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Abstract

The suffix array contains the lexicographical order of all suffixes of a text. It is one of the most
well-studied text indices with applications in bioinformatics, compression, and pattern matching.
The main bottleneck of distributed-memory suffix array construction algorithms is their memory
requirements. Even careful implementations require 30×–60× the input size as working memory.
We present a scalable and lightweight distributed-memory adaptation of the difference cover (DCX)
suffix array construction algorithm. Our approach relies on novel bucketing and random chunk
redistribution techniques which reduce our memory requirement to 20×–26× the input size for
medium-sized inputs and to 14×–15× for large-sized inputs. Regarding running time, we achieve
speedups of up to 5× over current state-of-the-art distributed suffix array construction algorithms.
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47:2 Fast and Lightweight Distributed Suffix Array Construction

1 Introduction

The suffix array [30, 22] is one of the most studied text indices. Given a text T of length n, its
suffix array SA contains a permutation of the integers 1, . . . , n such that the corresponding
suffixes appear in lexicographical order. More concretely, SA[i] is the starting position
of the i-th smallest suffix of T , or equivalently, we have T [SA[i]..n] ≤ T [SA[j]..n] for any
1 ≤ i ≤ j ≤ n. To compute the suffix array, we have to (implicitly) sort all suffixes of the
text. Therefore, the task of constructing the suffix array is sometimes referred to as suffix
sorting. Suffix arrays can be constructed in linear time requiring only constant working space
in addition to the space for the suffix array [23, 29].

Suffix arrays have numerous applications in pattern matching and text compression [34].
They are a very powerful full-text index and are used as a space-efficient replacement [1] of the
suffix tree, which is considered to be one of the most powerful full-text indices. Furthermore,
suffix arrays can be used to compute the Burrows-Wheeler transform [12], which is the
backbone of many compressed full-text indices [17, 21].

One problem when considering texts as input is that the amount of textual data to
be processed is ever-increasing with no sign of slowing down. For example, the English
Wikipedia contains around 60 million pages and grows by around 2.5 million pages each
year.1 A snapshot of all public source code repositories on GitHub requires more than 21 TB
to store.2 Furthermore, the capability to sequence genomic data is increasing exponentially,
due to technical advances [37]. All these examples show the importance of scalable algorithms
for the analysis of textual information many of which use the suffix array as a building block.

In this paper, we consider distributed-memory suffix sorting. Here, we can utilize many
processing elements (PEs) that are connected via a network, e.g., high-performance clusters
or cloud computing. In this setting, the main obstacle when computing suffix arrays is the
immense amount of working memory required by the current state-of-the-art algorithms.
Even carefully engineered implementations require around 30×–60× the input size as working
space [19, 20]. Additionally, there is a significant space-time trade-off. The memory-efficient
algorithms tend to be slower. We thus ask the question:

Is there a scaling, fast, and memory-efficient suffix array construction algorithm in
distributed memory?

Summary of our Contributions. We answer this question positively by providing a scalable,
fast, and space-efficient distributed-memory suffix array construction algorithm (SACA),
using a bucketing approach in conjunction with a randomized (chunk-based) redistribution
scheme for load balancing with provable performance guarantees. Our algorithm is the fastest
(on all inputs but one) distributed-memory suffix array construction algorithm on up to
12 288 cores and requires only 20×–26× the input size as working space. As a side result
of independent interest, we improve the load balancing for a distributed prefix-doubling
algorithm, enhancing its performance significantly. This might be of interest for future
work, as prefix doubling algorithms can more easily be extended to also compute the longest
common prefix (LCP) array, another important data structure for text processing.

Paper Outline. First, in Section 2, we introduce some basic concepts required for suffix array
construction and distributed-memory algorithms. Next, in Section 3, we discuss previous
work on suffix array construction. In Section 4, we present the main result of this paper.

1 https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia, last accessed 2024-12-11.
2 https://archiveprogram.github.com/arctic-vault/, last accessed 2024-12-11.

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://archiveprogram.github.com/arctic-vault/
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We start with a description of the distributed-memory variant of the DCX [26] suffix array
construction algorithm in Section 4.2. In Section 4.2.1, we demonstrate how a previously
developed technique for space-efficient string sorting [31, 28] can be applied to the DCX
suffix sorting to obtain a more lightweight algorithm. Subsequently, in Section 4.2.2, we
introduce a randomized chunking scheme to provide provable load-balancing guarantees
for our space-efficient (suffix) sorting approach, followed by a brief analysis of the overall
algorithm in Section 4.2.3. Finally, an experimental evaluation of our highly-engineered
implementation using MPI is presented in Section 5, followed by a conclusion in Section 6.

2 Preliminaries

We assume a distributed-memory machine model consisting of p processing elements (PEs)
allowing single-ported point-to-point communication. The cost of exchanging a message of h

machine words between any two PEs is α + βh, where α accounts for the message start-up
overhead and β quantifies the time to exchange one machine word. Let h be the maximum
number of words a PE sends or receives, then collective operations like broadcast, prefix sum,
(all-)reduce, and (all-)gather can be implemented in time O(α log p + βh) [35]. An alltoall
exchange using direct messaging is possible in O(αp + βh) [35].

