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Abstract
Let D be a set family that is the solution domain of some combinatorial problem. The max-
min diversification problem on D is the problem to select k sets from D such that the Hamming
distance between any two selected sets is at least d. FPT algorithms parameterized by k + ℓ, where
ℓ = maxD∈D |D|, and k + d have been actively studied recently for several specific domains.

This paper provides unified algorithmic frameworks to solve this problem. Specifically, for
each parameterization k + ℓ and k + d, we provide an FPT oracle algorithm for the max-min
diversification problem using oracles related to D. We then demonstrate that our frameworks
provide the first FPT algorithms on several new domains D, including the domain of t-linear matroid
intersection, almost 2-SAT, minimum edge s, t-flows, vertex sets of s, t-mincut, vertex sets of edge
bipartization, and Steiner trees. We also demonstrate that our frameworks generalize most of the
existing domain-specific tractability results.

Our main technical breakthrough is introducing the notion of max-distance sparsifier of D, a
domain on which the max-min diversification problem is equivalent to the same problem on the
original domain D. The core of our framework is to design FPT oracle algorithms that construct a
constant-size max-distance sparsifier of D. Using max-distance sparsifiers, we provide FPT algorithms
for the max-min and max-sum diversification problems on D, as well as k-center and k-sum-of-radii
clustering problems on D, which are also natural problems in the context of diversification and have
their own interests.
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1 Introduction

1.1 Background and Motivation

The procedure for approaching real-world problems with optimization algorithms involves
formulating the real-world motivations as mathematical problems and then solving them.
However, real-world problems are complex, and the idea of a “good” solution cannot always
be correctly formulated. The paradigm of diversification, introduced by Baste et al. [8]
and Baste et al. [7], is a “formulation of the unformulatable problems”, which formulates
diversity measures for a set of multiple solutions, rather than attempting to formulate the
“goodness” of a single solution. By computing a set of solutions that maximize this measure,
the algorithm provides effective options to evaluators who have the correct criteria for judging
the “goodness” of a solution.

Let U be a finite set, k ∈ Z≥1 and d ∈ Z≥0. Let D ⊆ 2U be the feasible domain of some
combinatorial problem. The following problem frameworks, defined by two types of diversity
measures, have been studied extensively.
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46:2 Max-Distance Sparsification for Diversification and Clustering

Max-Min Diversification Problem on D: Does there exist a k-tuple
(D1, . . . , Dk) ∈ Dk of sets in D such that min1≤i<j≤k |Di△Dj | ≥ d?1

Max-Sum Diversification Problem on D: Does there exist a k-tuple
(D1, . . . , Dk) ∈ Dk of sets in D such that

∑
1≤i<j≤k |Di△Dj | ≥ d?

These problems ensure diversity by aiming to output solutions that are as dissimilar as
possible in terms of Hamming distance.

Parameterized algorithms for diversification problems have been actively studied. Par-
ticularly, FPT algorithms for the max-min diversification problems parameterized by k + ℓ,
where ℓ = maxD∈D |D| [7, 8, 22, 26, 31], as well as by k + d [17, 21, 22, 23, 24, 29], have
been the focus of research. Since assuming d ≤ 2ℓ does not lose generality in the max-min
diversification problem, the latter addresses a more general situation than the former. Since
the max-sum diversification problem is empirically more tractable than the max-min diver-
sification problem, for some time hereafter, we will restrict our discussion to the max-min
diversification problem.

This research provides general algorithmic frameworks for FPT algorithms solving max-
min (and max-sum) diversification problems for both parameterizations k + ℓ and k + d.
Our frameworks are very general and can be applied to all domains [5, 6, 7, 8, 17, 21, 22,
23, 25, 26, 31] for which FPT algorithms parameterized by k + ℓ and k + d are currently
known for the case that diversity measure is defined using an unweighted Hamming distance.
Moreover, our frameworks further provide the first algorithms for several domains where
such algorithms were previously unknown.

Our main technical breakthrough is introducing a notion of max-distance sparsifier as
an intermediate step, which, for the max-min diversification problem, essentially works as a
core-set [2]. The formal definition is given in Section 1.3. The critical fact is that, when K is
a max-distance sparsifier of D, the max-min diversification problem on D is equivalent to
the same problem on K. Our framework constructs a constant-size max-distance sparsifier K
of D using the oracles on D, enabling us to solve the max-min diversification problems on D
by brute-force search on K.

The power of max-distance sparsification is not limited to solving diversification problems.
Specifically, the following k-center [27] and k-sum-of-radii clustering problems on D [11] can
also be solved via max-distance sparsification.

k-Center Clustering Problem on D: Does there exist a k-tuple of subsets
(D1, . . . , Dk) ∈ Dk such that for all D ∈ D, there exists an i ∈ {1, . . . , k} satisfying
|Di△D| ≤ d?

k-Sum-of-Radii Clustering Problem on D: Does there exist a k-tuple of subsets
(D1, . . . , Dk) ∈ Dk and a k-tuple of non-negative integers (d1, . . . , dk) ∈ Zk

≥0 with∑
i∈{1,...,k} di ≤ d such that for all D ∈ D, there exists an i ∈ {1, . . . , k} satisfying

|Di△D| ≤ di?

