw(X, Y) is obtained from
AGw(X, Y) by adding, for every edge of AGw(X, Y), a back edge of weight W + 1.4

The following fact shows several properties of AGw(X, Y). Importantly,
edw(X[x. .x′), Y [y. .y′)) is the distance from (x, y) to (x′, y′) in AGw(X, Y).

4 These edges ensure that AGw(X, Y) is strongly connected, and thus the distance matrices used throughout
this work are Monge matrices (see Definition 2.11) rather than so-called partial Monge matrices.

I. Boneh, E. Gorbachev, and T. Kociumaka 45:7

▶ Fact 2.4 ([15, Lemma 5.2]). Consider strings X, Y ∈ Σ∗ and a weight function w : Σ2 →
[0, W]. Every two vertices (x, y) and (x′, y′) of the graph AGw(X, Y) satisfy the following
properties:
Monotonicity. Every shortest path from (x, y) to (x′, y′) in AGw(X, Y) is (weakly) monotone

in both coordinates.
Distance preservation. If x ≤ x′ and y ≤ y′, then

distAGw(X,Y)((x, y), (x′, y′)) = distAGw(X,Y)((x, y), (x′, y′)).

Path irrelevance. If (x ≤ x′ and y ≥ y′) or (x ≥ x′ and y ≤ y′), then every path from (x, y)
to (x′, y′) in AGw(X, Y) monotone in both coordinates is a shortest path between these
two vertices.

Consistently with many edit-distance algorithms, we will often compute not only the
distance from (0, 0) to (|X|, |Y |) in AGw(X, Y) but the entire boundary distance matrix
BMw(X, Y) that stores the distances from every input vertex on the top-left boundary to
every output vertex on the bottom-right boundary of the graph AGw(X, Y).

▶ Definition 2.5 (Input and Output Vertices of an Alignment Graph, [15, Definition 5.5]).
Let X, Y ∈ Σ∗ be two strings and w : Σ2 → [0, W] be a weight function. Furthermore, for
fragments X[x. .x′) and Y [y. .y′), let R = [x. .x′] × [y. .y′] be the corresponding rectangle
in AGw(X, Y). We define the input vertices of R as the sequence of vertices of AGw(X, Y)
on the left and top boundary of R in the clockwise order. Analogously, we define the output
vertices of R as a sequence of vertices of AGw(X, Y) on the bottom and right boundary of R

in the counterclockwise order. Furthermore, the input and output vertices of X × Y are the
corresponding boundary vertices of the whole graph AGw(X, Y).

▶ Definition 2.6 (Boundary Distance Matrix, [15, Definition 5.6]). Let X, Y ∈ Σ∗ be two
strings and w : Σ2 → [0, W] be a weight function. The boundary distance matrix BMw(X, Y)
of X and Y with respect to w is a matrix M of size (|X|+ |Y |+1)×(|X|+ |Y |+1), where Mi,j

is the distance from the i-th input vertex to the j-th output vertex of X × Y in AGw(X, Y).

The following fact captures the simple dynamic programming algorithm for bounded
weighted edit distance.

▶ Fact 2.7 ([15, Fact 3.3]). Given strings X, Y ∈ Σ∗, an integer k ≥ 1, and O(1)-time oracle
access to a normalized weight function w : Σ2 → R≥0, the value edw

≤k(X, Y) can be computed
in O(min(|X| + 1, |Y | + 1) · min(k, |X| + |Y | + 1)) time. Furthermore, if edw(X, Y) ≤ k, the
algorithm returns a w-optimal alignment of X onto Y .

The proof of Fact 2.7 relies on the fact that a path of length k can visit only a limited
area of the alignment graph AGw(X, Y). This property can be formalized as follows:

▶ Fact 2.8 ([15, Lemma 5.3]). Let X, Y ∈ Σ∗ be two strings, k be an integer, and w : Σ2 →
R≥0 be a normalized weight function. Consider a path P of cost at most k connecting (x, y)
to (x′, y′) in AGw(X, Y). All vertices (x∗, y∗) ∈ P satisfy |(x − y) − (x∗ − y∗)| ≤ k and
|(x′ − y′) − (x∗ − y∗)| ≤ k.

The breakpoint representation of an alignment A = (xt, yt)m
t=0 of X onto Y is the

subsequence of A consisting of pairs (xt, yt) such that t ∈ {0, m} or A does not match X[xt]
with Y [yt]. Note that the size of the breakpoint representation is at most 2 + edA(X, Y) and
that it can be used to retrieve the entire alignment and its cost: for any two consecutive

ESA 2025

45:8 Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

elements (x′, y′), (x, y) of the breakpoint representation, it suffices to add (x − δ, y − δ)
for δ ∈ (0. . max(x − x′, y − y′)). We will also talk of breakpoint representations of paths
in AGw(X, Y) that are weakly monotone in both coordinates. If such a path starts in (x, y)
and ends in (x′, y′) with x ≤ x′ and y ≤ y′, then the breakpoint representation of such a
path is identical to the breakpoint representation of the corresponding alignment. Otherwise,
if x > x′ or y > y′, we call the breakpoint representation of such a path a sequence of all its
vertices; recall that all edges in such a path have strictly positive weights.