The input to our algorithms is a text T consisting of n− 1 characters over an alphabet
Σ. By T [i], we denote the i-th character of T for 0 ≤ i < n − 1. We assume T [n − 1] to
be a sentinel character $ /∈ Σ with $ < z for all z ∈ Σ. The i-th suffix of T , si = T [i, n), is
the substring starting at the i-th character of T . Due to the sentinel element all suffixes
are prefix-free. The suffix array SA contains the lexicographical ordering of all suffixes of
T . More precisely, SA is an array of length n with SA[i] containing the index of the i-th
smallest suffix of T . A length-l- (or simply l)-prefix of a suffix with starting position i is the
substring T [i, l).

In our distributed setting, we assume that each PE i holds a subarray Ti of T as input such
that T is the concatenation of all local input arrays Ti, i.e., T = T0 ◦ . . . ◦Tp−1. Furthermore,
we assume the input to be well-balanced, i.e., |Ti| = Θ(n/p). For our DCX algorithm, we
assume a suitable padding of up to X sentinel characters at the end of the text.

3 Related Work

There has been extensive research on the construction of suffix arrays in the sequen-
tial, external-memory, shared-memory parallel, and (to a somewhat lesser extent) in the
distributed-memory setting. All suffix array construction algorithms are based on three
general algorithmic techniques: prefix doubling, induced copying, and recursion or combin-
ations thereof. In the following, we give a brief overview of these techniques. For a more
comprehensive overview, we refer to the most recent surveys [7, 9].

Prefix-Doubling. In algorithms based on prefix doubling, the suffixes are iteratively sorted
by their length-h prefix starting with h = 1. Now, all suffixes that share a common h-prefix
are said to be in the same h-group and have an h-rank corresponding to the number of
suffixes in lexicographically smaller h-groups. By sorting all suffixes based on their h-group,
we can compute the corresponding suffix array SAh. Note that this suffix array does not
necessarily have to be unique, as the order of suffixes within an h-group is not unique. If for
some h, all h-groups contain only a single suffix, we have SAh = SA. Therefore, the idea is
to increase h until all h-ranks are unique. To this end, during each iteration, the length of the
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47:4 Fast and Lightweight Distributed Suffix Array Construction

considered prefixes is doubled. Fortunately, we do not have to compare the prefixes explicitly.
Instead, during iteration i > 0, for a suffix sj starting at index j, the rank of its length-h
prefix can be inferred from the pair of ranks (rankh/2[j], rankh/2[j + h/2]) computed in the
previous iterations for the suffixes sj and sj+h/2. This yields the correct result as comparing
two suffixes si and sj by their length-h prefix can be achieved by (a) comparing their first
h/2 characters and – if they tie – (b) comparing the following h/2 characters, which in turn
is equivalent to lexicographically comparing the ranks of the corresponding h/2-prefixes.
Using the overlap of suffixes in a text, prefix-doubling boils down to at most O(log n) rounds
in which n pairs of integers have to be sorted. Thus, this approach has an overall complexity
in O(n log n) in the sequential setting, when using integer sorting algorithms. The first suffix
array construction algorithm [30] is based on prefix-doubling. In the sequential setting, this
approach has not received much attention, due to its non-linear running time. However, in
distributed memory, the fastest currently known suffix array construction algorithm is based
on prefix doubling [20].

Induced-Copying. Induced-copying algorithms sort a (small) subset of suffixes and then
induce the order of all other suffixes using the subset of sorted suffixes. First, all suffixes
are classified using one of two [25, 33] classification schemes. Next, all suffixes necessary
for inducing the order of the remaining suffixes are sorted directly. Then, the properties of
the classification allow us to induce the order of the remaining suffixes based on their class,
starting characters, and preceding or succeeding directly sorted suffix. The inducing part of
these algorithms usually consists of just two scans of the text, where for each position only one
or two characters have to be compared. Combined with a recursive approach, induced copying
algorithms can compute the suffix array in linear time requiring only constant working space
in addition to the space for the suffix array [23, 29]. This combination is also very successful,
as it is used by the fastest sequential suffix array construction algorithms [4, 18, 24, 32].
Interestingly, there is only one linear-time suffix array construction algorithm based on
induced copying that does not also rely on recursion [5]. In distributed memory, induced
copying algorithms are space-efficient [19].

Recursive Algorithms. The third and final technique is to use recursion to solve subproblems
of ever decreasing sizes. Here, the general idea is to partition the input into multiple different
(potentially overlapping) substrings. A subset of these substrings can then be sorted using an
integer sorting algorithm (in linear time). If all substrings are unique, we can compute a suffix
array together with the remaining suffixes not yet sorted. Otherwise, we recurse on the non-
unique ranks of the substrings as new input. We then use the suffix array from the recursive
problem to compute the unique ranks from the original subset of substrings. The first linear-
time suffix array construction algorithm is purely based on recursion [26]. This algorithm is
also the foundation of the distributed-memory suffix array construction algorithm presented
in this paper. It already has been considered in distributed memory [6, 10]. However, all
implementations are direct adaptations of the sequential algorithm to distributed memory.

4 A Space-Efficient Variant of Distributed DCX

In this section, we describe the general idea of the sequential DC3 algorithm [26]. Then, we
give a canonical transformation of the sequential DC3 algorithm to a distributed-memory
algorithm. Here, we also consider the more general form – the DCX algorithm. Finally, we
discuss how to optimize this canonical transformation into a scaling, fast, and memory-efficient
distributed suffix array construction algorithm.
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4.1 The Sequential DCX Algorithm
The skew or Difference Cover 3 algorithm (DC3) – and its generalization DCX – is a recursive
suffix array construction algorithm that exhibits linear running time (in the sequential setting).
As our main contribution is a fast and lightweight distributed variant of the algorithm, we
now briefly discuss its key ideas, beginning with the eponymous concept of a difference cover.