When D is an explicitly given set of points, parameterized algorithms for these problems
have been extensively studied in the area of clustering [3, 4, 12, 15, 16, 20, 28]. Furthermore,
approximation algorithms for the relational k-means [13, 19, 30] and relational k-center [1]
problems are investigated, which are the k-means and k-center clustering problem defined on

1 We define Z1△Z2 := (Z1 \ Z2) ∪ (Z2 \ Z1).
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a point set represented as a join of given relational databases. Their setting is similar to
ours as the point set are implicitly given and its size can be exponential. This research adds
several new combinatorial domains to the literature on clustering problems on implicitly given
domains, and also introduces a parameterized view. These problems are also natural in the
context of diversification, since in real situations, the concept of diversity often means that
the extracted elements cover the entire space comprehensively rather than being mutually
dissimilar. This motivation is formulated by clustering problems, which extract a list of sets
in D such that for each set in D, there is an extracted set near to it.

1.2 Our Results
This paper consists of two parts. In the first part, we design general frameworks for solving
diversification and clustering problems. In the second part, we apply our frameworks to
several specific domains D. Table 1 shows a list of domains on which our frameworks provide
the first or an improved algorithm for the max-min diversification problem.

1.2.1 The Frameworks
We define the following (−1, 1)-optimization oracle on D and the exact extension oracle
on D.

(−1, 1)-Optimization Oracle on D: Let U be a finite set, D ⊆ 2U , and w ∈
{−1, 1}U be a weight vector. Return a set D ∈ D that maximizes

∑
e∈D we.

Exact Extension Oracle on D: Let U be a finite set, r ∈ Z≥0, D ⊆ 2U , and C ∈ D.
Let X, Y ⊆ U be two disjoint subsets of U . If there exists a set D ∈ D such that
|D△C| = r, X ⊆ D, and Y ∩ D = ∅, return one such set. If no such set exists, return
⊥.

When C = ∅ and X = ∅, we specifically call the exact extension oracle on D the exact
empty extension oracle on D.

Exact Empty Extension Oracle on D: Let U be a finite set, r ∈ Z≥0, D ⊆ 2U ,
and Y ⊆ U . If there exists a set D ∈ D such that |D| = r and Y ∩ D = ∅, return one
such set. If no such set exists, return ⊥.

Let PD be the max-min/max-sum diversification problem or the k-center/k-sum-of-radii
clustering problem on D. Our main result is FPT algorithms for solving PD using these
oracles. We construct frameworks for both types of parameterizations, k + ℓ and k + d. The
result for the parameterization by k + ℓ is as follows.

▶ Theorem 1. There exists an oracle algorithm solving PD using the exact empty extension
oracle on D, where the number of oracle calls and time complexity are both FPT parameterized
by k + ℓ and for each call of an oracle, r and |Y | are bounded by constants that depend only
on k + ℓ.

The result for the parameterization by k + d is as follows.

▶ Theorem 2. There exists a randomized oracle algorithm solving PD using the (−1, 1)-
optimization oracle on D and the exact extension oracle on D, where the number of oracle
calls and time complexity are both FPT parameterized by k + d and for each call of the exact
extension oracle, r + |X| + |Y | are bounded by constants that depend only on k + d.

ESA 2025
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Table 1 List of new results for the max-min diversification problem obtained by our frameworks.
The first column represents the domain D. The second column represents parameterization. For the
formal definition of each domain, see the full version.

Domain Parameter

t-Linear Matroid Intersection k + ℓ + t

Almost 2-SAT k + ℓ

Independent Set on Certain Graphs k + ℓ

Min Edge s, t-Flow k + d

Steiner Tree k + d + |T |
Vertex Set of Min s, t-Cut k + d

Vertex Set of Edge Bipartization k + d + s

1.2.2 Applications of Theorem 1

On most domains D, the exact empty extension oracle can be designed by almost the same
way as an algorithm to extract a single solution from D. For example, consider the case
where D is the ℓ-path domain, i.e., a domain of sets of edges on paths of length ℓ. In this case,
the exact empty extension oracle on D is equivalent to the problem of finding an ℓ-path in
the graph obtained by removing all edges in Y from the input. Combining Theorem 1 with
this empirical fact, we can claim that, for most domains D, the diversification and clustering
problems parameterized by k + ℓ on D are as easy as determining the non-emptiness of D.

To demonstrate that Theorem 1 yields existing tractability results, we design the oracles
for the domains of the vertex cover [7, 8], t-hitting set [7], feedback vertex set [7], and
common independent set of two matroids [17, 22]. We also apply our framework on new
domains, t-represented linear matroid intersection, almost 2-SAT, and independent set on
subgraph-closed IS-FPT graph classes. Here, a graph class is subgraph-closed IS-FPT if it
is closed under taking subgraphs and the problem of finding independent set of size ℓ is
FPT parameterized by ℓ. The following theorem summarizes our results, where the precise
definitions of each domain are given in the full version.

