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Abstract
Consider the classical Bin Packing problem with d different item sizes si and amounts of items ai.

The support of a Bin Packing solution is the number of differently filled bins. In this work, we show
that the lower bound on the support of this problem is 2Ω(d). Our lower bound matches the upper
bound of 2d given by Eisenbrand and Shmonin [Oper.Research Letters ’06] up to a constant factor.
This result has direct implications for the time complexity of several Bin Packing algorithms, such
as Goemans and Rothvoss [SODA ’14], Jansen and Klein [SODA ’17] and Jansen and Solis-Oba
[IPCO ’10].
To achieve our main result, we develop a technique to aggregate equality constrained ILPs with many
constraints into an equivalent ILP with one constraint. Our technique contrasts existing aggregation
techniques as we manage to integrate upper bounds on variables into the resulting constraint. We
believe this technique can be useful for solving general ILPs or the d-dimensional knapsack problem.

2012 ACM Subject Classification Theory of computation → Integer programming; Theory of
computation → Packing and covering problems

Keywords and phrases Bin Packing, Integer Programming, Support

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.48

Funding This work was supported by the German Research Foundation (DFG) – Project DFG JA
612/27-1.

1 Introduction

In their seminal work [8] Eisenbrand and Shmonin inspect integer conic combinations b ∈ Zd

of a finite set of integer vectors X ⊂ Zd. They provide upper bounds on the size of the
smallest subset X∗ ⊆ X such that b is an integer conic combination of elements in X∗.

This can be interpreted in the context of integer programming. Integer Programs (IPs) are
composed of a matrix A ∈ Zd×n, an (optional) cost vector c ∈ Zn, a target vector b ∈ Zd and
a solution vector x ∈ Zn. The goal is to compute the solution vector satisfying Ax = b while
minimizing the value cT x. In this context, the set of integer vectors correspond to the columns
of A and the size of the smaller subset X∗ is the number of non-zero entries (the support) in
the solution vector. More precisely, they show that for any polytope P ⊆ Rd and any integral
vector x ∈ Z|P ∩Zd|

≥0 of multiplicities there exists a x∗ ∈ Z|P ∩Zd|
≥0 such that |supp(x∗)| ≤ 2d

and
∑

p∈P ∩Zd xp · p =
∑

p∈P ∩Zd x∗
p · p. They achieve this through a sophisticated exchange

argument, transforming a solution with a large support into one with a bounded support.
They show a second bound of O(d log(d∆)), where ∆ = ||A||∞ is the largest number in the
matrix A, in a similar fashion. These celebrated result have found application in a variety
of applications. These include classical problems of computer science like scheduling on
identical and uniform machines (using the second bound) [15, 19] and bin packing problem
(using the first bound) [13, 18, 20].
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48:2 The Support of Bin Packing Is Exponential
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Figure 1 An illustration of the Bin Packing problem with three item types, four bins and
capacity C. Colors indicate item types. Each bin has a unique configuration, i.e., combination of
items, assigned to it. Only the leftmost bin is completely filled. The sizes of each item type are
shown on the right.
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Figure 2 An illustration of the Cone and Polytope Intersection problem with three points
pi ∈ P and the target t ∈ Q. The values of each vector are given. A possible solution is shown.

Improvements on the first bound would have direct implications for the time complexity
of several algorithms. Consider the high-multiplicity Bin Packing (BP) problem with bin
size C: We are given item sizes s1, . . . sd ∈ [0, C], and multiplicities ai ∈ Z≥0, i ∈ [d]. The
task is to find the minimum number B ∈ N such that all items can be packed into B bins of
size C. See Figure 1 for an illustration. For this problem, Jansen and Solis-Oba [20] give
an additive approximation algorithm with guarantee OPT+1. The time complexity of their
algorithm is dO(d2d) · 2O(8d) · poly(enc), where poly(enc) represents a polynomial in the input.
In their paper, they ask whether the support bound by Eisenbrand and Shmonin can be
improved to be polynomial in d. Consequently, this would reduce the dependency on d in
the algorithm to be singly-exponential, i.e., result in a running time of 2poly(d) · poly(enc).

Following this result, Goemans and Rothvoss [13] provide an algorithm running in time
enc(s, a, C)2O(d)

. Here, enc(s, a, C) denotes the bitsize of encoding the size vector s, the
multiplicity vector a and the bin capacity C in binary. The time complexity of this algorithm
would also be improved by a smaller support bound. For example, a polynomial support
poly(d) in d directly improves their running time to enc(s, a, C)poly(d). They achieve this
result by solving a more general problem, the Cone and Polytope Intersection (CAPI)
problem. Here, we are given two polytopes P, Q ⊆ Rd, where P is bounded. The task is
to decide whether there is a point in Q that can be expressed as a non-negative integer
combination of integer points in P . Goemans and Rothvoss show that this problem captures
the essence of high-multiplicity BP. They reduce BP to CAPI by setting the integer points
in P = {

(
x
1
)

∈ Rd+1
≥0 |sT x ≤ C} to every possible configuration, i.e., combinations of items

that fit in a single bin. They set Q =
(

a
B

)
to be the point that corresponds to all items being

taken. The final entry in P and Q is used to count the number of used bins B.
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Jansen and Klein extend the work of Goemans and Rothvoss in [18]. They give an
algorithm for bin packing that depends on the number VI of vertices in the underlying knapsack
polytope of a single bin. Their algorithm has a running time of |VI |2O(d)enc(s, a, C)O(1).
Thus, it improves upon Goemans and Rothvoss’ result when VI is small. However, it does
not improve upon the result by Goemans and Rothvoss in the general sense, as the bound
on VI is Ω(enc(s, a, C))d as given by Hayes and Larman [14].