Let X be a positive integer. A subset DX ⊆ {0, . . . , X − 1} is a difference cover modulo
X if for every r ∈ {0, . . . , X − 1} there are i, j ∈ DX such that i − j mod X = r. Put
differently, DX covers the set {0, . . . , X − 1} in the sense that we have {0, . . . , X − 1} =
{i− j mod X | i, j ∈ DX}.

A key property of a difference cover modulo X, on which the DCX algorithm relies, is that
for all i, j ∈ N, there is a 0 ≤ l < X such that (i + l) mod X ∈ DX and (j + l) mod X ∈ DX .
X = 3 is the smallest X for which a non-trivial difference cover exists, with D3 = {1, 2}.

DCX Algorithm. We now discuss the main steps of the DCX algorithm. It starts by
classifying the suffixes sj of a given text T into different sets, based on their starting position
j. Suffixes with index (j mod X) ∈ DX constitute the (difference cover) sample SDX

.
For now, assume that we know a relative ordering of the suffixes in SDX

within the text.
Since DX is a difference cover, for any two suffixes si and sj , there is an l < X such that si+l

and sj+l are in SDX
for which we already know a relative ordering. Hence, for comparing si

and sj , it is sufficient to compare the l-prefixes of si and sj , using the ranks of si+l and sj+l

to break ties. That is, we compare tuples (T [i, i + l), rank[i + l]) and (T [j, j + l), rank[j + l]).
For X = 3, this rank-inducing can be achieved using linear-time integer sorting.

It remains to discuss how the relative ordering of the sample suffixes can be obtained.
We start by sorting the X-prefixes of the sample suffixes. If they are unique, we are already
done, as we can take their rank for the ordering. Otherwise, we replace the sample suffixes j

with the rank of their X-prefix and reorder them by (j mod X, j div X). This results in an
auxiliary text T ′ that contains the renamed difference cover sample suffixes in original text
order within each equivalence class in DX . We can now recursively apply the algorithm to
this text T ′, yielding a suffix array SA′. From SA′ we can retrieve a relative ordering of the
sample suffixes with regard to the original text T .

For DC3, the number of sample suffixes is ≤ 2/3n. As all other operations can be achieved
with work linear in the size of the input, the overall complexity of the algorithm is in O(n).

4.2 The Distributed DCX Algorithm
Our distributed suffix array construction is a simple and practical distributed variant of the
DCX algorithm for X ≥ 3. Algorithm 1 shows a high-level pseudocode for the algorithm.

We now discuss the algorithm in some more detail. The input to the algorithm on PE i

is the local chunk Ti of the input text T .

1. Sort the Difference Cover Sample. In the first phase of the algorithm, we select, on
each PE i, the difference cover (DC) sample suffixes starting at (global) positions j with
(j mod X) ∈ DX . As in the sequential setting, we want to compute unique ranks of these
suffixes first. For that, we first globally sort the X-prefixes of all DC sample suffixes. If
all of them are unique, this already constitutes the relative ordering of the sample suffixes
within the final suffix array. This rank information can then be used to compare any two
suffixes si and sj (see Section 4.1) and we continue with step three. Otherwise, we have
to recurse on the sample suffixes as described in the following step two of the algorithm.

ESA 2025



47:6 Fast and Lightweight Distributed Suffix Array Construction

Algorithm 1 High-level overview of a simple distributed variant of the DCX algorithm.

Input: Text Ti on PE i.
Output: Local part of distributed suffix array of T .

1 oi = PrefixSum(|Ti|) // global text index offset
2 Ci = ⟨0 ≤ j < |Ti| | (j + oi mod X) ∈ DX⟩ // DC sample positions
3 Si = ⟨(Ti[j, j + X)︸ ︷︷ ︸

X-prefix

, j + oi︸ ︷︷ ︸
global idx

) | j + oi ∈ Ci⟩ // (X-prefix,idx) of DC
samples

4 globally sort Si by first entry
5 if all first entries of S are unique then
6 Ri = ⟨(rank(t, S), j) | t = (prefix, j) ∈ Si⟩ // unique ranks of DC samples

7 else
8 Pi = ⟨(rank(t, S), j) | t = (prefix, j) ∈ Si⟩ // replace X-prefix with rank
9 globally sort Pi by (j mod X, j div X)

10 SA′
i ← recursively call DCX on T ′

i = ⟨r | (r, j) ∈ Pi⟩
11 Ri = ⟨(j, mapback(SA[j]))︸ ︷︷ ︸

restore idx of DC samples in T

| 0 ≤ j < |SA′
i|⟩

12 globally sort Ri by second component // bring Ri in text order
// construct (X-prefix, <ranks>) tuples for all suffixes

13 Si = ⟨(Ti[j, . . . , j + X)︸ ︷︷ ︸
X-prefix

, Ri[next(j, 1)], . . . , Ri[next(j, v)]︸ ︷︷ ︸
ranks of DC samples following j

, j + oi︸ ︷︷ ︸
global idx

)) | 0 ≤ j < |Ti|⟩

14 globally sort Si by appropriate comparison function (see [26])
15 output last entry of Si as suffix array SAi