Planar Graphs, the Monge Property, and Min-Plus Matrix Multiplication

As alignment graphs are planar, we can use the following tool of Klein.

▶ Fact 2.9 (Klein [19]). Given a directed planar graph G of size n with non-negative
edge weights, we can construct in O(n log n) time a data structure that, given two vertices
u, v ∈ V (G) at least one of which lies on the outer face of G, computes the distance distG(u, v)
in O(log n) time. Moreover, the data structure can report the shortest u ⇝ v path P in
O(|P | log log ∆(G)) time, where ∆(G) is the maximum degree of G.

The following lemma specifies a straightforward variation of Klein’s algorithm tailored
for path reconstruction in alignment graphs.

▶ Lemma 2.10. Given strings X, Y ∈ Σ+ and O(1)-time access to a normalized weight
function w : Σ2 → [0, W], we can construct in O(|X| · |Y | log2(|X| + |Y |)) time a data
structure that, given two vertices u, v ∈ AGw(X, Y) at least one of which lies on the outer
face of AGw(X, Y), computes the distance distAGw(X,Y)(u, v) in O(log(|X| + |Y |)) time.
Moreover, the breakpoint representation of a shortest u ⇝ v path can be constructed in
O((1 + distAGw(X,Y)(u, v)) log2(|X| + |Y |)) time.

Proof. The data structure we build is recursive. We first build the data structure of Klein’s
algorithm (Fact 2.9) for AGw(X, Y), and then if |X| > 1, recurse onto (X[0. .⌊|X|/2⌋), Y)
and (X[⌊|X|/2⌋. .|X|), Y). Preprocessing costs O(|X| · |Y | log2(|X| + |Y |)) time. For distance
queries, the top-level instance of Klein’s algorithm is sufficient. It remains to answer path
reconstruction queries. We reconstruct the shortest u ⇝ v path recursively. First, in
O(log(|X| + |Y |)) time we query distAGw(X,Y)(u, v). If the distance is 0, we return the
breakpoint representation of the trivial shortest u⇝ v path. Otherwise, we make further
recursive calls. If u and v both lie in X[0. .⌊|X|/2⌋) × Y or both lie in X[⌊|X|/2⌋. .|X|) × Y ,
by the monotonicity property of Fact 2.4 we can recurse onto the corresponding small
recursive data structure instance. Otherwise, every u ⇝ v path contains a vertex (x, y)
with x = ⌊|X|/2⌋. Furthermore, due to Fact 2.8, there are O(distAGw(X,Y)(u, v)) possible
values for y. In O(distAGw(X,Y)(u, v) log(|X| + |Y |)) time we query distAGw(X,Y)(u, (x, y)) and
distAGw(X,Y)((x, y), v) using the smaller recursive data structure instances and find some
y satisfying distAGw(X,Y)(u, v) = distAGw(X,Y)(u, (x, y)) + distAGw(X,Y)((x, y), v). We then
recursively find the breakpoint representations of the optimal u⇝ (x, y) path and the optimal
(x, y)⇝ v path in the smaller recursive data structure instances. There are O(log(|X| + 1))
recursive levels, on each one of them our total work is O((1+distAGw(X,Y)(u, v)) log(|X|+|Y |));
thus, the total time complexity is O((1 + distAGw(X,Y)(u, v)) log2(|X| + |Y |)). ◀

As discussed in [13, Section 2.3] and [15, Fact 3.7 and Section 5.1], the planarity of
alignment graphs implies that the BMw(X, Y) matrices satisfy the following Monge property:

▶ Definition 2.11 (Monge Matrix). A matrix A of size p × q is a Monge matrix if, for
all i ∈ [0. .p − 1) and j ∈ [0. .q − 1), we have Ai,j + Ai+1,j+1 ≤ Ai,j+1 + Ai+1,j.

I. Boneh, E. Gorbachev, and T. Kociumaka 45:9

In the context of distance matrices, concatenating paths corresponds to the min-plus
product of matrices; this operation preserves Monge property and can be evaluated fast.

▶ Fact 2.12 (Min-Plus Matrix Product, SMAWK Algorithm [3], [29, Theorem 2]). Let A

and B be matrices of size p × q and q × r, respectively. Their min-plus product is a matrix
A ⊗ B := C of size p × r such that Ci,k = minj Ai,j + Bj,k for all i ∈ [0. .p) and k ∈ [0. .r).

If A and B are Monge matrices, then C is also a Monge matrix. Moreover, C can be
constructed in O(pr + min(pq, qr)) time assuming O(1)-time random access to A and B.