All three of these results could be improved with a polynomial (in d) support bound
for BP. However, our result shows that there is no polynomial support bound in d for bin
packing, and thus answers the question posed by Jansen and Solis-Oba negatively. Goemans
and Rothvoss made first strides in this direction in [13], where they show that the bound
given by Eisenbrand and Shmonin is tight for polytopes, i.e., there is an exponential support
when reaching a target with only column vectors or linear combinations of them. They
construct a set of column vectors X with dimension d and |X| = 2d−1. Define the polytope
P = conv(X), where conv(X) is the convex hull of X. They then define t =

∑
x∈X x and

show that you can only reach t by taking every element of X exactly once. This shows
a lower bound on the support of 2d−1 = 2Ω(d). However, their bound does not admit a
knapsack constraint and can therefore not be applied to the bin packing problem directly.
This is because the columns in the bin packing ILP originate from a knapsack constraint
that determines the feasible packings of a single bin.

With so many different problems gaining important information from support bounds, it
should come as no surprise that there are other bounds on the support of integer programs
with different parameterizations. Berndt, Brinkop, Jansen, Mnich and Stamm show that
the support is also bounded by d · (log(3||A||1) +

√
log(||A||1)) [3]. They complement this

result by showing a lower bound on the size of the support of d · (⌊log(||A||1⌋ + 1). Aliev,
de Loera, Oertel and O’Neill [2] give two support bounds for linear diophantine equations
of r(A) + ⌊log(H(A))⌋, where r(A) is the column rank of the matrix A and H(A) is the
determinant of the span of the r(A)-dimensional sublattice of Zn formed by all integer points
in the linear subspace spanned by the columns of A, i.e., H(A) = det(spanR(A) ∩ Zn). Their
second bound is ⌊2d log(2

√
d∆)⌋. Aliev, De Loera, Eisenbrand, Oertel and Weismantel [1]

show the bound of ⌊2d log(2
√

d∆)⌋ for general ILPs.
The main tool we use in the following is aggregation. Aggregation is a powerful tool

that transforms an ILP with multiple constraints into a single constraint. Research into
this technique began in the 70’s, resulting in several different aggregation methods, see
e.g. [4, 5, 9, 11, 12, 21, 22, 23, 24]. Elmaghraby and Wig [9] iteratively combine two
equations into a single one. Applying this technique repeatedly yields a single constraint.
Another approach is given by Padberg [22]. Instead of combining two equations iteratively,
he aggregates all equations at the same time.

Our approach is based on the techniques by Padberg [22]. Our aggregation techniques
also aggregate all constraints in a single step. However, we manage to include the upper
bounds of the variables inside the resulting knapsack constraints, where Padbergs method
leaves them outside the constraint. We believe that this type of aggregation can find
application in different contexts, such as d-dimensional knapsack problems or general ILPs
with d constraints. Here, the aggregation may yield faster algorithms, especially when one
manages to reduce the size of the coefficients. This may be done by using techniques by
Frank and Tardos [10], Eisenbrand, Hunkenschröder, Klein, Koutecký Levin and Onn [7] or
Jansen, Kahler and Zwanger [16].

On the negative side, it is known that aggregation is not feasible for a set of inequalities,
as was proven by Chvátal and Hammer [6]. They provide a simple two-line ILP that cannot
be aggregated.

ESA 2025
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1.1 Our Contribution
In this work, we continue research into the support of Bin Packing solutions. We show
that a set of points of Cone and Polytope Intersection can be embedded inside a
knapsack polytope of dimension O(d). Using this polytope, we show that the support of
the high-multiplicity BP problem is exponential, requiring at least 2Ω(d) many different
configurations in an optimum solution. This yields our main result, Theorem 1:

▶ Theorem 1. There exists a high-multiplicity Bin Packing instance of dimension d such
that the solution-vector x (a vector of configurations) contains at least 2Ω(d) non-zero entries,
i.e., |supp(x)| ∈ 2Ω(d).

With this result, we answer an open question posed by Jansen and Solis-Oba in [20].
They provide an algorithm for the cutting stock problem. The running time of this algorithm
could be improved to be singly-exponential if the support of bin packing is not exponential.
However, our result answers this question negatively. In a similar vein, our result shows that
the algorithm by Goemans and Rothvoss [13] can not be directly improved. The same holds
for the algorithm by Jansen and Klein [17].

A major tool to achieve this result is the aggregation of multiple constraints without
upper bounds on the variables into a single constraint. To the best of our knowledge, this
type of constraint-aggregation has not been done before. Contrasting prior results, our
method of aggregation manages to include upper bounds inside the constraints instead of
copying them from the original problem. This technique is given in Section 3.

Overview
Here, we give a brief overview of the structure of the document and the structure of our main
proof. We begin, in Section 3, by developing a technique with which we can aggregate an ILP
containing only d equalities into one containing only a single equality. Next, in Section 4.1
we adapt an idea originally given by Goemans and Rothvoss in [13] to construct a polytope
P of dimension d′ + 1 and generate a target vector t. We provide an alternative proof to [13]
that shows we require 2d − 1 points in P to reach t. Next, in Section 4.2, we construct an
equality ILP with O(d) constraints. Each constraint later defines an item size of the BP
problem. We show that there are 2d − 1 feasible solutions to this ILP, with each solution x

having the first d + 1 entries as vectors in P , i.e., there is one solution to the ILP for each
vector in P. These solutions are the 2d − 1 configurations X∗ of the BP problem. Then, we
aggregate this ILP using the technique in Section 3. This yields an equality ILP with one
row. We transform this into a knapsack constraint with right hand side C. Denote the set
of all configurations with total size at most C as X. This constraint is then used to define
the capacity of a bin in the BP problem. The total number of items of each type is given as
the sum of all configurations in X∗. To place all these items in the optimal 2d − 1 bins, we
know, by Section 4.1, that need to take every configuration in X∗ exactly once. Taking any
configuration in X \ X∗ would require at least one additional bin. This proves Theorem 1.

2 Preliminaries

For a positive integer n, we define [n] := {1, 2, . . . , n} and [n]0 := {0, 1, . . . , n}. A vector that
contains a certain value in all entries is stylized, e.g. the zero vector 0d is written as Od. We
omit the dimension d if it is apparent from the context. The support of a d-dimensional vector
v is the set of its indices with a non-zero entry. It is denoted by supp(v) := {i ∈ [d] | vi ≠ 0}.

We define the size of the support with s(v) := |supp(v)|.
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▶ Definition 2 (Bin Packing). Given is a set of d different item types with sizes si ∈ (0, C]
and amounts ai ∈ Z≥0. Given a number B ∈ Z≥0, the goal is to decide whether all items can
be assigned to one of B bins, while all bins are filled to at most C.