▶ Theorem 3. Let D be the domain of vertex covers, t-hitting sets, feedback vertex sets,
t-represented linear matroid intersections, almost 2-SATs, or independent sets on subgraph-
closed IS-FPT graph classes. Then, max-min and max-sum diversification problems and
k-center and k-sum-of-radii clustering problems admit an FPT algorithm, where the para-
meterization is k + ℓ except for the t-hitting set and t-represented linear matroid intersection,
which are parameterized by k + ℓ + t.

Theorem 1 also generalizes existing frameworks for diversification. Baste et al. [8] provided
an algorithmic framework for diversification using a loss-less kernel [9, 10], which, roughly
speaking, is a kernel that completely preserves the information of the solution space. Since
loss-less kernels are known for very limited domains, their framework requires very strong
assumptions. Our framework has broader applicability than theirs because it relies on a
weaker oracle, as the exact empty extension oracle can be constructed using a loss-less kernel.
Hanaka et al. [26] developed a color-coding-based framework for diversification. The oracle
they use can be regarded as the exact empty extension oracle with an additional colorfulness
constraint. Our framework again has broader applicability than theirs because our oracle
can be constructed using theirs. Moreover, our framework also treats clustering problems,
which these two do not.
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1.2.3 Applications of Theorem 2
FPT algorithms for the max-min diversification problems on D parameterized by k + d are
known for the cases where D is the family of matroid bases [17, 22], perfect matchings [22], and
shortest paths [23]. The result for the perfect matchings is later extended to the matchings
of specified size, not necessarily perfect [17]. Additionally, for the cases where D is the family
of interval schedulings [26] and the longest common subsequences of an absolute constant
number of strings [31], FPT algorithms parameterized by k + ℓ are known. Both of these two
can be generalized to the domain of dynamic programming problems, which we define in the
full version. Furthermore, the problem of finding a pair of a branching and an in-branching
such that the Hamming distance between them is at least d is investigated as the name
of d-distinct branchings problem [5, 6, 25], which admits FPT algorithm parameterized by
d. This problem can naturally be extended to the case that selects k1 branchings and k2
in-branching, rather than one each. We give FPT algorithms parameterized by k + d for all
those problems, where k = k1 + k2 for the extended version of d-distinct branchings problem.
We also give FPT algorithms on domains of minimum edge s, t-flows, Steiner trees, vertex
sets of s, t-mincut, and vertex sets of edge bipartization, which are domains where no FPT
algorithm for the max-min diversification problem is previously known. Remark that the
domain of shortest paths [23] is the special case of the minimum edge s, t-flow domain and
the minimum Steiner tree domain. The following theorem summarizes our results, where the
precise definitions of each domain are given in the full version.

▶ Theorem 4. Let D be the domain of matroid bases, branchings, matchings of specified
size, minimum edge s, t-flows, minimum Steiner trees, vertex sets of s, t-mincut, vertex
sets of edge bipartization, and dynamic programming problems. Then, max-min and max-
sum diversification problems and k-center and k-sum-of-radii clustering problems admit
an FPT algorithm, where the parameterization is k + d except for the Steiner tree, which
is parameterized by k + d + |T | for the terminal set T , and edge bipartization, which is
parameterized by k + ℓ + s, where s is the minimum number of edges to be removed to make
the given graph bipartite. Furthermore, the extended version of d-distinct branching problem
also admits FPT algorithm parameterized by k + d.

Eiben et al. [17] provided a technique called determinantal sieving, which is a general tool
to give and speed up parameterized algorithms, including that for diversification problems.
Particularly, they provided a framework to solve the diversification problem by using an oracle
that, roughly speaking, counts the number of solutions modulo 2. Using their framework,
they improved the running times of FPT algorithms for max-min diversification problems on
matchings and matroid bases, as well as the d-distinct branchings problem. Although not
stated explicitly, their framework seems to yield FPT algorithms parameterized by k + d

when D is the dynamic programming domain, thereby improving the parameterizations in the
results of [26] and [31], respectively, as well as the extended version of d-distinct branchings
problems. We are not sure whether our framework generalizes theirs, that is, whether our
oracle can be constructed using their oracle. However, we strongly believe that our framework
has broader applicability because their framework assumes counting oracles, which is often
hard even modulo 2. In contrast, our framework uses optimization-type oracles, which are
generally more tractable than counting. Indeed, our framework provides an FPT algorithm
with the same parameterization for every domain which they explicitly considered. Moreover,
we do not think their framework can give an FPT algorithm for the max-min diversification
problem on the domains of minimum edge s, t-flows, vertex sets of minimum s, t-cut, and
vertex sets of edge bipartization. Furthermore, our framework can be applied not only to
diversification problems but also to clustering problems.