3 Õ(k2)-Time Updates after Õ(nk)-Time Preprocessing

In this section, we present a dynamic algorithm that maintains edw
≤k(X, Z) for two dynamic

strings X, Z ∈ Σ≤n with Õ(nk) preprocessing time and Õ(k2) update time. As all vertical
and horizontal edges cost at least 1, the relevant part of the graph AGw(X, Z) has size O(nk)
(i.e., a band of width Θ(k) around the main diagonal), and thus we can afford to preprocess
this part of AGw(X, Z). Nevertheless, the curse of dynamic algorithms for bounded weighted
edit distance is that, after Θ(k) updates (e.g., Θ(k) character deletions from the end
of Z and Θ(k) character insertions at the beginning of Z), the preprocessed part of the
original graph AGw(X, Z) can be completely disjoint from the relevant part of the updated
graph AGw(X, Z), which renders the original preprocessing useless. To counteract this
challenge, we use the idea from [20]: we dynamically maintain information about AGw(X, X)
instead of AGw(X, Z). Every update to X now affects both dimensions of AGw(X, X), so
the relevant part of the graph does not shift anymore, and hence our preprocessing does
not expire. Tasked with computing edw

≤k(X, Z) upon a query, we rely on the fact that,
unless edw

≤k(X, Z) = ∞, the graph AGw(X, Z) is similar to AGw(X, X).
Consistently with the previous works [8, 15], we cover the relevant part of AGw(X, X)

with m = O(n/k) rectangular subgraphs Gi of size Θ(k) × Θ(k) each; see Figure 1. We
preprocess each subgraph in Õ(k2) time. A single update to X alters a constant number of
subgraphs Gi, so we can repeat the preprocessing for such subgraphs in Õ(k2) time. The
string Z does not affect any subgraph Gi; we only store it in a dynamic strings data structure
supporting efficient substring equality queries for the concatenation X · Z.

Let Vi for i ∈ [1. .m) be the set of vertices in the intersection of Gi and Gi+1; see Figure 1.
Furthermore, let V0 := {(0, 0)} and Vm := {(|X|, |X|)}. Let G be the union of all graphs Gi.
Let Di,j for i, j ∈ [0. .m] with i < j denote the matrix of pairwise distances from Vi to Vj

in G. Note that Da,c = Da,b ⊗ Db,c holds for all a, b, c ∈ [0. .m] with a < b < c.
Upon a query for edw(X, Z), we note that only O(ed(X, Z)) subgraphs Gi in AGw(X, X)

differ from the corresponding subgraphs in AGw(X, Z). (If ed(X, Z) > k, then edw
≤k(X, Z) =

∞, so we can assume that ed(X, Z) ≤ k.) We call such subgraphs affected. Let G′
i, V ′

i ,
and D′

i,j be the analogs of Gi, Vi, and Di,j in AGw(X, Z). Note that if edw(X, Z) ≤ k,
then edw(X, Z) is the only entry of the matrix D′

0,m. Furthermore, we have D′
0,m =

D′
0,1⊗· · ·⊗D′

m−1,m. We compute this product from left to right. For unaffected subgraphs Gi,
we have D′

i−1,i = Di−1,i, and we can use precomputed information about AGw(X, X). To
multiply by D′

i−1,i for affected subgraphs Gi, we use the following lemma, the proof of which
can be found in the full version of the paper [6].

▶ Lemma 3.1 (Generalization of [11, Claim 4.2]). Let X, Y ∈ Σ+ be nonempty strings and
w : Σ2 → [0, W] be a weight function. Given O(1)-time oracle access to w, the strings
X and Y can be preprocessed in O(|X| · |Y | log2(|X| + |Y |)) time so that, given a string
Y ′ ∈ Σ∗ and a vector v of size |X| + |Y ′| + 1, the row vT ⊗ BMw(X, Y ′) can be computed in

ESA 2025

45:10 Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

k

k

x0 x6x1 x2 x3 x4 x5

x2 − k

x3 + k

V2

V3

D2,3

Figure 1 The decomposition of the alignment graph of X onto X into subgraphs Gi of size
Θ(k)×Θ(k) that cover the whole stripe of width Θ(k) around the main diagonal. Each matrix Di,i+1

represents the pairwise distances from Vi to Vi+1.

O((ed(Y, Y ′) + 1) · (|X| + |Y |) log(|X| + |Y |)) time. Furthermore, given an input vertex a and
an output vertex b of X × Y ′, the shortest path from a to b in AGw(X, Y ′) can be computed
in the same time complexity.