A powerful tool to model countless optimization problems is that of integer programming.

▶ Definition 3 (Integer Programming). An integer linear program (ILP) is composed of a
matrix A ∈ Zd×n, an (optional) cost vector c ∈ Zn, a target vector b ∈ Zd and a solution
vector x ∈ Zn

≥0. The goal is to compute a solution vector satisfying Ax = b while minimizing
the value cT x.

Such integer programs can be used to express high-multiplicity Bin Packing. These are
often referred to as configuration ILPs. A configuration is a feasible assignment x ∈ Zd

≥0
of items into a bin, i.e., one with total size at most sT x ≤ C. Denote the set of all feasible
configurations as C, and set n := |C|. Set c = 1n and let each column of A represent a
configuration, where row i corresponds to item type i. Finally set the right hand side b := a,

i.e., the vector representing the total number of items of each size in the instance.
A useful tool that we use is the classical knapsack problem.

▶ Definition 4 (Unbounded Knapsack). Given a set I of n items each defined by a profit
pi ∈ R≥0 and a weight wi ∈ Z≥1, along with a knapsack of capacity C ∈ Z≥1. Find a solution
vector x ∈ Zn

≥0 such that
∑n

i=0 wixi ≤ C and
∑n

i=0 pixi is maximal. We call
∑n

i=0 wixi = C

the equality Knapsack constraint to the corresponding problem.

Following this definition, we call the set of all solutions fulfilling xi ≥ 0, ∀i ∈ [n] and∑n
i=0 wixi ≤ C the Knapsack Polytope.

3 Aggregation of an ILP

In this section, we show how to transform an ILP with multiple equality constraints into a
single knapsack constraint. The novel aspect of our technique is that we also include the
external upper bounds of the variables in the aggregation.

Consider an ILP of the form min{cT x | Ax = b, x ∈ Zn
≥0, x ≤ u} with A = (aij)i∈[d],j∈[n] ∈

Zd×n, c ∈ Zn, u ∈ Zn
≥0 and b ∈ Zd and let ∆ := ∥A∥∞ be the largest absolute value in A.

For each variable xj , j ∈ [n], we define the following constraint: xj + sj = uj , where
sj ∈ Z≥0 is a slack variable. This simulates the upper bound xj ≤ uj . Define U :=

∑n
j=1 uj

as the overall upper bound on the sum of all variables. For this, add the constraint:

n∑
i=j

(xj + sj) + sn+1 = U, (1)

with sn+1 ∈ Z≥0 as a slack variable. Note that bounding the sum of variables by the sum of
their upper bounds does not change the solution.

This results in a new ILP A′
(

x

s

)
= (b, u, U), where

A′ :=

 A 0dn 0
In In 0
1n 1n 1

 ∈ Z(d+n+1)×(2n+1).

ESA 2025
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Next, we use the bound U to define a large integer M , which we then use to aggregate
the constraints.

M := ∆U + max(∥b∥∞, ∥u∥∞) + ∆ + 2
> ∆U + max(∥b∥∞, ∥u∥∞). (2)

By giving the upper-bound constraint (1) the largest weight Md+n, we ensure that it may
never be broken and thus, keeps the sum of the variables in its range. Multiplying both sides
of the equations with 1, M, M2, . . . , Md+n generates the following ILP where all variables
have to be non-negative integers.∑n

j=1 a1jxj = b1
M

∑n
j=1 a2jxj = Mb2

...
Md−1 ∑n

j=1 amjxj = Md−1bm

Md(x1 + s1) = Mdu1
...

Md+n−1(xn + sn) = Md+n−1un

Md+n(
∑n

j=1(xj + sj) + sn+1) = Md+nU

xj ∈ Z≥0 ∀j ∈ [n]
sj ∈ Z≥0 ∀j ∈ [n + 1]

(3)

These constraints can also be formulated as A′
(

x

s

)
= (b, u, U), where

A′ :=

 A 0dn 0
In In 0
1n 1n 1

 ∈ Z(d+n+1)×(2n+1)

An intuitive view of the aggregation technique is that the resulting single constraints solution
is a base M number, where M is a large integer. There, the smallest digit represents the
solution of the first constraint, the second constraints solution is represented by the second
smallest digit and so on.

Next, we show that this ILP can be aggregated into a single equality knapsack constraint
by proving that their solutions are identical. The proof is presented in the full version.

▶ Lemma 5 (Q). The vector sol = (x, s)T ∈ Z2n+1
≥0 is a feasible integer solution to (3) if

and only if sol is an integer solution to the following equation:

d∑
i=1

(
M i−1

n∑
j=1

(aijxj)
)

+
n∑

j=1

(
Md+j−1(xj + sj)

)
+ Md+n

( n∑
j=1

(xj + sj) + sn+1
)

=
d∑

i=1
(M i−1bi) +

n∑
j=1

(
Md+j−1uj

)
+ Md+nU (4)

4 Bounding the Support for Bin Packing

Assume we are given a knapsack polytope P of dimension d′ + 1. Also assume that there
exists a Bin Packing instance I with just one unique integer solution x ∈ Zd

≥0, d = O(d′)
to the configIP and the d′ + 1-dimensional integer points in P are equal to the first d′ + 1
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dimensions of the configurations. If we now require k different points in P to represent a
vector t as a conic integer combination then x has at least k non-zero entries, which means
that we need at least k different configurations in the Bin Packing solution. If now k is
exponential in d′, we have shown that there exists an exponential lower bound on the support
of the Bin Packing problem, i.e., Theorem 1.

4.1 The support of closed polytopes
In this section, we give a knapsack polytope P of dimension d + 1 and show that there exists
a vector t ∈ Zd+1 such that we need at least 2d − 1 points in P to represent t as a conic
integer combination. We adapt a construction pioneered by Goemans and Rothvoss in [13]
and set

X = {O} ∪ {(x1, . . . , xd, (4k)
∑d−1

i=0
2ixi) | xi ∈ {0, 1}∀i ∈ [d]} \ {(0, . . . , 0, 1)}}

= {a0, a1, . . . , ak}
(5)

with k = 2d − 1 and define P := conv(X). E.g. for d = 2, we have

X =


0

0
0

 ,

 1
0
4k

 ,

 0
1

(4k)2

 ,

 1
1

(4k)3

 .