ESA 2025
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1.3 Framework Overview
In this section, we provide an overview of the entire flow of our frameworks. Our frameworks
first construct max-distance sparsifiers using the corresponding oracles and then solve
diversification and clustering problems using them.

1.3.1 From d-Limited k-Max-Distance Sparsifier to Diversification and
Clustering

We begin by defining the max-distance sparsifiers. The key for Theorem 1 is designing the
following k-max-distance sparsifier of D.

▶ Definition 5 (k-max-distance sparsifier). Let k ∈ Z≥1. Let U be a finite set and D, F ⊆ 2U .
We say that K ⊆ D is a k-max-distance sparsifier of D with respect to F if for any
(F1, . . . , Fk) ∈ Fk and (z1, . . . , zk) ∈ Zk

≥0, the two conditions
There exists D ∈ D such that for each i ∈ {1, . . . , k}, |Fi△D| ≥ zi.
There exists K ∈ K such that for each i ∈ {1, . . . , k}, |Fi△K| ≥ zi.

are equivalent. Unless specifically noted, when we write k-max-distance sparsifier of D, we
mean the case where D = F .

Similarly, the key for Theorem 2 is designing the following d-limited k-max-distance
sparsifier of D.

▶ Definition 6 (d-limited k-max-distance sparsifier). Let k ∈ Z≥1 and d ∈ Z≥0. Let U be
a finite set and D, F ⊆ 2U . We say that K ⊆ D is a d-limited k-max-distance sparsifier of
D with respect to F if for any (F1, . . . , Fk) ∈ Fk and (z1, . . . , zk) ∈ {0, . . . , d}k, the two
conditions

There exists D ∈ D such that for each i ∈ {1, . . . , k}, |Fi△D| ≥ zi.
There exists K ∈ K such that for each i ∈ {1, . . . , k}, |Fi△K| ≥ zi.

are equivalent. Unless specifically noted, when we write d-limited k-max-distance sparsifier of
D, we mean the case where D = F .

The difference between the two sparsifiers is that the domain of (z1, . . . , zk) is Zk
≥0 in the

former case, while it is {0, . . . , d}k in the latter. By definition, any k-max-distance sparsifier
is also a d-limited k-max-distance sparsifier for any d ∈ Z≥0. We can prove that given a
d-limited (k − 1)-max-distance sparsifier of D with size bounded by a constant that depends
only on k +d, we can construct FPT algorithms parameterized by k +d for the max-min/max-
sum diversification problems on D. Similarly, we can prove that given a (d + 1)-limited
k-max-distance sparsifier of D with size bounded by a constant that depends only on k + d,
we can construct FPT algorithms parameterized by k + d for the k-center/k-sum-of-radii
clustering problems on D. Therefore, to prove Theorems 1 and 2, it suffices to construct
FPT oracle algorithms for designing k-max-distance sparsifiers and d-limited k-max-distance
sparsifiers, respectively.

1.3.2 Computing k-Max-Distance Sparsifier
The remaining task towards Theorem 1 is to provide an FPT algorithm parameterized by
k + ℓ that constructs a k-max-distance sparsifier of D with size bounded by a constant that
depends only on k + ℓ. The key lemma toward this is that, if K contains a sufficiently large
sunflower (see Section 3 for the definition) consisting of sets of the same size, then we can
safely remove one of them from K while preserving the property that K is a k-max-distance
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sparsifier (actually, for the sake of simplifying the framework, we prove a slightly stronger
statement). Starting with K = D and exhaustively removing such sets leads to a K that is still
a k-max-distance sparsifier of D, and by using the well-known sunflower lemma (Lemma 13),
its size is bounded by a constant.

However, this observation is still not sufficient to obtain an FPT algorithm. The reason
is that D generally has exponential size, and removing sets one by one would require an
exponential number of steps. Instead, our algorithm starts with K = ∅ and exhaustively
adds sets of D to K until K becomes a k-max-distance sparsifier. In this way, the number of
steps is bounded by a constant. The remaining task is to choose a set to be added at each
step. For this task, we design an FPT algorithm using constant number of calls of the exact
empty extension oracle.

1.3.3 Computing d-Limited k-Max-Distance Sparsifier

The algorithm in the previous section alone is insufficient to prove Theorem 2 since ℓ is
unbounded and the sunflower-lemma-based bound for the number of steps cannot be used.
Our algorithm divides D into at most k clusters, computes a d-limited k-max-distance
sparsifier for each cluster, and outputs their union. Let p > 2d be a constant that depends
only on k + d. We first find C ⊆ D satisfying the following properties: (i) |C| ≤ k, (ii) for
all distinct C, C ′ ∈ C, |C△C ′| > 2d, and (iii) for all D ∈ D, there exists C ∈ C such that
|D△C| ≤ p. If such a family does not exist, a trivial d-limited k-max-distance sparsifier of
D will be found, and we output it and terminate.