2. Compute Unique Ranks Recursively. If the ranks are not already unique, we locally
create an array Pi by replacing each entry (X−prefix, j) of Si with (rank[j], j). The
distributed array S =

⋃
Si contains the DC sample suffixes sorted by their X-prefix. The

rank[j] of the j-th sample suffix is the global rank of its X-prefix within S. Equal prefixes
obtain the same rank. Since S is sorted, the ranks can be computed by a prefix sum.
Afterwards, we globally sort Pi by (j mod X, j div X). This rearranges the newly
renamed sample suffixes in their original order by respecting the equivalence class of
their starting index within DX . We then recursively call the DCX algorithm on the text
T ′

i where T ′
i contains the new names of the sample suffixes from Pi dropping the index.

From the suffix array SA′ of T ′, we can determine the rank of each sample suffix j using
the mapback function which maps the index of a DC sample in T ′ back to its original
position in T . Due to the construction of T ′, the unique ranks of the DC sample suffixes
within T ′ also yield a relative ordering of the DC sample suffixes in T [26].

3. Sort All Suffixes. Now, we construct for each suffix sj in T a tuple containing: (1)
the X-prefixes of the suffix, (2) the previously computed ranks of the following |DX | DC
samples after sj in text order, and (3) its global index j within T . Globally sorting theses
tuples using the previously discussed comparison function for suffixes si, sj yields the
suffix array of the original text T .

Existing distributed DC{3, 7, 13} implementations [27, 6] broadly follow this straightfor-
ward adaptation of the algorithm to the distributed setting. However, this approach is not
space-efficient. Materializing the X-prefixes of the suffixes for the final sorting step results in
a memory blow-up proportional to X compared to the actual input. Consequently, sorting
suffixes on distributed machines using DCX with large X is not feasible due to the limited
main memory, even though DCX with X > 3 shows better performance on many real-world
inputs [19]. We propose a technique to overcome this problem in the following Section 4.2.1.
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4.2.1 Bucketing
In the sequential or shared-memory parallel setting, X-prefixes of suffixes can be sorted
space-efficiently as each such element e can be represented as a pointer to the starting position
of the suffix within the input text. This space-efficient sorting, however, is no longer possible
in distributed memory. If we want to globally sort a distributed array of suffix-prefixes, we
have to fully materialize and exchange them – resulting in a memory blow-up of at least
a factor X. A simple idea to prevent this blow-up is to use a partitioning strategy which
divides the elements of the distributed array into multiple buckets using splitter elements
and processes only one bucket at a time.

We now describe a generalization of a bucketing technique for space-efficient sorting which
has been previously proposed for scalable distributed string sorting [31, 28].

Whenever a distributed array of elements with a space-efficient representation has to be
globally sorted, we first determine q + 1 global splitter elements s0, s1, . . . sq with s0 = −∞
and sq =∞. We then locally partition the array into q buckets, such that element e with
sk < e ≤ sk+1 is placed in bucket k. We then execute q global sorting steps. In each step
k, we materialize and communicate the elements from bucket k using a distributed sorting
algorithm. Assuming that the splitters are chosen such that the global number of elements
in each bucket is n/q and the elements within each bucket are equally distributed among the
PEs (see Section 4.2.2 how this can be ensured), we only have to materialize n/(pq) elements
per bucket and PE instead of n/p elements per PE when using only one sorting phase.

By choosing q proportional to the memory blow-up caused by materializing an element,
we can keep the overall memory consumption of this sorting approach in O(n/p).

4.2.2 Load-Balanced Bucketing via Random Chunk Redistribution
The global number of elements per bucket can be balanced by judiciously choosing the splitter
elements, e.g., by regular or random sampling, or even using multi-sequence selection [36, 2].
However, the number of elements per PE within a bucket can vary greatly depending on the
input. Assume an input which is already globally sorted with q < p buckets. In this setting,
all n/p elements located on the first PE have to be materialized when processing the first
bucket. This results in memory blow-up and poor load-balancing across the PEs. Increasing
the number of buckets q can only address the memory consumption issue but does not help
with load-balancing.

A standard technique to resolve this kind of problem is a random redistribution of
the elements to be sorted. However, this is not directly possible for elements which are
stored in a space-efficient manner as in our case. We propose to solve this problem by
randomly redistributing not single prefixes of suffixes but whole chunks of the input text
before sorting. To be more precise, we partition T into consecutive chunks Cj of size c, i.e.,
T = C0 ◦ . . . ◦ Cn/c−1. For the sake of simplicity, we assume chunks to be aligned with PE
boundaries. Each chunk is then sent to a random PE.

▶ Theorem 1 (Random Chunk Redistribution). When redistributing chunks of size c uniformly
at random across p PEs, with q < p buckets each containing n/q elements, the expected
number of elements from a single bucket received by a PE is n/(pq).

Furthermore, the probability that any PE receives 2n/(pq) or more elements from the
same bucket is at most 1/pγ for n ≥ 8c(γ + 2)pq ln(p)/3 and γ > 0.

Proof. Let Y k
i denote the number of elements belonging to bucket k which are assigned to PE

i. In the following, we will determine the expected value of Y k
i and show that P[Y k

i ≥ 2E[Y k
i ]]

is small. This will then be used to derive the above-stated bounds.