Assume that the elements in X are sorted according to their length, i.e., ∥a0∥∞ = 0 and
∥ai∥∞ = (4k)i for all i ∈ [k]. Then the following lemma proves the goal of this section.

▶ Lemma 6. Set t =
∑k

i=0 ai. The conic combination t =
∑k

i=1 ai is unique (except for
arbitrarily adding a0). This implies that we need all 2d − 1 points in P exactly once to
represent t as a conic integer combination.

Proof. Each integer conic combination that represents t and includes O can be transformed
into an integer conic combination of less points by removing O. Therefore, we can assume
that O is not part of the conic combination.

Now considering P , the only integer points in P are the elements in X, i.e., P ∩Zd+1 = X.
This holds due to the first d coordinates. For all µi ∈ (0, 1) with

∑
i µi = 1 it holds that

µi · 0 + µj · 1 ̸∈ Z and for each pair of vectors (ai, aj) ∈ X with i ≠ j, there is at least one
coordinate ℓ, where with ai(ℓ) = 0 and aj(ℓ) = 1 or ai(ℓ) = 1 and aj(ℓ) = 0. Thus, there can
not be any integer points other than X in P ∩ Zd+1.

Now consider an arbitrary integer conic combination
∑k

i=1 µiai = t =


2d−1

...
2d−1∑k

i=1(4k)i

 .

Since t1 = · · · = td−1 = 2d−1 and we do not include O, we can not take a single vector more
than 2d−1 ≤ k times. Furthermore, we can not take more than dk vectors total, as each
vector except O has an entry in at least one of the d dimensions, and each entry can only
sum up to k. This leaves us with the following:

0 ≤
k∑

i=1
µi ≤ d · 2d−1 ≤ dk, and

µi ≤ 2d−1 ≤ k ∀i ∈ [k]

i.e., that at most dk vectors can be summed up to reach t and each vector is taken ≤ k times.

ESA 2025



48:8 The Support of Bin Packing Is Exponential

We now show that µi = 1 for all i ∈ [k] is the only solution to t =
∑k

i=1 µiai. First,
observe that td+1 =

∑k
i=1(4k)i < 2(4k)k holds. Therefore, we have µk < 2. Next, observe

that k(4k)x−1 < (4k)x − (4k)x−1 ⇔ (k + 1)(4k)x−1 < (4k)x holds for all x ∈ Z≥1 because
(k +1) < 4k. Because of this, even after adding the maximum possible k copies of the k −1-th
item, we have that td+1 − k(4k)k−1 > (4k)k−1. We can only compensate this difference by
adding smaller items. Here, we can apply the argument iteratively, as we can only add
k copies of column (k − 2) to sum up to a value > (4k)k−1. Thus,

∑k−1
i=1 k(4k)i < (4k)k

holds. Therefore, we can not sum up to (4k)k without the last item and µk > 0 directly
follows. Taking µk < 2 and µk > 0 together, we have µk = 1. Because of µk = 1, we have
td+1 =

∑k
i=1 −1(4k)i, and we only need to consider µi, i ∈ [k − 1]. Then, this argument can

be applied iteratively, yielding µi = 1 for all i ∈ [k]. ◀

By Lemma 6, we have shown that we require 2d − 1 different points in P to represent a
vector t as a conic integer combination. In the following we build the bridge to Bin Packing
and prove that there exists a Bin Packing instance where the first d + 1 dimensions of the
solution vector of its configIP equals the integer points in P . In total, our Bin Packing
instance has O(d) dimensions which then with Lemma 6 implies the exponential lower bound
of Bin Packing and therefore Theorem 1.

4.2 Construction of the ILP
In this section, we now aim to construct an ILP with equality constraints, where the first
d + 1 coordinates in its solution vectors are unique and form the following set:

{(xbin
0 , . . . , xbin

d−1, γ
∑d−1

ℓ=0
2ℓxbin

ℓ ) | xbin
ℓ ∈ {0, 1}∀ℓ ∈ [d − 1]0} \ {(0, . . . , 0, 1)}}. (6)

Note that this is exactly the set X of points in P in the prior section without a0 = O and
where γ = 4k and that the solution vectors form the configurations in the configIP.

Also note that the last coordinate is of the form γi for some i ∈ Z≥1 and the first d

coordinates are the binary encoding of i. We first define a variable r(d), which we use to
construct a set of constraints that is only feasible if r(d) = γi holds for some i ∈ Z≥1.

Additionally, a certain set of variables in the constraints matches the points in Equation (6).
In second part of this section, we use the aggregation presented in Section 3 to transform
these constraints into a single knapsack constraint. We provide a proof that the knapsack
constraint is indeed equivalent to the proposed set of constraints (i.e., both allow the same
set of solutions) and requires O(d) many variables. With this equivalence, we then have that
the first d + 1 dimensions of the configurations in the configIP form the set Equation (6).
In combination with the Lemma 6, this then implies that there exists an exponential lower
bound on the support of the Bin Packing problem.

Next, assume that we are given a dimension d ∈ Z≥1 and a base γ ∈ Z≥2. We introduce
a set of constraints with O(d) variables which has exactly 2d − 1 integer solutions. For
each i ∈ [2d − 1], the variable r(d) of the solution vector is forced to take the value γi.
Additionally, the variables xbin(ℓ) ∈ {0, 1}, ℓ ∈ [d − 1]0 match the binary encoding of i, i.e.,
i =

∑d−1
ℓ=0 2ℓxbin(ℓ).

For a brief overview, our constraints behave as follows. First, the value r(d) is some
integer in the interval [2, γ2d−1]. Let us assume that r(d) = γi for some i. Later, we show
that we only allow those integers that equal γi where i is a positive integer. Next, for each
ℓ = d − 1, . . . , 0, we introduce the variable y(ℓ) that helps us to correctly determine the bit
xbin(ℓ) of the binary encoding. We also introduce the variable z(ℓ) that helps us to determine
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the r(ℓ) which will then be used recursively. For a more detailed version of the procedure
of converting a decimal number i ∈ Z≥1 to binary, we refer to Algorithm 1. Note that the
number we aim to convert is in the exponent of γ.