We provide an algorithm for computing C. Our algorithm starts with C = ∅ and
exhaustively adds sets in D to C until C satisfies the above conditions or its size exceeds k.
To choose the elements to be added, we randomly sample w ∈ {−1, 1}U and call a (−1, 1)-
optimization oracle. We can prove for sufficiently large constant p that if there exists D ∈ D
such that |D△C| > p for any C ∈ C, with a constant probability, the (−1, 1)-optimization
oracle will find a D ∈ D such that |D△C| > 2d for any C ∈ C. Thus, if C does not meet the
conditions, by calling the (−1, 1)-optimization oracle a sufficient number of times, we can
find a set to add to C with high probability.

Here, we provide an algorithm for computing a d-limited k-max-distance sparsifier of
D using C. For each cluster DC := {D ∈ D : |D△C| ≤ p}, let D∗

C := {D△C : D ∈ DC}.
The algorithm computes a k-max-distance sparsifier of each D∗

C and outputs their union.
For technical reasons, we actually compute a slightly more general object, but we will not
delve into the details here. Since each D∗

C consists only of sets whose size is at most p, the
k-max-distance sparsifier of D∗

C can be constructed using the algorithm in Section 1.3.2. The
exact empty extension oracle on D∗

C corresponds to the exact extension oracle on D.

Here, we note the difference between our framework and that used by Fomin et al. [22] and
Funayama et al. [23] to provide FPT algorithms for the max-min diversification problem on D
when D is the family of perfect matchings and shortest paths, respectively. Their algorithms
also start by dividing D into clusters. However, their algorithms perform stricter clustering
than ours. Specifically, in their clustering, clusters DC corresponding to different C ∈ C must
be well-separated. In contrast, we allow clusters to overlap. This simplifies the clustering step
compared to their approach at the cost of a more challenging task afterward. We resolve this
more challenging task by introducing and designing the d-limited k-max-distance sparsifier.

ESA 2025
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1.4 Organization

The rest of this paper is organized as follows. In Section 2, we provide FPT algorithms
for solving diversification and clustering problems on D using a constant-size d-limited
k-max-distance sparsifier of D. In Section 3, we prove Theorem 1 by providing an FPT oracle
algorithm parameterized by k + ℓ that computes a constant-size k-max-distance sparsifier of
D. In Section 4, we prove Theorem 2 by providing an FPT oracle algorithm parameterized by
k + d that computes a constant-size d-limited k-max-distance sparsifier of D. The discussion
in Section 4 internally uses the results from Section 3. In the full version, we apply the results
of Theorems 1 and 2 to several domains D to obtain FPT algorithms for diversification and
clustering problems. The full version also contains further related work and the proofs of the
lemmas marked with an asterisk.

2 From Sparsifier to Diversification and Clustering

In this section, we provide FPT algorithms for diversification and clustering problems using
a d-limited k-max-distance sparsifier of constant size.

2.1 Diversification

Let U be a finite set, d ∈ Z≥0, k ∈ Z≥1, and D ⊆ 2U . For diversification problems, we have
the following.

▶ Lemma 7. Let K ⊆ D be a d-limited (k − 1)-max-distance sparsifier of D and
(D1, . . . , Dk) ∈ Dk. Then, there is a k-tuple (K1, . . . , Kk) ∈ Kk such that min(d, |Di△Dj |) ≤
min(d, |Ki△Kj |) holds for all 1 ≤ i < j ≤ k. Particularly, if there exists a solution to the
max-min/max-sum diversification problem on D, then there exists a solution consisting only
of sets in K.

Proof. Assume (D1, . . . , Dk) ∈ Dk\Kk and let i ∈ {1, . . . , k} be an index such that Di ̸∈ K. It
is sufficient to prove that there is a set Ki ∈ K such that min(d, |Di△Dj |) ≤ min(d, |Ki△Dj |)
holds for all j ∈ {1, . . . , k} \ {i}. For j ∈ {1, . . . , k} \ {i}, let zj := min(d, |Di△Dj |).
Since K is a d-limited (k − 1)-max-distance sparsifier of D, there exists Ki ∈ K such that
min(d, |Ki△Dj |) ≥ min(d, zj) = min(d, |Di△Dj |) holds for all j ∈ {1, . . . , k} \ {i}. ◀

Considering an algorithm that exhaustively searches for a subfamily of K of size k, we can
state the following.

▶ Lemma 8. Assume there exists an FPT algorithm parameterized by k + d to compute a
d-limited (k − 1)-max-distance sparsifier of D with size bounded by a constant that depends
only on k + d. Then, there exists an FPT algorithm parameterized by k + d for the max-
min/max-sum diversification problem on D.