There are ed(X, Z) edits that transform AGw(X, X) into AGw(X, Z), and each edit affects
a constant number of subgraphs Gi. Therefore, applying Lemma 3.1 for all affected subgraphs
takes time Õ(k2) in total. Between two consecutive affected subgraphs Gi and Gj , we have
D′

i,j−1 = Di,j−1, and thus it is sufficient to store some range composition data structure over
(Di,i+1)m−1

i=0 to quickly propagate between subsequent affected subgraphs.
As the information we maintain dynamically regards AGw(X, X) and does not involve

the string Z, we may generalize the problem we are solving. All we need upon a query is an
alignment of X onto Z of unweighted cost at most k. Such an alignment can be obtained, for
example, from a dynamic bounded unweighted edit distance algorithm [15] in Õ(k) time per
update. Alternatively, it is sufficient to have Õ(1)-time equality tests between fragments of
X and Z. In this case, we can run the classical Landau–Vishkin [21] algorithm from scratch
after every update in Õ(k2) time to either get an optimal unweighted alignment or learn that
edw(X, Z) ≥ ed(X, Z) > k. Efficient fragment equality tests are possible in a large variety
of settings [10] including the dynamic setting [23, 4, 14, 18], so we will not focus on any
specific implementation. Instead, we assume that the string Z is already given as a sequence
of u ≤ k edits of an unweighted alignment transforming X into Z, and our task is to find a
w-optimal alignment. We are now ready to formulate the main theorem of this section.

▶ Theorem 3.2. There is a dynamic data structure that, given a string X ∈ Σ∗, a threshold
k ≥ 1, and O(1)-time oracle access to a normalized weight function w : Σ2 → R≥0, can be
initialized in O((|X| + 1)k log2(|X| + 2)) time and allows for the following operations:

Apply a character edit to X in O(k2 log2(|X| + 2)) time.
Given u ≤ k edits transforming X into a string Z ∈ Σ∗, compute edw

≤k(X, Z) in O(k · (u +
log(|X| + 2)) · log(|X| + 2)) time. Furthermore, if edw(X, Z) ≤ k, the algorithm returns
the breakpoint representation of a w-optimal alignment of X onto Z.

I. Boneh, E. Gorbachev, and T. Kociumaka 45:11

Proof Sketch. At the initialization phase, we decompose AGw(X, X) into subgraphs Gi

and, for each subgraph Gi, initialize the algorithm of Lemma 3.1 and compute Di−1,i using
Lemma 2.10. We also build a dynamic range composition data structure over (Di,i+1)m−1

i=0 ,
implemented as a self-balancing binary tree. Given a range [a. .b), in O(log n) time, this data
structure returns (pointers to) ℓ = O(log n) matrices S1, . . . , Sℓ such that Da,b = S1 ⊗· · ·⊗Sℓ.

When an update to X comes, it affects a constant number of subgraphs Gi, which we
locally adjust and recompute the initialization for in Õ(k2) time.

Upon a query, we are tasked with computing D′
0,1 ⊗ · · · ⊗ D′

m−1,m. We locate the O(u)
affected subgraphs Gi and process them one-by-one. We use Lemma 3.1 to multiply the
currently computed row vT = D′

0,1 ⊗ · · · ⊗ D′
i−2,i−1 by D′

i−1,i. The algorithm then uses the
range composition data structure over (Di,i+1)m−1

i=0 to obtain ℓ = O(log n) matrices S1, . . . , Sℓ

that correspond to the segment of matrices between the current affected subgraph Gi and
the next affected subgraph Gj . We use SMAWK algorithm (Fact 2.12) to multiply vT by
matrices S1, . . . , Sℓ. After processing all the matrices, we obtain D′

0,1 ⊗ · · · ⊗ D′
m−1,m, the

only entry of which is equal to edw(X, Z) if edw
≤k(X, Z) ̸= ∞. The applications of Lemma 3.1

work in O(ku log n) time in total. Each of the O(u) blocks of unaffected subgraphs is treated
by invoking SMAWK algorithm (Fact 2.12) O(log n) times for a total of O(ku log n) time.

See the full version of the paper [6] for a formal proof including the alignment reconstruc-
tion procedure. ◀

We complete this section with a simple corollary improving the query time if edw(X, Z) ≪ k.

▶ Corollary 3.3. There is a dynamic data structure that, given a string X ∈ Σ∗, a threshold
k ≥ 1, and O(1)-time oracle access to a normalized weight function w : Σ2 → R≥0 can be
initialized in O((|X| + 1)k log2(|X| + 2)) time and allows for the following operations:

Apply a character edit to X in O(k2 log2(|X| + 2)) time.
Given u ≤ k edits transforming X into a string Z ∈ Σ∗, compute edw

≤k(X, Z) in O(1 +
(u+d) · (u+log(|X|+2)) · log(|X|+2)) time, where d := min(edw(X, Z), k). Furthermore,
if edw(X, Z) ≤ k, the algorithm returns the breakpoint representation of a w-optimal
alignment of X onto Z.