Algorithm 1 Decimal to Binary.
Input: Dimension d ∈ Z≥1; Base γ ∈ Z≥2; Exponent i ∈ Z≥1
Output: Binary encoding xbin of i

1: Set r(d) := γi with i ∈ Z≥1 and γi ≤ γ2d−1.
2: for ℓ = d − 1, . . . , 0 do
3: if r(ℓ + 1) ≥ γ2ℓ then
4: Record a 1 in position ℓ, i.e., xbin(ℓ) := 1.
5: Subtract 2ℓ from the current exponent, i.e., r(ℓ) := r(ℓ+1)

γ2ℓ .
6: else
7: Record a 0 in position ℓ, i.e., xbin(ℓ) := 0.
8: Do not change the current exponent, i.e., r(ℓ) := r(ℓ + 1).

return the vector xbin(ℓ), ℓ ∈ [d − 1]0

The following set of constraints simulates this algorithm. Let α be some integer number
larger than 3. Later, α represents the total number of constraints. Each set of constraints
Cℓ,k, k ∈ [13] is defined for all ℓ ∈ [d − 1]0. They simulate the algorithm above. Additionally,
Cα−2 bounds r(d), i.e., ensures its binary encoding has at most d bits. C0 guarantees that
in the end, there is no remainder left. This constraint is also needed to guarantee that
the exponent i is integer (Lemma 12). Also, we do not want to allow i = 0, respectively
xbin(ℓ) ̸= 0. That is done by Cα−3. Thus, in total, we have 13d + 3 constraints.

▶ Constraints 1. For each ℓ ∈ [d − 1]0, we have the following set of constraints:

y(ℓ) ≥ 0 (Cℓ,1)
y(ℓ) ≤ (r(ℓ+1)/γ2ℓ) + 1/(γ2ℓ

+1) (Cℓ,2)
y(ℓ) ≥ (r(ℓ+1)/γ2ℓ) − (γ2ℓ

−1)/γ2ℓ (Cℓ,3)
xbin(ℓ) ≥ 0 (Cℓ,4)
xbin(ℓ) ≤ 1 (Cℓ,5)
xbin(ℓ) ≤ y(ℓ) (Cℓ,6)

y(ℓ) ≤ (γ2ℓ + 1)xbin(ℓ) (Cℓ,7)
r(ℓ) ≥ 0 (Cℓ,8)

(γ2ℓ − 1)z(ℓ) + r(ℓ) = r(ℓ + 1) (Cℓ,9)
z(ℓ) ≥ 0 (Cℓ,10)
z(ℓ) ≥ −γ2ℓ + γ2ℓ

xbin(ℓ) + r(ℓ) (Cℓ,11)
z(ℓ) ≤ γ2ℓ

xbin(ℓ) (Cℓ,12)
z(ℓ) ≤ r(ℓ) (Cℓ,13)

Also, we add the additional constraints C0, Cα−3 and Cα−2

r(0) = 1 (C0)
r(d) ≥ 2 (Cα−3)
r(d) ≤ γ2d−1 (Cα−2)

All of the constraints are necessary to ensure that r(d) takes some value of the form
γi, i ∈ Z≥1, while xbin is the binary encoding of i. Moreover, the constraints forbid any other
assignment of r(d) and xbin. All other variables are forced to take a specific value based on i.
In the full version, we give an example that we cannot omit the variables z(ℓ), as that would
allow other solutions with r(d) = γi, i ∈ Z≥1.
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For easier understanding, we now present an example.

▶ Example 7. Let γ ∈ Z≥2 and set d := 3. Then, for i ∈ [7], we get the following values for
the variables.

i 1 2 3 4 5 6 7
r(3) γ1 γ2 γ3 γ4 γ5 γ6 γ7

y(2) 0 0 0 1 γ1 γ2 γ3

y(1) 0 1 γ1 0 0 1 γ1

y(0) 1 0 1 0 1 0 1

xbin(2) 0 0 0 1 1 1 1
xbin(1) 0 1 1 0 0 1 1
xbin(0) 1 0 1 0 1 0 1

r(2) γ1 γ2 γ3 γ4−4 = 1 γ5−4 = γ1 γ6−4 = γ2 γ7−4 = γ3

r(1) γ1 γ2−2 = 1 γ3−2 = γ1 1 γ1 γ2−2 = 1 γ3−2 = γ1

r(0) γ1−1 = 1 1 γ1−1 = 1 1 γ1−1 = 1 1 γ1−1 = 1

z(2) 0 0 0 1 γ1 γ2 γ3

z(1) 0 1 γ1 0 0 1 γ1

z(0) 1 0 1 0 1 0 1

Now, we state properties for the variables y(ℓ), xbin(ℓ), r(ℓ), z(ℓ) based on the value of
r(ℓ + 1). After that, we prove that the vector xbin is indeed the binary encoding of i.

Cℓ,1, Cℓ,4, Cℓ,8 and Cℓ,10 are lower bounds of the variables y(ℓ), xbin(ℓ), r(ℓ) and z(ℓ). We
omit these constraints later on by restricting all variables of the constructed ILP to be
non-negative.

Cℓ,1 to Cℓ,3 ensure that the currently most significant bit is assigned correctly. As the
values of y(ℓ) are assigned from the most significant bit to the least significant bit, this
ensures the correctness of the binary encoding. More specifically, we have the following
property.