We note that, under the slightly stronger assumption, the discussion in this section can
directly be extended to the case where the sets D1, . . . , Dk are taken from different domains.
Specifically, let D1, . . . , Dk ⊆ 2U and assume (k − 1)-max-distance sparsifiers K1, . . . , Kk

of these domains with respect to 2U are computed. Then, we can determine whether
there exists a k-tuple (D1, . . . , Dk) ∈ D1 × · · · × Dk such that min1≤i<j≤k |Di△Dj | ≥ d (or∑

1≤i<j≤k |Di△Dj | ≥ d) by exhaustive search on K1 × · · · × Kk.
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2.2 Clustering
Let U be a finite set, d ∈ Z≥0, k ∈ Z≥1, and D ⊆ 2U . Here, we provide an FPT algorithm for
the k-center and k-sum-of-radii clustering problems using a (d + 1)-limited k-max-distance
sparsifier K of D. For Z ⊆ U and r ∈ Z≥0, the ball of radius r centered at Z is defined
as B(Z, r) := {Z ′ ⊆ U : |Z△Z ′| ≤ r}. The algorithm first guesses a partition of K into k

clusters K1, . . . , Kk. Since |K| is constant, the cost of this guess is constant. Then, for each
i ∈ {1, . . . , k}, the algorithm computes the minimum radius ri such that there is a set Di ∈ D
satisfying Ki ⊆ B(Di, ri). If ri > d, the algorithm asserts it instead of computing the specific
value of ri. The k-center clustering problem and k-sum-of-radii clustering problem on D are
solved by checking whether the maximum and sum, respectively, of the ris is at most d. We
show the correctness of this algorithm by proving the following.

▶ Lemma 9. Let (D1, . . . , Dk) ∈ Dk and (r1, . . . , rk) ∈ {0, . . . , d}k. Assume Ki ⊆ B(Di, ri)
holds for all i ∈ {1, . . . , k}. Then, for all D ∈ D, there is an index i ∈ {1, . . . , k} such that
D ∈ B(Di, ri).

Proof. Assume the contrary. Then, there is a set D ∈ D such that for all i ∈ {1, . . . , k},
|Di△D| ≥ ri + 1. Since K is a (d + 1)-limited k-max-distance sparsifier of D, there is a set
K ∈ K such that for all i ∈ {1, . . . , k}, |Di△K| ≥ ri +1. Hence, K ̸∈ Ki for all i ∈ {1, . . . , k},
contradicting the fact that (K1, . . . , Kk) is a partition of K. ◀

We now provide an algorithm to decide whether there exists D ∈ D with Ki ⊆ B(D, ri) for
each i ∈ {1, . . . , k} and ri ∈ {0, . . . , d}. If the domain D is 2U , this problem is equivalent to the
closest string problem on binary strings, for which a textbook FPT algorithm parameterized
by d + |Ki| is known [14]. Our algorithm is a modified version of this. An element e ∈ U is
bad if there exist both K ∈ Ki with e ∈ K and K ∈ Ki with e ̸∈ K. The following lemma is
fundamental.

▶ Lemma 10 ([14]). If there are more than d|Ki| bad elements, no D ∈ D satisfies Ki ⊆
B(D, d).

Let B be the set of bad elements, and assume |B| ≤ d|Ki|. The algorithm first guesses
B′ ⊆ B. The cost of this guess is 2d|Ki|. Then, it determines whether there exists D ∈ D
such that D ∩ B = B′ and Ki ⊆ B(D, ri). Let K∗ = argmaxK∈Ki

|(K ∩ B)△B′|. Then, we
can claim the following.

▶ Lemma 11. For D ∈ D such that D ∩ B = B′, maxK∈Ki |K△D| = |K∗△D|.

Proof. Let K ∈ Ki. Then, |K△D| = |(K ∩ B)△(D ∩ B)| + |(K \ B)△(D \ B)|. From the
definition of B, the value of |(K\B)△(D\B)| is equal among all K ∈ Ki. Thus, the maximum
value of |K△D| for K ∈ Ki is achieved by the set K that maximizes |(K ∩ B)△(D ∩ B)| =
|(K ∩ B)△B′|. ◀

Now, it is sufficient to solve the problem of determining whether there exists D ∈ D such
that D ∩ B = B′ and |K∗△D| ≤ ri. This corresponds to the exact extension oracle on D
with r = ri, X = B′, Y = B \ B′, and C = K∗. Therefore, we can claim the following:

▶ Lemma 12. Assume there exists an FPT algorithm parameterized by k + d that computes a
(d+1)-limited k-max-distance sparsifier of D with size bounded by a constant that depends only
on k + d, and the exact extension oracle on D whose time complexity is FPT parameterized
by r + |X| + |Y |. Then, there exists an FPT algorithm parameterized by k + d for the
k-center/k-sum-of-radii clustering problem on D.
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Algorithm 1 k-max-distance sparsification of D.