Proof. We maintain the data structures of Theorem 3.2 for thresholds 1, 2, 4, . . . , 2⌈log k⌉.
Upon a query, we query the data structures for subsequent thresholds starting from 2⌈log u⌉

until we get a positive result or reach 2⌈log k⌉. ◀

As discussed earlier, in a variety of settings, upon a query, in Õ(k2) time we can compute
an optimal unweighted alignment of X onto Z or learn that edw(X, Z) ≥ ed(X, Z) > k.
Therefore, we may assume that whenever Corollary 3.3 is queried, we have u = ed(X, Z) ≤ k.
In this case, the query time complexity can be rewritten as O(1 + min(edw(X, Z), k) ·
(ed(X, Z) + log(|X| + 2)) · log(|X| + 2)).

Due to the robustness of the setting of Corollary 3.3, there are many problems beyond
dynamic weighted edit distance that can be solved using Corollary 3.3. For example, given
strings X, Y0, . . . , Ym−1 ∈ Σ≤n, we can find edw

≤k(X, Yi) for all i ∈ [0. .m) in Õ(nm+nk+mk2)
time, compared to Õ(m · (n +

√
nk3)) time arising from m applications of the optimal static

algorithm [8].

4 Trade-Off Algorithm: Technical Overview

In the full version of the paper [6], we generalize the result of Theorem 3.2 in two ways. First,
we extend the set of updates the string X supports from character edits to block edits, which
include substring deletions and copy-pastes. More importantly, rather than having Õ(nk)

ESA 2025

45:12 Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

preprocessing time and Õ(k2) query time, we allow for a complete trade-off matching the
lower bound of Theorem 1.5, i.e., Õ(nkγ) preprocessing and Õ(k3−γ) update time for any
γ ∈ [0, 1].

A major challenge for γ < 1 is that we cannot preprocess the whole width-Θ(k) band
around the main diagonal of AGw(X, X). In the proof of Theorem 3.2, we cover the band with
Θ(k)×Θ(k)-sized subgraphs Gi and preprocess each of them in Õ(k2) time for a total of Õ(nk).
To achieve Õ(nkγ)-time preprocessing, we are forced to instead use Θ(k2−γ) × Θ(k2−γ)-sized
subgraphs Gi and still spend just Õ(k2) preprocessing time per subgraph.

To remedy the shortage of preprocessing time, we use the ideas behind the recent static
algorithms [8, 15]. At the expense of a logarithmic-factor slowdown, they allow us to answer
queries only for “repetitive” fragments of X rather than the whole X. More precisely, we
are tasked to answer queries involving fragments X̂ of X satisfying self-ed(X̂) ≤ k, where
the self-edit distance self-ed(X̂) is the minimum unweighted cost of an alignment of X̂ onto
itself that does not match any character of X̂ with itself. We can use this to our advantage:
the subgraphs Gi corresponding to more “repetitive” fragments Xi allow for more thorough
preprocessing in Õ(k2) time since we can reuse some computations. On the other hand,
upon a query, we can afford to spend more time on subgraphs Gi with less “repetitive”
fragments Xi as their number is limited due to self-ed(X̂) ≤ k.

This approach requires the repetitiveness measure to be super-additive:
∑

i self-ed(Xi) ≤
self-ed(X̂). Unfortunately, self-edit distance is sub-additive:

∑
i self-ed(Xi) ≥ self-ed(X̂). To

circumvent this issue, we introduce a better-suited notion of repetitiveness we call k-shifted
self-edit distance self-edk(X̂): a relaxed version of self-ed(X̂) allowed to delete up to k first
characters of X̂ and insert up to k last characters of X̂ for free. In contrast to self-edit distance,
the k-shifted variant self-edk satisfies

∑
i self-edk(Xi) ≤ self-ed(X̂) if self-ed(X̂) ≤ k.

By using the value of self-edk(Xi) to determine the level of preprocessing performed on Gi,
upon a query, similarly to Theorem 3.2, we have O(k) “interesting” subgraphs Gi (subgraphs
that are either affected by the input edits or satisfy self-edk(Xi) > 0) that we process
one-by-one in time Õ((ui + self-edk(Xi)) · k2−γ) each using a generalization of Lemma 3.1.
The super-additivity property of self-edk guarantees that this sums up to a total of Õ(k3−γ).
The remaining subgraphs Gi are not affected by the input edits and satisfy self-edk(Xi) = 0,
which means that Xi has a period of at most k. For such subgraphs Gi, we can afford the
complete preprocessing and, upon a query, processing such subgraphs in chunks in Õ(k2)
time in total precisely as in the proof of Theorem 3.2. Furthermore, similarly to Theorem 3.2,
all the information the data structure stores is either local or cumulative, and thus block
edits can be supported straightforwardly. This rather simple high-level approach runs into
several low-level technical complications that are discussed in detail in the full version of the
paper [6].

5 Lower Bounds: Technical Overview

As discussed in Section 1, our conditional lower bounds stem from the following result:

▶ Theorem 1.2. Let κ ∈ [0.5, 1] and δ > 0 be real parameters. Assuming the APSP
Hypothesis, there is no algorithm that, given two strings X, Y ∈ Σ≤n satisfying ed(X, Y) ≤ 4,
a threshold k ≤ nκ, and oracle access to a normalized weight function w : Σ2 → R≥0, in
time O(n0.5+1.5κ−δ) decides whether edw(X, Y) ≤ k.