ESA 2025



47:8 Fast and Lightweight Distributed Suffix Array Construction

Let ck
j be the number of elements belonging to bucket k in chunk j. For the sake of

simplicity, we assume all buckets to be of equal size, thus,
∑n/c−1

j=0 ck
j = n/q. We define

Xk
j,i =

{
ck

j if chunk j is assigned to PE i

0 otherwise,

for chunk j with 0 ≤ j < n/c, PE i with 0 ≤ i < p, and bucket k with 0 ≤ k < q. Thus,
the random variable Xk

j,i indicates the number of elements from bucket k received by PE i

if chunk j is assigned to this PE. Hence, we can express Y k
i as the sum over all Xk

j,i, i.e.,
Y k

i =
∑n/c−1

j=0 Xk
j,i. As all chunks are assigned uniformly at random and there are p PEs, we

furthermore have E[Xk
j,i] = ck

j /p. By the linearity of expectation, we can derive the expected
value of Y k

i as

E[Y k
i ] = E

n/c−1∑
j=0

Xk
j,i

 =
n/c−1∑

j=0
E[Xk

j,i] =
n/c−1∑

j=0

ck
j

p
= n

pq
.

For each bucket k, we now bound the probability P[Y k
i ≥ 2n/(pq)] that PE i receives two

times its expected number of elements or more. We have

P
[
Y k

i ≥
2n

pq

]
= P

n/c−1∑
j=0

Xk
j,i ≥

2n

pq

 = P

n/c−1∑
j=0

Xk
j,i − E[Xk

j,i] ≥
n

pq

 .

As the value of Xk
i,j is bounded by the chunk size c, the Bernstein inequality [11,

Theorem 2.10, Corollary 2.11] yields the following bound

P

n/c−1∑
j=0

Xk
j,i − E[Xk

j,i] ≥
n

pq

 ≤ exp

−
(

n
pq

)2

2
(∑n/c−1

j=0 E[(Xk
j,i)2] + cn

3pq

)
 . (1)

Since we find E[(Xk
j,i)2] = (ck

j )2/p, it follows that
n/c−1∑

j=0
E[(Xk

j,i)2] =
n/c−1∑

j=0
(ck

j )2/p ≤ 1
p

n/(qc)−1∑
j=0

c2 = cn

pq
,

as the sum of the squares of a set of elements 0 ≤ ai ≤ c with
∑

i ai = b and b divisible by c

is maximized if they are distributed as unevenly as possible, i.e., ai = c for b/c elements and
0 for all others. We can use this estimation for an upper bound on the right-hand side of (1)

exp

−
(

n
pq

)2

2
(∑n/c−1

j=0 E[(Xk
j,i)2] + cn

3pq

)
 ≤ exp

−
(

n
pq

)2

2
(

cn
pq + cn

3pq

)
 = exp

(
− 3n

8pqc

)
. (2)

Combining these estimations, we obtain the bound

P
[
Y k

i ≥
2n

pq

]
≤ exp

(
− 3n

8pqc

)
≤ exp (−(γ + 2) ln p) = 1

pγ+2

for n ≥ 8pqc ln(p)(γ + 2)/3. Using the union-bound argument yields the following estimation

P
[⋃

Y k
i ≥ 2 n

pq

]
≤

p−1∑
i=0

q−1∑
k=0

P[Y k
i ≥ 2 n

pq
] ≤

p−1∑
i=0

q−1∑
k=0

1
pγ+2 ≤

1
pγ

.

Hence, we obtain 1
pγ as an upper bound on the probability that any PE receives more than

two times the expected number of elements n/(pq) for any bucket when assuming q ≤ p. ◀
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Theorem 1 shows that combining a random chunk redistribution with the bucketing
approach yields a space-efficient solution to the sorting problems occurring within our
distributed variant of the DCX algorithm.

Within the DCX algorithm – depending on the actual step – we do not only redistribute
chunks of the text but also corresponding rank entries and some bookkeeping information
like the global index of a chunk. Furthermore, we require each chunk to have an overlap of
X characters to ensure that an X-prefix for each element within a chunk can be constructed
without communication. By choosing c ≥ X, one can assure that the total size of a chunk
remains in O(c). The redistribution can be achieved in time O(αp + βn/p) as each PE sends
and receives at most O(n/p) elements assuming the conditions of Theorem 1 are met.

4.2.3 Overall Analysis
We now briefly outline the running time of our algorithm using bucketing in conjunction
with random chunk redistribution. All steps outside the recursion of distributed DCX are
either global sorting steps, alltoall exchanges or local work linear in the size of the text per
PE (see Algorithm 1). Additionally, we perform a constant number of allreduce and prefix
sum operations, whose running time is dominated by the alltoall exchanges.