1 Procedure KSparsify(k, r)
Input: k ∈ Z≥1, r ∈ Z≥0

2 Let K := ∅;
3 while true do
4 Let R :=

⋃
K∈K K, f := false;

5 for ℓ′ ∈ {0, . . . , l} do
6 Let S be the family of all sunflowers S ⊆ K such that |S| = kr + 1 and

each S ∈ S satisfies |S| = l′;
7 for Y ⊆ R that intersects with all K ∈ K with |K| = l′ and the cores of all

sunflowers of S do
8 Let D = ExactEmptyExtension(l′, Y );
9 if D ̸= ⊥ and f = false then

10 Add D to K and f := true;

11 if f = false then
12 break;

13 return K;

3 Framework for k-Max-Distance Sparification

In this section, we complete the proof of Theorem 1 by providing an FPT algorithm that uses
the exact empty extension oracle on D to obtain a k-max-distance sparsifier of D. For further
use, we show a slightly more extended result. Let r ∈ Z≥0. We construct a k-max-distance
sparsifier of D with respect to B(∅, r) for r ≥ ℓ. Since D ⊆ B(∅, ℓ) ⊆ B(∅, r) for r ≥ ℓ, this
is also a k-max-distance sparsifier of D (with respect to D). A set family S := {S1, . . . , St}
is called a sunflower if there exists a set called core C such that for any 1 ≤ i < j ≤ t,
Si ∩ Sj = C. The following is well-known.

▶ Lemma 13 (Sunflower Lemma [14, 18]). Let U be a finite set, ℓ, t ∈ Z≥0, and K ⊆ 2U

be a family consisting only of sets of size at most ℓ. If |K| > ℓ!(t − 1)ℓ, then K contains a
sunflower of size t.

For t ∈ Z≥0, T ⊆ 2U , and Z ∈ 2U \ T , a sunflower S ⊆ T is a (Z, t)-sunflower of T if it
satisfies the following three conditions.

|S| = t,
For each S ∈ S, |S| = |Z|, and
The core of S is a subset of Z.

The following lemma is the core of our framework.

▶ Lemma 14 (*). Let U be a finite set, D ⊆ 2U , and K ⊆ D be a k-max-distance sparsifier
of D with respect to B(∅, r). Let Z ∈ K and assume there is a (Z, kr + 1)-sunflower S of
K \ {Z}. Then, K \ {Z} is also a k-max-distance sparsifier of D with respect to B(∅, r).

Our algorithm is given in Algorithm 1, where ExactEmptyExtension(ℓ′, Y ) represents
the exact empty extension oracle on D with arguments ℓ′ and Y . The algorithm starts with
K := ∅ and repeatedly adds Z ∈ D \ K such that there is no (Z, kr + 1)-sunflower of K to K.
The following lemma shows this algorithm stops after a constant number of iterations.



S. Kumabe 46:11

▶ Lemma 15 (*). The number of iterations of the loop starting from line 3 in Algorithm 1,
as well as the size of the output family, is at most (ℓ + 1)!(kr + 1)ℓ.

In particular, at each step of the algorithm, since |R| ≤ |K|l ≤ (ℓ + 1)!(kr + 1)ℓℓ, the size of
Y chosen in line 7 is bounded by a constant. The time complexity is bounded as follows.

▶ Lemma 16 (*). Algorithm 1 makes at most 22O(ℓ log(klr)) calls of
ExactEmptyExtension(·) and has a time complexity of 22O(ℓ log(klr)) .

The correctness of the algorithm is shown as follows.

▶ Lemma 17 (*). Algorithm 1 outputs a k-max-distance sparsifier of D with respect to
B(∅, r).

4 Framework for d-Limited k-Max-Distance Sparsification

4.1 Overall Flow
In this section, we complete the proof of Theorem 2 by providing FPT algorithm that uses
the (−1, 1)-optimization oracle and the exact extension oracle on D to obtain a d-limited
k-max-distance sparsifier of D. Actually, for further applications, we construct the slightly
more general object of d-limited k-max-distance sparsifier of D with respect to 2U , not with
respect to D itself. Our framework consists of two steps. Let p ∈ Z≥0 be an integer with
2d < p. The first step achieves one of the following.

Find a set C ⊆ D with size at most k such that D ⊆
⋃

C∈C B(C, p).
Find a set C ⊆ D of size k + 1 such that |C△C ′| > 2d holds for any distinct C, C ′ ∈ C.

We do this by using the following approximate far set oracle, which will be designed in
Section 4.2.

Approximate Far Set Oracle: Let U be a finite set, d ∈ Z≥0, D ⊆ 2U , and C ⊆ D.
The approximate far set oracle returns one of the following.

A set of D that does not belong to
⋃

C∈C B(C, 2d).
⊥. This option can be chosen only when D ⊆

⋃
C∈C B(C, p).

Starting with C := ∅, we repeat the following steps. If the approximate far set oracle
returns ⊥, terminate the loop. Otherwise, add the element found by the oracle to C. If the
oracle returns ⊥ within k iterations, the first condition is achieved. If not, the set C after
k + 1 iterations satisfies the second condition. In the latter case, the following lemma shows
that C is a d-limited k-max-distance sparsifier.

▶ Lemma 18 (*). Let r ∈ Z≥0. Let C be a subset of D of size k + 1 such that for any distinct
C, C ′ ∈ C, |C△C ′| ≥ 2d. Then, C is a d-limited k-max-distance sparsifier of D with respect
to 2U .