The reduction provided in [8] is insufficient because the instances it produces satisfy
ed(X, Y) = Θ(k) rather than ed(X, Y) ≤ 4. Still, we reuse hardness of the following problem:

I. Boneh, E. Gorbachev, and T. Kociumaka 45:13

▶ Problem 5.1 (Batched Weighted Edit Distance [8]). Given a batch of strings X1, . . . , Xm ∈
Σx, a string Y ∈ Σy, a threshold k ∈ R≥0, and oracle access to a weight function w : Σ2 →
R≥0, decide if minm

i=1 edw(Xi, Y) ≤ k.

The hard instances of Problem 5.1, which cannot be solved in O(x2−δ
√

m) time for
any δ > 0 assuming the APSP Hypothesis, satisfy many technical properties, including
h := maxm−1

i=1 hd(Xi, Xi+1) = O(x/m), where hd(Xi, Xi+1) is the Hamming distance, i.e.,
the number of positions in which Xi differs from Xi+1.

The approach of [8, Section 7] is to construct strings X̄ and Ȳ that take the following form if
we ignore some extra gadgets: X̄ = X1Y X2 · · · Xm−1Y Xm and Ȳ = X⊥

0 Y X⊥
1 · · · X⊥

m−1Y X⊥
m,

where X⊥
i ∈ Σx is chosen so that edw(X⊥

i , Xi−1) = edw(X⊥
i , Xi) = h. The ignored gadgets

let us focus on alignments Ai : X̄ Ȳ that satisfy the following properties for i ∈ [1. .m]:
the fragment Xi is aligned with the copy of Y in Ȳ located between X⊥

i−1 and X⊥
i ;

the m − 1 copies of Y in X̄ are matched with the remaining m − 1 copies of Y in Ȳ ;
all the characters within the fragments X⊥

i−1 and X⊥
i of Ȳ are inserted;

for j ̸= i, the fragment Xj is aligned with X⊥
j−1 if j < i and with X⊥

j if j > i.
This ensures that the cost of Ai is equal to a baseline cost (independent of i) plus edw(Xi, Y).

Our reduction uses three types of “X gadgets”: Xi, X⊥
i , and X⊤

i , with the latter two
playing similar roles. We also introduce a new symbol $ that is extremely expensive to delete,
insert, or substitute with any other symbol. Modulo some extra gadgets, our strings are of
the following form:

X̃ = X⊤
0 Y X⊥

0 Y $
m−1⊙
i=1

(
XiY X⊤

i Y X⊥
i Y

)
XmY X⊤

mY X⊥
m$,

Ỹ = $X⊤
0 Y X⊥

0 Y

m−1⊙
i=1

(
XiY X⊤

i Y X⊥
i Y

)
XmY X⊤

m$Y X⊥
m.

Notice that removing the two $ symbols from X̃ or from Ỹ results in the same string, so we
have ed(X̃, Ỹ) ≤ 4. Due to the expensive cost for editing a $, any optimal alignment must
match the two $ symbols in X̃ with the two $ symbols in Ỹ , deleting a prefix of X̃ and a
suffix of Ỹ for some predictable cost. Thus, we can focus our analysis on edw(X̂, Ŷ), where

X̂ = X1Y X⊤
1 Y X⊥

1 Y · · · XmY X⊤
mY X⊥

m and Ŷ = X⊤
0 Y X⊥

0 Y X1Y · · · X⊥
m−1Y XmY X⊤

m.

Observe that both X̂ and Ŷ consists of “X gadgets” interleaved with Y , and that Ŷ contains
one more copy of Y and one more “X gadget”. Analogously to [8], the ignored extra gadgets
let us focus on the alignments Ai : X̂ Ŷ satisfying the following properties for i ∈ [1. .m]:

the fragment Xi in X̂ is aligned with the copy of Y in Ŷ located between X⊥
i−1 and X⊤

i−1;
the 3m − 1 copies of Y in X̂ are matched with the remaining 3m − 1 copies of Y in Ŷ ;
all characters within the fragments X⊥

i−1 and X⊤
i−1 of Ŷ are inserted;

the remaining “X gadgets” in X̂ are aligned with the remaining “X gadgets” in Ŷ .
To perfectly mimic [8], we should ensure that all the “X gadgets” that we can possibly align
are at weighted edit distance h. We only managed to construct X⊥

i and X⊤
i so that:

edw(Xi, X⊤
i−1) = edw(Xi, X⊥

i−1) = edw(X⊤
i , Xi) = edw(X⊥

i , Xi) = 2h, and
edw(X⊤

i , X⊥
i−1) = edw(X⊥

i , X⊤
i) = 4h.