First, we consider the sorting steps. Assume that we want to sort a distributed array of
m elements of type e with O(m/p) elements per PE, each of size O(es) while comparing any
two elements takes time O(ec). To facilitate the analysis, we assume a distributed (k-level)
sorting routine with a running time

Tsort (m, p, k) = O

ec
m

p
log m︸ ︷︷ ︸

local work

+ αk k
√

p︸ ︷︷ ︸
start-up latency

+ βkes
m

p︸ ︷︷ ︸
communication costs


which also balances the output, i.e., after sorting, each PE holds Θ(m/p) elements.3 A
sorting step with q < p buckets and random chunk redistribution can then be realized in time

T̃sort(m, p, q, k) = qTsort (O(m/q), p, k) +O
(

αp + β
m

p

)

= O

ec
m

p
log m︸ ︷︷ ︸

local work

+ α(p + qk k
√

p)︸ ︷︷ ︸
start-up latency

+ βkes
m

p︸ ︷︷ ︸
communication costs


with probability ≥ 1 − 1/pγ for any fixed γ > 0 and sufficiently large m, increasing only
the latency term due to q sorting steps and an additional alltoall exchange. Note that the
time required for the computation of the bucket splitters and subsequent classification is
dominated by the running time mentioned above when using regular sampling with Θ(q)
samples per PE and the distributed (k-level) sorting routine.

In this setting, we see that all sorting steps (and the alltoall exchanges) in DCX are
dominated by the final sorting of all suffixes, where we have es = O(X log σ +

√
X log n)4

and ec = O(X). Due to the geometric decrease of the input size within the recursion, we

3 Note that for example the running time of adaptive multi-level sample sort (AMS) [2, Theorem 3] using
k levels of indirection comes close to this. AMS also balances the output.

4 Within the recursive calls, we have es = O(X log n) as the alphabet size is now O(n). However, as the
problem size also decreases by a factor Θ(

√
X) [13, 26], this increase in alphabet size can be accounted

for by the O(
√

X log n) term in es of the first level.
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reach an overall problem size of O(n/p) after O(log p) iterations. Gathering all remaining
data on a single PE and applying the sequential DCX algorithm yields the running time
stated in Theorem 2.

▶ Theorem 2. Using a distributed sorting routine with the above-stated properties, our
lightweight distributed DCX algorithm has a running time

DCX(n, p) = O

X
n

p
log n︸ ︷︷ ︸

local work

+ α log(p)(p + qk k
√

p)︸ ︷︷ ︸
start-up latency

+ βX
n

p

(
log(σ) + log n√

X

)
︸ ︷︷ ︸

communication costs


with probability ≥ 1− 1/pγ for any fixed γ > 0 and sufficiently large n.

4.2.4 Further Optimizations
In addition to the techniques described above, we also utilize discarding and packing, two
techniques commonly used in distributed- and external-memory SACAs.

Discarding. After sorting the X-prefixes of the sample suffixes, we have to recursively apply
the DCX algorithm (or any other suffix sorting algorithm) to a smaller subproblem if there
are duplicate ranks. However, in order to obtain overall unique ranks for the sample suffixes,
we do not have to recurse on all of them but can discard suffixes whose ranks are already
unique after initial sorting. This discarding technique has been used in the external-memory
setting [15] but has not been explored for distributed memory yet.

Packing. Packing is an optimization for small-sized (integer) alphabets proposed for dis-
tributed memory prefix-doubling by Flick et al. [20]. Assume b = ⌈log σ⌉ < B, where B is
the size of one machine word. Instead of using one machine word per character, we can pack
up to B/b characters into one word and exchange/sort them at once.

5 Experimental Evaluation

For our extensive evaluation, we use up to 256 compute nodes (12 288 cores) of SuperMUC-
NG where each node is equipped with one Intel Skylake Xeon Platinum 8174 processor with
48 cores and 96GB of main memory.5 The internal interconnect is a fast OmniPath network
with 100 Gbit/s.

We compare the following algorithms. See Table 1 for an overview.

ℓDCX. Our implementation of the lightweight distributed DCX algorithm described above.
In the experiments, we use X = 39. In preliminary experiments, we found this value to
provide the best trade-off between reduction ratio and running time per level. We use the
bucketing technique for sorting the DC samples and also for the final sorting of all suffixes.
For sorting the DC samples, we use 16 buckets in the first two levels of recursion. For the
final merging, we use 64 buckets in the first two levels and 16 in a third level. In later
levels of recursion, the remaining number of suffixes is small enough so that all elements can

5 We also conducted preliminary experiments on the HoreKa supercomputer. As the results obtained
there are in line with our findings from SuperMUC-NG presented here, we omit them.
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be sorted at once. Bucket splitters are determined by centrally sorting a random sample
of 2 × 104 elements and then drawing the splitters equidistantly from the sorted sample
elements. Additionally, we employ our randomized redistribution of chunks with 104 chunks
per PE. We use AMS-sort by Axtmann et al. [2, 3] as our distributed sorting routine. Due
to the large number of single sorting steps, we require a low-latency sorting algorithm (at
least for large PE configurations). Therefore, we use AMS with two levels as a default. As
the discarding optimization has certain overheads, we only apply it when the reduction ratio
is more than 0.7. Furthermore, we use 40-bit integers for storing rank information to reduce
the memory footprint.

PSAC [20]. We explore two different original configurations. PSAC is the standard (more
memory-efficient) configuration performing prefix-doubling as described in Section 3. Once
the ratio of suffixes with non-unique h-prefix falls below n/10, it switches to another algorithm
which tries to avoid global sorting steps as much as possible but has a somewhat higher
memory consumption. This approach sorts each non-unique range of suffixes with identical
h-prefix independently by splitting the PEs into different groups and can be regarded as
a kind of discarding. The configuration PSAC+ runs this second algorithm immediately.
Additionally, we implemented a 40-bit integer version of their algorithm as well as a version
which uses AMS for distributed sorting. Due to the small performance benefit of using AMS,
we do not include these variants in the plots.

dPD [19]. This algorithm also relies on distributed prefix doubling with discarding, i.e., it
does not continue sorting suffixes whose h-prefix is already unique. In contrast to PSAC+,
dPD redistributes the remaining non-unique suffixes across all PEs and keeps using a global
sorting routine. dPD uses 40-bit integers.