Now, we assume the first condition. Let C be a subset of D of size at most k such
that D ⊆

⋃
C∈C B(C, p). The second step involves constructing a d-limited k-max-distance

sparsifier of DC := D ∩ B(C, p) with respect to B(C, p + d) for each C ∈ C. We prove that the
union of all such d-limited k-max-distance sparsifiers obtained in this manner is a d-limited
k-max-distance sparsifier of D with respect to 2U .

▶ Lemma 19 (*). Assume D =
⋃

C∈C DC . For each C ∈ C, let KC ⊆ DC be a d-limited
k-max-distance sparsifier of DC with respect to B(C, p + d). Then, K :=

⋃
C∈C KC is a

d-limited k-max-distance sparsifier of D with respect to 2U .
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Next, we reduce the computation of d-limited k-max-distance sparsifiers to the compu-
tation of k-max-distance sparsifiers of families consisting of constant-size sets, which was
discussed in Section 3. For C ∈ C, let D∗

C := {D△C | D ∈ DC}. By the definition of DC , we
have D∗

C ⊆ B(∅, p). The following holds.

▶ Lemma 20 (*). Let C ∈ C. A subset KC ⊆ DC is a d-limited k-max-distance sparsifier
of DC with respect to B(C, p + d) if and only if K∗

C := {K△C | K ∈ KC} is a d-limited
k-max-distance sparsifier of D∗

C with respect to B(∅, p + d).

If K∗
C is a k-max-distance sparsifier of D∗

C with respect to B(∅, p + d), then it is also
a d-limited k-max-distance sparsifier of D∗

C with respect to B(∅, p + d) for any d ∈ Z≥0.
Therefore, a d-limited k-max-distance sparsifier K of D with respect to B(C, p + d) can be
computed as

K :=
⋃

C∈C
{K∗△C : K∗ ∈ K∗

C}.

From the discussion in Section 3, K∗
C can be obtained by calling the exact empty extension

oracle on D∗
C a constant number of times that depends on k, ℓ = p, and r = p + d. The exact

empty extension oracle for D∗
C is equivalent to the exact extension oracle on DC when the

inputs C, X, Y are taken to be C, Y ∩ C, Y \ C, respectively. Therefore, K∗
C can be obtained

by calling the exact extension oracle on DC a constant number of times that depends only
on k and p.

4.2 Designing the Approximate Far Set Oracle
Here, we design a randomized algorithm parameterized by |C| and d for the approximate
far set oracle. Our algorithm repeats the following sufficient number of times: It selects a
weight vector w ∈ {−1, 1}U uniformly at random and finds a set D ∈ D that maximizes
w(D) :=

∑
e∈D we. If the found D does not belong to

⋃
C∈C B(C, 2d), it outputs this D and

terminates. If no such D is found after a sufficient number of iterations, it returns ⊥. We
now prove the correctness of the algorithm. We can claim the following.

▶ Lemma 21 (*). Assume maxD∈D w(D) > maxC∈C w(C) + 2d. Then, the D that attains
the maximum on the left-hand side does not belong to

⋃
C∈C B(C, 2d).

The following lemma is the core of the analysis.

▶ Lemma 22 (*). Assume p ≥ (4d + 2)2 · 2k−1 and |C| ≤ k. Let D ∈ D and assume
D ̸∈

⋃
C∈C B(C, p). Then,

Pr
[
w(D) > max

C∈C
w(C) + 2d

]
≥ 2−2O(k)

.

By repeating the sampling of w a sufficient number of times, we can state the following.

▶ Lemma 23. Let ϵ > 0, D, C ⊆ 2U , k ∈ Z≥1, and d ∈ Z≥0. Assume |C| ≤ k. Then, there
exists a randomized algorithm that runs in time 22O(k) log ϵ−1 and satisfies the following.

If there exists D ∈ D such that D ̸∈
⋃

C∈C B(C, (4d + 2)2 · 2k), the algorithm returns a
set D′ ∈ D satisfying D′ ̸∈

⋃
C∈C B(C, 2d) with probability at least 1 − ϵ.

If not, the algorithm returns either ⊥ or a set D′ ∈ D satisfying D′ ̸∈
⋃

C∈C B(C, 2d).

Combining Lemma 23 with the results from Sections 3 and 4.1, we have the following.
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▶ Lemma 24 (*). Let ϵ > 0, D ⊆ 2U , k ∈ Z≥1, and d ∈ Z≥0. Then, there exists a randomized
algorithm that, with probability 1−ϵ, computes a d-limited k-max-distance sparsifier of D with
respect to 2U with size at most 22O(k+log d) in time

(
222O(k+log d)

+ 22O(k) log ϵ−1
)

poly(|U |). It

uses at most 22O(k) log ϵ−1 calls to the (−1, 1)-optimization oracle on D and at most 222O(k+log d)

calls to the exact extension oracle on D such that r ≤ (4d+2)22k−1 and |X|, |Y | ≤ 22O(k+log d) .
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