▶ Observation 8. Constraints Cℓ,1 to Cℓ,3 imply

y(ℓ)
{

= 0, if r(ℓ + 1) < γ2ℓ

≥ 1 if r(ℓ + 1) ≥ γ2ℓ

Proof. We show this by analyzing the cases separately:
Case 1: Assume r(ℓ + 1) < γ2ℓ

. Cℓ,2 states y(ℓ) ≤ r(ℓ+1)/γ2ℓ + 1/(γ2ℓ
+1). With the

assumption and the fact that r(ℓ + 1) is integer, we get y(ℓ) ≤ (γ2ℓ
−1)/γ2ℓ + 1/(γ2ℓ

+1). Now,
1/(γ2ℓ

+1) < 1/γ2ℓ implies y(ℓ) < γ2ℓ

/γ2ℓ = 1. Since y(ℓ) is also restricted to integer values we
get y(ℓ) = 0 with Cℓ,1. Now, we only need to show that the other constraint is also fulfilled
for y(ℓ) = 0. For Cℓ,3 we get 0 = y(ℓ) ≥ r(ℓ+1)/γ2ℓ − (γ2ℓ

−1)/γ2ℓ
, since r(ℓ + 1) ≤ γ2ℓ − 1 which

completes this part of the proof.
Case 2: Assume r(ℓ + 1) ≥ γ2ℓ

. Cℓ,3 states y(ℓ) ≥ r(ℓ+1)/γ2ℓ − (γ2ℓ
−1)/γ2ℓ . With the

assumption, we get y(ℓ) ≥ 1 − (γ2ℓ
−1)/γ2ℓ

> 0. Since y(ℓ) is restricted to integer values we
get y(ℓ) ≥ 1. Now, we only need to show that the other constraints are also fulfilled for y(ℓ).
This clearly holds for Cℓ,1. For Cℓ,2 we get 1 ≤ y(ℓ) ≤ r(ℓ+1)/γ2ℓ +1/(γ2ℓ

+1), since r(ℓ+1)/γ2ℓ ≥ 1
and 1/(γ2ℓ

+1) ≤ 1. This finalizes the proof. ◀
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In particular, we have that the value of y(ℓ) = ⌊r(ℓ+1)/γ2ℓ + 1/(γ2ℓ
+1)⌋ is unique for given

r(ℓ + 1). This is due to the fact that the feasible interval (given by Cℓ,2 and Cℓ,3)) is of size
1 − 1/γ2ℓ ≤ 1/(γ2ℓ

+1) + (γ2ℓ
−1)/γ2ℓ

< 1. The second inequality implies that there exists at
most one integer value in the interval. The first inequality in combination with the fact that
r(ℓ + 1) is integer, we also have that there must exist an integer value in the interval.

Now, we are able to show that the xbin(ℓ), ℓ ∈ [d − 1]0 matches the binary encoding of
i. Cℓ,6 ensures that xbin(ℓ) = 0 if y(ℓ) = 0, while Cℓ,7 provides that xbin(ℓ) > 0 if y(ℓ) > 0.

Taken together with Cℓ,5 and the fact that xbin(ℓ) is integer, we observe the following.

▶ Observation 9. Constraints Cℓ,1 to Cℓ,7 imply

xbin(ℓ) =
{

0, if r(ℓ + 1) < γ2ℓ

1, if r(ℓ + 1) ≥ γ2ℓ

Proof. We show this by again separately analyzing the cases:
Case 1: Assume r(ℓ + 1) < γ2ℓ

. With Observation 8, we know y(ℓ) = 0. Cℓ,6 now implies
xbin(ℓ) = 0. This also fulfills Cℓ,4, Cℓ,5 and Cℓ,7.

Case 2: Assume r(ℓ + 1) ≥ γ2ℓ

. Observation 8 and Cℓ,7 now imply xbin(ℓ) ≥ 1. With Cℓ,5
we get xbin(ℓ) = 1. This also fulfills Cℓ,4 and Cℓ,6 and finalizes the proof.

Note that this also upper bounds the value of y(ℓ). Since xbin(ℓ) ≤ 1, Cℓ,7 implies
y(ℓ) ≤ γ2ℓ + 1. ◀

And finally, Cℓ,10 to Cℓ,13 represent the remainder calculation and ensure that the con-
straints can be used recursively. More concretely, we have the following behavior.

▶ Observation 10 (Q). Constraints Cℓ,8 to Cℓ,13 imply

r(ℓ) =
{

r(ℓ + 1), if r(ℓ + 1) < γ2ℓ

r(ℓ+1)/γ2ℓ
, if r(ℓ + 1) ≥ γ2ℓ

Also, for each ℓ ∈ [d]0, the remainder is bounded by r(ℓ) ≤ γ2ℓ − 1.

Proof Outline. We prove this statement via case distinction and induction over ℓ. Due to
space concerns the proof can be found in the full version. ◀

Now, we prove that if the Constraints 1 are feasible, then r(d) is of the form γi, i ∈ Z≥1
and xbin is the binary encoding of i. We also show that the constraints do not permit any
other integer solutions.

▶ Lemma 11. Let d ∈ Z≥1 and γ ∈ Z≥2. If there exists an i ∈ Z≥1 such that r(d) = γi, i ∈
Z≥1, with γi ≤ γ2d−1, then xbin is the binary encoding of i.

Proof. Assume, there exists an i ∈ Z≥1 such that r(d) = γi and γi ≤ γ2d−1. We prove that
xbin is the binary encoding of i by induction over ℓ = d − 1, . . . , 0.

Base Case: By the assumption r(d) = γi, we have that r(d) is correctly set.
Inductive Step: Let ℓ ∈ [d − 1] and assume that r(ℓ) is the correct remainder in the ℓ-th

iteration. Following the procedure described at the beginning of this section, we know that
xbin(ℓ − 1) is required to be 1 if r(ℓ) ≥ γ2ℓ−1 and 0 otherwise. This property holds due to
Observations 8 and 9. By Observation 10, we know that the next remainder r(ℓ − 1) is
correctly set to r(ℓ)/γ2ℓ−1 if r(ℓ) ≥ γ2ℓ−1 and to r(ℓ) otherwise. ◀
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Now, we know that xbin is the binary encoding of i, if there exists i ∈ Z≥1 with γi ≤ γ2d−1

and r(d) = γi. To finalize that the constraints fulfill the desired property, we need to show
that the constraints are infeasible for any other value of r(d).

▶ Lemma 12. Let d ∈ Z≥1 and γ ∈ Z≥2. If r(d) = γi for some i ̸∈ Z≥1 holds, then the
Constraints 1 are infeasible.

Proof. Assume r(d) = γi for some i ̸∈ Z≥1. Note that we can formulate any integer number
k in the form γlog k/log γ. The proof is split into different cases. For each case, we lead the
constraints to a contradiction.