The original sorting algorithm within dPD gathers suffixes with identical h-prefix on the
same PE. While this facilitates the rank computation for the next prefix-doubling round, it
introduces severe load-balancing problems in case of many identical h-prefixes. We provide
an improved version of this algorithm, where identical h-ranks may span multiple consecutive
PEs. In combination with AMS as a sorting subroutine, this yields a much more scalable
algorithm with a substantially improved load-balancing. We refer to this new variant as
dPD∗ (dPD∗,1 and dPD∗,2 indicates the usage of one- or two-level AMS sort).

B-DCX [6]. A straightforward adaptation of the sequential DCX algorithm to the distribu-
ted-memory setting for X = {3, 7, 13}. The implementation is limited to inputs of size 4 GB
due to the internal usage of 32-bit integers.

Other Algorithms. There also exists a lightweight distributed suffix sorting algorithm based
on induced copying [19]. Unfortunately, we were not able to run this algorithm successfully
on our system. It also suffers from the same load-balancing issues as dPD. While this
algorithm exhibits a relatively low memory blow-up factor of around 30 on up to 1 280 cores,
the running-time of the algorithm is reported to be always slower than or on par with the
default configuration of PSAC or the non-load-balanced dPD.

There also exists prefix-doubling and DC3/DC7 implementations [10] in the distributed
external-memory BigData framework Thrill [8]. Although the framework supports MPI,
their focus is on non-MPI data center clusters. We were not able to execute their algorithms
on more than one compute node because Thrill relies on external local disk storage, which
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Table 1 Overview of algorithms used in this experimental evaluation. All algorithms, except for
libsais are distributed-memory algorithms.

Name Brief Description Reference

ℓDCX Our main contribution described in Section 4 [here]

PSAC Prefix doubling w/o discarding, last 10 % are sorted with PSAC+ [20]
PSAC+ Prefix doubling, each h-group is sorted independently (discarding-like) [20]
PSAC40 Same as PSAC but using 40-bit integers [here]
PSAC+

40 Same as PSAC+ but using 40-bit integers [here]
dPD Prefix doubling w/ discarding, 40-bit integers, and PE-local ranks [19]
dPD∗,1 Same as dPD but w/o PE-local ranks and using AMS with one level [here]
dPD∗,2 Same as dPD but w/o PE-local ranks and using AMS with two levels [here]
B-DCX Basic MPI implementation of DCX for X = {3, 7, 13} [6]

libsais Fastest sequential and shared-memory suffix sorting algorithm [24]

is very limited on our cluster. On a single compute node (48 cores), their algorithms were
more than a factor of two slower than ℓDCX on all data sets but DNA-Rep. Here, their
DC7 implementation is only a factor of 1.8 slower than our algorithm.

Recently and independently, Ferguson also started working on a variant of a distributed-
memory difference cover algorithm using a similar bucketing approach, implemented in the
Chapel parallel programming language [16]. Their algorithm does not use random chunk
redistribution and other optimizations present in our implementation. Preliminary compar-
isons executed by Ferguson on a low-latency Cray supercomputer demonstrated that our
implementation was approximately twice as fast on a DNA dataset. In preliminary experi-
ments on our system – which has higher communication latency – Ferguson’s implementation
exhibited less favorable scaling behavior. Additionally, it requires around 20×–80× the input
size as working memory. Therefore, it is not included in our evaluation.

In addition to the above-mentioned distributed-memory algorithms, we also compared
our algorithm to the currently fastest and highly-engineered sequential and shared-memory
parallel suffix sorting implementation libsais [24].

General Settings and Data Sets. All algorithms are implemented in C++ (C for libsais)
and compiled with GCC 12.2.0 with optimization flags -O3 and -march=native. We use
IntelMPI 2021.11 for interprocess communication. Additionally, our DCX implementation
uses the zero-overhead MPI bindings KaMPIng [40]. Reported times are the average of at
least three runs. We generally observed only very low variations in running time.

We use inputs from the five data sets given in Table 2 with different characteristics
regarding the alphabet size σ and the longest common prefix (LCP) distribution.

5.1 Weak-Scaling Experiments
Figure 1 shows the running times of weak-scaling experiments with 20 MB of text data per
PE (960 MB per compute node). In Figure 2, we present the corresponding memory blow-up,
i.e., the maximum peak memory aggregated over each compute node divided by the total
input size on a compute node. We read the maximum resident set size (rss) of each MPI
process to obtain these values.
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Table 2 Data sets used in our evaluation. Statistics consider the first 50 GB of each data set.