Although we have two different distances between the relevant pairs of “X gadgets”, it is
easy to see the number of pairs of either type is constant across all the alignments Ai. This
is sufficient to guarantee that the cost of Ai is equal to some baseline cost plus edw(Xi, Y).
Moreover, as in [8], the costs of alignments Ai is O(x + mh) = O(x) and, if we denote
n := |X̃| = |Ỹ |, then the lower bound derived from the lower bound for Problem 5.1 excludes
running times of the form O(x2−δ

√
m) = O(x2−δ

√
n/x) = O(

√
nx3−2δ).

ESA 2025

45:14 Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

Lower Bounds for Dynamic Weighed Edit Distance

From Theorem 1.2 we derive two dynamic lower bounds, each justifying a different limitation
of our algorithm given in Theorem 1.6. Our first lower bound, formalized in the following
lemma and proved in the full version of the paper [6], concerns our choice to fix a threshold
k at the preprocessing phase. If, instead, we aimed for time complexities depending on the
current value of edw(X, Y), then, for sufficiently large values of edw(X, Y), we could not
achieve update times improving upon the static algorithm.

▶ Lemma 5.2. Consider the following dynamic problem: Given an integer n ≥ 1 and O(1)-
time oracle access to a normalized weight function w : Σ2 → R≥0, maintain two initially empty
strings X, Y ∈ Σ≤n that throughout the lifetime of the algorithm satisfy ed(X, Y) ≤ 4 subject
to updates (character edits) and output edw(X, Y) after every update. Suppose that there is
an algorithm that solves this problem with TP (n) preprocessing and TU (n, edw(X, Y)) update
time, where TU is non-decreasing. If TP (n) = O(n0.5+1.5κ−δ), TU (n, 2) = O(n1.5κ−0.5−δ),
and TU (n, nκ) = O(n0.5+1.5κ−δ) hold for some real parameters κ ∈ [0.5, 1] and δ > 0, then
the APSP Hypothesis fails.

Our second dynamic lower bound justifies the specific trade-off between the preprocessing
and update time in Theorem 1.6. In simple words, we prove that, with preprocessing time
Õ(nkγ) for γ ∈ [0.5, 1), the best possible update time is O(k3−γ−o(1)). For that, we note
that Theorem 1.2 is based on a reduction from the Negative Triangle problem, which is
self-reducible: solving m instances of bounded weighted edit distance from Theorem 1.2 is
hence, in general, m times harder than solving a single instance. Given such m instances
(X0, Y0), . . . , (Xm−1, Ym−1), we initialize a dynamic algorithm with a pair of equal strings
X̂ = Ŷ =

⊙m−1
i=0 (Xi · †), where † is an auxiliary symbol that is very expensive to edit.

For i ∈ [0. .m), in ed(Xi, Yi) = O(1) updates, we can transform the fragment Xi of Ŷ into
Yi and retrieve edw

≤k(X̂, Ŷ) = edw
≤k(Xi, Yi). By applying and reverting these updates for

every i ∈ [0. .m), we can thus find edw
≤k(Xi, Yi) for all i. If we pick m := n/k3−2γ−2δ for an

arbitrary small constant δ > 0, then the static lower bound requires m · (
√

(n/m)k3)1−o(1) ≥
(nkγ+δ)1−o(1) total time. Our preprocessing time is asymptotically smaller, so, among O(m)
updates, some must take Ω((

√
(n/m)k3)1−o(1)) = Ω(k3−γ−δ−o(1)) time. See the full version

of the paper [6] for a formal proof.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In FOCS 2015, pages 59–78. IEEE Computer
Society, 2015. doi:10.1109/FOCS.2015.14.

2 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In STOC 2016, pages 375–388. ACM, 2016. doi:10.1145/2897518.2897653.

3 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.
Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.
doi:10.1007/BF01840359.

4 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic texts.
In SODA 2000, pages 819–828. ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?
id=338219.338645.

5 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1137/
15M1053128.

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1007/BF01840359
http://dl.acm.org/citation.cfm?id=338219.338645
http://dl.acm.org/citation.cfm?id=338219.338645
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128

I. Boneh, E. Gorbachev, and T. Kociumaka 45:15

6 Itai Boneh, Egor Gorbachev, and Tomasz Kociumaka. Bounded weighted edit distance:
Dynamic algorithms and matching lower bounds, 2025. arXiv:2507.02548v1.

7 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In FOCS 2015, pages 79–97. IEEE Computer Society,
2015. doi:10.1109/FOCS.2015.15.

8 Alejandro Cassis, Tomasz Kociumaka, and Philip Wellnitz. Optimal algorithms for bounded
weighted edit distance. In FOCS 2023, pages 2177–2187. IEEE, 2023. doi:10.1109/FOCS57990.
2023.00135.

9 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Shay Mozes. Dynamic string alignment.
In CPM 2020, volume 161 of LIPIcs, pages 9:1–9:13. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.CPM.2020.9.