Case 1: First, we show that the set of constraints is infeasible when i is negative. Let
d ∈ Z≥1 and γ ∈ Z≥2. Set j := −i. By the assumption, we have r(d) = γi = 1/γj. This
contradicts the constraint that r(d) is required to be integer.

Case 2: We now show that the set of constraints is infeasible when i is not integer. Let
γ ∈ Z≥2 and i /∈ Z≥0. Again set r(d) = γi. We now show by induction that the exponent
p(ℓ) of γ is not integer for all ℓ ∈ [d]. This then leads to a contradiction. This contradiction
appears either at the additional constraint r(0) = 1 or already at constraint Ck,9 for some
k ∈ [d − 1]0.

Base Case: By definition of i in this case, i is not integer and with the assumption
r(d) = γi = γp(d) we get i = p(d) and therefore p(d) is not integer. Note that the assumption
that the value γp(d) is assigned to the variable r(d) implies that γp(d) must be integer.

Inductive Step: Let ℓ ∈ [d] and assume p(ℓ) is not integer and r(ℓ) = γp(ℓ) is integer.
Now we can meet the following two cases. Either, r(ℓ) < γ2ℓ−1 or r(ℓ) ≥ γ2ℓ−1 . In the
first case, Observation 10 gives r(ℓ − 1) = r(ℓ) which directly implies p(ℓ − 1) = p(ℓ). Thus,
p(ℓ − 1) is not integer and r(ℓ − 1) is integer. In the second case, with Observation 10 we get
r(ℓ − 1) = r(ℓ)/γ2ℓ−1 = γp(ℓ)

/γ2ℓ−1 = γp(ℓ)−2ℓ−1
. Since p(ℓ) is not integer and 2ℓ−1 is integer,

we get that p(ℓ − 1) = p(ℓ) − 2ℓ−1 is not integer. If now r(ℓ − 1) = γp(ℓ−1) is integer, we
repeat the inductive step. However, if r(ℓ − 1) = γp(ℓ−1) is not integer, there is no feasible
integer assignment for r(ℓ − 1) as Cℓ,9 is an equality constraint.

If r(ℓ) is integer for all ℓ ∈ [d], we get that p(0) is not integer. This implies r(0) = γp(0).
This is a contradiction to r(0) = 1.

Case 3: The only case left is γi = 1, i.e., i = 0. Again, by the assumption, we get
r(d) = γi = 1 which directly contradicts Cα−3 which states r(d) ≥ 2. ◀

Thus, we have shown that the Constraints 1 are feasible if and only if variable r(d) takes
a value of the form γi for given γ ∈ Z≥2 and positive integer i (Lemma 12). Additionally,
xbin matches the binary encoding of i, i.e., it holds that i =

∑d−1
ℓ=0 2ℓxbin(ℓ) (Lemma 11).

The attentive reader might have noticed that in Example 7 the values of y(ℓ) and z(ℓ)
match for all values of i and ℓ. In the full version, we show that we can not simply replace
z(ℓ) with y(ℓ) in Cℓ,9.

4.3 Aggregation of the Constraints
Before we can aggregate the constraints into a single knapsack constraint, we need to
transform the inequalities into equations such that we achieve an ILP of the form considered
in Section 3. We can do that by introducing slack variables. Also, we omit the lower bounds
Cℓ,1, Cℓ,4, Cℓ,8 and Cℓ,10 by restricting all variables to only take non-negative values. This
results in the following new set of constraints:
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▶ Constraints 2.

r(0) = 1
(γ2ℓ+1 + γ2ℓ)y(ℓ) − (γ2ℓ + 1)r(ℓ + 1) + s1(ℓ) = γ2ℓ ∀ℓ ∈ [d − 1]0

−γ2ℓ

y(ℓ) + r(ℓ + 1) + s2(ℓ) = γ2ℓ − 1 ∀ℓ ∈ [d − 1]0
xbin(ℓ) + s3(ℓ) = 1 ∀ℓ ∈ [d − 1]0

xbin(ℓ) − y(ℓ) + s4(ℓ) = 0 ∀ℓ ∈ [d − 1]0
y(ℓ) − (γ2ℓ + 1)xbin(ℓ) + s5(ℓ) = 0 ∀ℓ ∈ [d − 1]0
(γ2ℓ − 1)z(ℓ) + r(ℓ) − r(ℓ + 1) = 0 ∀ℓ ∈ [d − 1]0

γ2ℓ

xbin(ℓ) − z(ℓ) + r(ℓ) + s7(ℓ) = γ2ℓ ∀ℓ ∈ [d − 1]0
−γ2ℓ

xbin(ℓ) + z(ℓ) + s8(ℓ) = 0 ∀ℓ ∈ [d − 1]0
z(ℓ) − r(ℓ) + s9(ℓ) = 0 ∀ℓ ∈ [d − 1]0

r(d) − sα−3 = 2
r(d) + sα−2 = γ2d−1

Now, we add the upper bounds of the variables. With Observation 10, we have r(ℓ) ≤ γ2ℓ − 1.
In combination with Observation 8, we get y(ℓ) ≤ ⌊(γ2ℓ+1

−1)/γ2ℓ + 1/(γ2ℓ
+1)⌋ ≤ γ2ℓ . xbin(ℓ) is

bounded by 1 due to Cℓ,5 and it holds that z(ℓ) ≤ min(γ2ℓ

, γ2ℓ − 1) = γ2ℓ − 1 by Cℓ,12 and
Cℓ,13. The slack variables are bounded by the coefficients, the variables and the right-hand-
side of their constraint. For instance, since γ2ℓ

xbin(ℓ) − z(ℓ) + r(ℓ) + s7(ℓ) = γ2ℓ , we have
s7(ℓ) = γ2ℓ − γ2ℓ

xbin(ℓ) + z(ℓ) − r(ℓ). With xbin(ℓ) ≥ 0, r(ℓ) ≥ 0 and the bound on z(ℓ),
this implies s7(ℓ) ≤ γ2ℓ + γ2ℓ − 1 = 2γ2ℓ − 1.