Name Brief Description σ avg. LCP max LCP

CC [14] Websites crawled by Common Crawl Project 243 1,04 × 104 1,84 × 106

Wiki [41] XML data sets of Wikipedia 213 396.07 1,58 × 106

Prot [39] Protein data from Universal Protein Resource 26 179.31 3,43 × 104

DNA [38] DNA Data from 1000 Genomes Project 4 25.15 3,57 × 103

DNA-Rep Concatenate first MB of DNA 245 760× 4 2,50 × 1010 5,00 × 1010

We see that ℓDCX is the fastest (distributed) algorithm on CC on all evaluated numbers
of PEs. Compared to the previous algorithms, we achieve speedups of up to 4.3, while being
at least 1.6× more memory-efficient. The improved prefix-doubling algorithm dPD∗ performs
better, especially when using AMS with two levels (dPD∗,2). However, ℓDCX is still about a
factor of 1.6 faster. A similar trend can be seen for Wiki, although less pronounced, with
speedups of 3.2 and 1.2 on 256 nodes, respectively. This is due to the lower LCP values of
Wiki compared to the CC data set. The prefix-doubling algorithms require fewer iterations
and therefore perform better. This becomes even more evident for DNA and Prot, as these
data sets have even lower LCP values. Additionally, the smaller alphabet size of these texts
makes the packing optimization more effective. These factors explain the lower running time
of all algorithms on these data sets. On DNA, our improved dPD∗ is fastest on 256 compute
nodes and outperforms ℓDCX by a factor of 1.2.

Due to the repetitive nature of DNA-Rep, the data set has very high average LCP values
and therefore is a particularly hard instance for prefix-doubling algorithms. Consequently,
these algorithms were not able to terminate within the time limit for all PE configurations
(or even crashed on some configurations). Our ℓDCX algorithm is, due to its algorithmic
properties, largely insensitive to this input characteristic and shows a very good scaling
behavior even on this hard input instance with speedups of up to 5.5 over its competitors.

The DC{3, 7, 13} implementation by Bingmann (B-DCX) does not scale well.6 However,
at least the DC{7, 13} variants have competitive running times for CC and Wiki on up to
two compute nodes. Nonetheless, their memory consumption reveals a key problem of a
straightforward adaptation of DCX to distributed memory. Although using 32-bit integers
internally, DC3 exhibits a blow-up of ≈ 50× while DC7 and DC13 have a blow-up of ≥ 60×
and ≈ 80×, respectively.

The running times for the shared-memory parallel variant of libsais (using all 48 cores of
one compute node) are given for the input of all p cores. We see that libsais is faster than
ℓDCX when using only one compute node. This is not surprising as libsais leverages native
OpenMP parallelization while our implementation of DCX uses interprocess-communication
via MPI even when running on only one compute node. But from only two compute nodes
on (4 compute nodes for DNA-Rep) ℓDCX clearly surpasses libsais effectively utilizing the
additional cores. We cannot run libsais on inputs larger than 8 × 48 × 20 MB due to the
limited main memory of 96 GB per compute node.

Overall, our lightweight distributed DCX algorithm shows a very good scaling behavior and
is either fastest or competitive with our improved version of prefix-doubling with discarding,
which is fastest on the remaining inputs (again at least for large PE configurations).

6 While the scaling behavior of the implementation could certainly be improved, we chose not to do so as
our engineered space-efficient ℓDCX algorithm already supersedes it in terms of implementation.
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Figure 1 Running time in minutes of the suffix array construction algorithms in our weak-scaling
experiments with 20 MB per PE. Missing data points are due to time limits or crashes.

Regarding the memory consumption (Figure 2), we see that ℓDCX is clearly the most
memory-efficient one of all evaluated distributed algorithms due to the bucketing with
randomized chunk redistribution approach. We see a slight increase in memory consumption
for larger PE configurations which we assume to be caused by external factors such as
the internal buffer allocation strategy of the MPI implementation and the release policy of
memory allocators as we could not detect a significant increase in bucket imbalances.

5.2 Breakdown Experiments

Figure 3 shows the result of a breakdown test, where we run the algorithms on 16 compute
nodes (768 cores) and increase the input size per PE until the algorithms can no longer
finish due to memory limitations. We start the experiment with 20 MB (15.36 GB in total).
The standard PSAC variants using 64-bit integers can handle up to 30 MB (at least for
DNA). The 40-bit variants as well as the different variants of dPD can handle up to 40 MB
of text per PE. Our ℓDCX implementation is, as expected, far more memory-efficient and
can handle up to 130 MB of input per PE (6.24 GB per compute node). With inputs size
larger than 100 MB per PE, the maximum memory consumption of ℓDCX is only between
14× to 15× the input size. We attribute this to fixed-size memory overheads of the MPI
runtime becoming less important with increasing input size. These values come close to the
theoretically expected memory consumption of our implementation.
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Figure 2 Memory blow-up of the suffix array construction algorithms in our weak-scaling
experiments with 20 MB per PE.
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Figure 3 Breakdown test on 16 compute nodes (768 cores) with increasing input size.
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6 Conclusion and Future Work

In this work, we present a fast and lightweight distributed variant of the DCX suffix sorting
algorithm. We rely on a bucketing scheme for space-efficient distributed sorting to reduce
the algorithm’s memory consumption and combine it with a load-balancing approach based
on random chunk redistribution. In our extensive experimental evaluation, we show that our
algorithm is up to 5× faster than previous distributed suffix sorting algorithms while being
substantially more memory-efficient. For future work, we plan to extend our bucketing and
random chunk redistribution approach to other models of computing such as the distributed
external-memory model and distributed multi-GPU architectures.
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