10 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate
pattern matching: A unified approach. In FOCS 2020, pages 978–989. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00095.

11 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Pattern matching
under weighted edit distance. In FOCS 2025, 2025.

12 Debarati Das, Jacob Gilbert, MohammadTaghi Hajiaghayi, Tomasz Kociumaka, and Barna
Saha. Weighted edit distance computation: Strings, trees, and Dyck. In STOC 2023, STOC
2023, pages 377–390, New York, NY, USA, 2023. Association for Computing Machinery.
doi:10.1145/3564246.3585178.

13 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006. doi:10.1016/j.jcss.2005.
05.007.

14 Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Łącki, and Piotr
Sankowski. Optimal dynamic strings. In SODA 2018, pages 1509–1528. SIAM, 2018.
doi:10.1137/1.9781611975031.99.

15 Egor Gorbachev and Tomasz Kociumaka. Bounded edit distance: Optimal static and dynamic
algorithms for small integer weights. In 57th Annual ACM Symposium on Theory of Comput-
ing, STOC 2025, pages 2157–2166, New York, NY, USA, 2025. Association for Computing
Machinery. doi:10.1145/3717823.3718168.

16 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

17 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

18 Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries
and updates. In STOC 2022, pages 1657–1670. ACM, 2022. doi:10.1145/3519935.3520061.

19 Philip N. Klein. Multiple-source shortest paths in planar graphs. In SODA, pages 146–155.
SIAM, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070454.

20 Tomasz Kociumaka, Anish Mukherjee, and Barna Saha. Approximating edit distance in the
fully dynamic model. In FOCS 2023, pages 1628–1638. IEEE, 2023. doi:10.1109/FOCS57990.
2023.00098.

21 Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. J. Comput. System
Sci., 37(1):63–78, 1988. doi:10.1016/0022-0000(88)90045-1.

22 Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Dokl. Akad. Nauk SSSR, 163:845–848, 1965. URL: http://mi.mathnet.ru/eng/dan31411.

23 Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. Maintaining dynamic sequences
under equality tests in polylogarithmic time. Algorithmica, 17:183–198, 1997. doi:10.1007/
bf02522825.

24 Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1(2):251–
266, 1986. doi:10.1007/BF01840446.

ESA 2025

https://arxiv.org/abs/2507.02548v1
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS57990.2023.00135
https://doi.org/10.1109/FOCS57990.2023.00135
https://doi.org/10.4230/LIPIcs.CPM.2020.9
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1145/3564246.3585178
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1145/3717823.3718168
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/3519935.3520061
http://dl.acm.org/citation.cfm?id=1070432.1070454
https://doi.org/10.1109/FOCS57990.2023.00098
https://doi.org/10.1109/FOCS57990.2023.00098
https://doi.org/10.1016/0022-0000(88)90045-1
http://mi.mathnet.ru/eng/dan31411
https://doi.org/10.1007/bf02522825
https://doi.org/10.1007/bf02522825
https://doi.org/10.1007/BF01840446

45:16 Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

25 Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48(3):443–453, 1970.
doi:10.1016/b978-0-12-131200-8.50031-9.

26 Peter H. Sellers. On the theory and computation of evolutionary distances. SIAM J. Appl.
Math., 26(4):787–793, 1974. doi:10.1137/0126070.

27 Peter H. Sellers. The theory and computation of evolutionary distances: Pattern recognition.
J. Algorithms, 1(4):359–373, 1980. doi:10.1016/0196-6774(80)90016-4.

28 Alexander Tiskin. Semi-local string comparison: Algorithmic techniques and applications.
Math. Comput. Sci., 1(4):571–603, 2008. doi:10.1007/s11786-007-0033-3.

29 Alexander Tiskin. Fast distance multiplication of unit-Monge matrices. Algorithmica, 71(4):859–
888, 2015. doi:10.1007/S00453-013-9830-Z.

30 Esko Ukkonen. Finding approximate patterns in strings. J. Algorithms, 6(1):132–137, 1985.
doi:10.1016/0196-6774(85)90023-9.

31 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. Journal of the ACM, 65(5):27:1–27:38, 2018. doi:10.1145/
3186893.

32 Taras K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57,
1968. doi:10.1007/BF01074755.

33 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, 1974. doi:10.1145/321796.321811.

https://doi.org/10.1016/b978-0-12-131200-8.50031-9
https://doi.org/10.1137/0126070
https://doi.org/10.1016/0196-6774(80)90016-4
https://doi.org/10.1007/s11786-007-0033-3
https://doi.org/10.1007/S00453-013-9830-Z
https://doi.org/10.1016/0196-6774(85)90023-9
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
https://doi.org/10.1007/BF01074755
https://doi.org/10.1145/321796.321811

	1 Introduction
	2 Preliminaries
	3 Õ(k²)-Time Updates after Õ(nk)-Time Preprocessing
	4 Trade-Off Algorithm: Technical Overview
	5 Lower Bounds: Technical Overview