Now, as done in Section 3, we define U to be the sum of the upper bounds of all variables
(including slacks) and introduce the constraint which restricts the sum of all variables by U .
Let v :=

∑d−1
ℓ=0 (y(ℓ)+z(ℓ)+r(ℓ)+

∑9
j=1(sj(ℓ)))+r(d)+sα−3+sα−2 be the sum of all variables.

Thus, our additional constraint is v + sα = U. Setting M := 2γ2d · U + γ2d−1 + 2γ2d + 2 and
multiplying the ILP with the vector (1, M, M2, . . . , Mα−1) results in an ILP of the form (3)
which is equivalent to the Constraints 2.

Lemma 5 now implies that vector sol = (xbin, y, z, r, s)T ∈ Z12d+4
≥0 is a feasible solution

to Constraints 2 if and only if sol is a solution to

r(0) +
∑d−1

ℓ=0

(
M9ℓ+1(

(γ2ℓ+1 + γ2ℓ)y(ℓ) − (γ2ℓ + 1)r(ℓ + 1) + s1(ℓ)
)

+M9ℓ+2(
− γ2ℓ

y(ℓ) + r(ℓ + 1) + s2(ℓ)
)

+M9ℓ+3(
xbin(ℓ) + s3(ℓ)

)
+M9ℓ+4(

xbin(ℓ) − y(ℓ) + s4(ℓ)
)

+M9ℓ+5(
y(ℓ) − (γ2ℓ + 1)xbin(ℓ) + s5(ℓ)

)
+M9ℓ+6(

(γ2ℓ − 1)z(ℓ) + r(ℓ) − r(ℓ + 1)
)

+M9ℓ+7(
γ2ℓ

xbin(ℓ) − z(ℓ) + r(ℓ) + s7(ℓ)
)

+M9ℓ+8(
− γ2ℓ

xbin(ℓ) + z(ℓ) + s8(ℓ)
)

+M9ℓ+9(
z(ℓ) − r(ℓ) + s9(ℓ)

))
+Mα−3(

r(d) − sα−3
)

+Mα−2(r(d) + sα−2)
+Mα−1(v + sα)

= 1 +
∑d−1

ℓ=1

(
M9ℓ+1γ2ℓ + M9ℓ+2(γ2ℓ − 1) + M9ℓ+3 + M9ℓ+7γ2ℓ

)
+Mα−3 · 2 + Mα−2γ2d−1 + Mα−1U.

(7)
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This equation can be transformed into an unbounded knapsack constraint by grouping
coefficients such that each variable only occurs once. These coefficients then define the item
size vector s. For example, the sizes of the item xbin(ℓ), ℓ ∈ [d − 1]0 is sxbin(ℓ) = M9ℓ+3 +
M9ℓ+4 + M9ℓ+7 · γ2ℓ − M9ℓ+8 · γ2ℓ . To complete the transformation, set the lower bound of
each variable to 0 and exchange the equality into ≤, i.e., the sum of item sizes and multiplicites
is at most the right hand side. Denote the polytope as P = {x ∈ Rd|xi, sT x ≤ C}. All
feasible configurations are then integer points in P , i.e., p ∈ P ∩ Zd.

4.4 Main proof

With this, we are ready to prove our main theorem.

▶ Theorem 1. There exists a high-multiplicity Bin Packing instance of dimension d such
that the solution-vector x (a vector of configurations) contains at least 2Ω(d) non-zero entries,
i.e., |supp(x)| ∈ 2Ω(d).

Proof. Let d′ ∈ Z≥0. The dimension of the Bin Packing instance has dimension d, i.e.,
number of different item sizes, d = 12d′ + 4. Denote the capacity of a single bin as C and set
the sizes according to (7), and denote them as the size vector s. Set C to be the right hand
side of the knapsack constraint (7). Define the knapsack polytope P = {x ∈ Rd|xi, sT x ≤ C}.

Let X be the set of all solutions in P ∩Zd, i.e., with total size less than or equal to C. Define
X∗ = {x ∈ X|sT x = A} to be the set of all solutions with size exactly C. See Figure 3 for
an illustration. Thus, X is the set of all feasible configurations. By the definition of the
knapsack constraint and Lemma 12, we know that |X∗| = 2d′ − 1 =: k, as (7) has exactly one
solution for every possible combination of xbin(ℓ), ℓ ∈ [d − 1]0 with xbin(ℓ) ∈ {0, 1}. Define
the total amount of items y as the sum of all configurations, i.e., y =

∑
x∈X∗ x. Thus, the

total size of all items to be placed is yT · s = kC.

Clearly, the optimal solution to this Bin Packing instance uses exactly k bins. One
possible solution is to take each configuration in X∗ exactly once. In the following we show
that this is the only solution using elements in X and using exactly k bins. Now, define the
projection π : x → (xbin(0), . . . xbin(d′ −1), r(d′)). This projection reduces every configuration

to just the binary encoding and the value r(d′). It holds that π(y) =


2d−1

...
2d−1∑k

i=1(4k)i

 . Recall

that we set γ = 4k. We can not consider configurations in X \ X∗ as they have size < C. As
the total size of the right hand size is exactly kC taking one of these configurations while
still using k bins would require another bin to be filled > C, which is infeasible due to (7).
Thus, there are no other feasible configurations, as only those of the form (after applying
π) exactly like in Lemma 6, i.e., those in X∗, have size exactly C. Thus, when applying
the projection π, we have met the conditions of applying Lemma 6 and know that the only
optimal solution takes each of the k vectors exactly once.

Therefore, after removing the projection, the only optimal solution to the Bin Packing
instance uses every configuration in X∗ exactly once, and therefore we have |supp(x)| = k =
2d′ − 1. As we have d = 12d′ + 4 we have |supp(x)| ∈ 2Ω(d). ◀
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s1

s2

X∗

X

Figure 3 A 2-dimensional example of the knapsack constraint with item types s1, s2. The shaded
area denotes the knapsack polytope P . The points resemble integer points and show all feasible
configurations. Integer points in the shaded region are the configurations in the set X. Integer
points on the red line form the set X∗ of configurations. Only configurations in X∗ fill the knapsack
constraint with equality.
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