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Abstract
We present algorithms for the online minimum hitting set problem in geometric range spaces: Given
a set P of n points in the plane and a sequence of geometric objects that arrive one-by-one, we
need to maintain a hitting set at all times. For disks of radii in the interval [1, M ], we present an
O(log M log n)-competitive algorithm. This result generalizes from disks to positive homothets of
any convex body in the plane with scaling factors in the interval [1, M ]. As a main technical tool,
we reduce the problem to the online hitting set problem for a finite subset of integer points and
bottomless rectangles. Specifically, for a given N > 1, we present an O(log N)-competitive algorithm
for the variant where P is a subset of an N × N section of the integer lattice, and the geometric
objects are bottomless rectangles.
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1 Introduction

In the general form of the Hitting Set problem, we are given a point set P and a collection of
subsets C = {S1, . . . , Sm}, and we need to find a subset H ⊂ P (hitting set) of minimal size
such that every set Si ∈ C contains some point in H. In the Online Hitting Set problem,
the set P is known in advance, but the subsets S1, S2, . . . in C arrive one at a time (without
advance knowledge). We need to maintain a hitting set Hi ⊆ P for the first i sets {S1, . . . , Si}
such that Hi ⊆ Hi+1 for all i ≥ 1 (that is, we can add new points to the hitting set, but we
cannot delete any point). The study of the Online Hitting Set problem (which is dual to the
Online Set Cover problem) was initiated by Alon et al. [2]. They designed a deterministic
algorithm with competitive ratio O(log |P | log |C|) and obtained almost matching lower bound
of Ω

(
log |P | log |C|

log log |P |+log log |C|

)
.

Geometric Hitting Set. In the geometric Hitting Set problem, we have P ⊆ Rd for some
constant dimension d, and the sets in C are geometric objects of some type: for example,
balls, unit balls, simplices, axis-aligned cubes, or hyper-rectangles. Depending on whether P

is finite or infinite, there are different versions of the problem. In this paper, we consider P

to be a finite set of points in R2.
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50:2 Online Hitting Sets for Disks of Bounded Radii

Related Previous Work. When P is finite, Even and Smorodinsky [12] initiated the study
of the geometric online Hitting Set problem for various geometric objects. They established
an optimal competitive ratio of Θ(log |P |) when the objects are intervals in R, or half-planes
or congruent disks in the plane. Later, Khan et al. [14] investigated this problem for a finite
set of integer points P ⊆ [0, N)2 ∩ Z2 and a collection C of axis-aligned squares S ⊆ [0, N)2

with integer coordinates for N > 0. They developed an O(log N)-competitive algorithm
for this variant. They also established a randomized lower bound of Ω(log |P |), where
P ⊂ R2 consists of finitely many points and C consists of translates of an axis-aligned square.
Recently, De et al. [6] considered the variant when P is set of n points in R2 and C consists
of homothetic copies of a regular k-gon (for k ≥ 4) with scaling factors in the interval [1, M ],
and designed an O(k2 log M log n)-competitive randomized algorithm. Even though a disk
can be approximated by a regular k-gon as k → ∞, this does not imply any competitive
algorithm for disks with radii in the interval [1, M ].

Our results and Technical Contribution. We study the Online Hitting Set problem when
P is set of n points in R2. Table 1 summarizes the existing results and the results of the
current paper.

Table 1 Summary of known and new results for the geometric Online Hitting Set problem where
|P | = n is finite. (#) indicates randomized results. Our results are listed in the last three lines.

Points Objects Lower Bound Upper Bound

P ⊂ R Intervals in R Ω(log n) [12] O(log n) [12]
P ⊂ R2 Half-planes and translates of a disk

in R2
Ω(log n) [12] O(log n) [12]

P ⊆ [0, N)2 ∩ Z2 Axis-aligned squares in [0, N)2 ∩ Z2

with integer coordinates
Ω(log n) [14]
(#)

O(log N) [14]

P ⊂ R Homothetic copies of a regular k-
gon (k ≥ 4) with scaling factors in
the interval [1, M ]

Ω(log n) [14]
(#)

O(k2 log M log n) [6]
(#)

P ⊆ [0, N)2 ∩ Z2 Bottomless rectangles (for definition,
see Section 2.1)

Ω(log n) [12] O(log N)
[Theorem 1]

P ⊂ R2 Disks having radii in the interval
[1, M ]

Ω(log n) [12] O(log M log n)
[Theorem 12]

P ⊂ R2 Positive homothets of an arbitrary
convex body in R2 with scaling
factors in the interval [1, M ]

Ω(log n) [14]
(#)

O(log M log n)
[Theorem 14]

We now present our contributions and briefly discuss the technical ideas involved.

Bottomless Rectangles in [0, N ]2. We present an O(log N)-competitive deterministic
algorithm for the geometric Online Hitting Set problem, where P ⊂ [0, N)2 ∩ Z2, and C is a
sequence of bottomless rectangles of the form [a, b) × [0, c) arriving one by one (Theorem 1
in Section 2). When a bottomless rectangle [a, b) × [0, c) arrives, our algorithm chooses
hitting points guided by the canonical partition of the interval [a, b] (see Section 2 for
a definition). For each point p in an offline optimum, this structured canonical partition
ensures that O(log N) points are sufficient to hit all the incoming rectangles in [0, N ]2 ∩ Z2

that are hit by p. We prove that our algorithm is O(log N)-competitive for a broader class of
objects– sets S ⊂ [a, b) × R with lowest-point property (see Section 2.2 for a definition).
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Disks with Radii in [1, M ]. Our main result is a deterministic O(log M log n)-competitive
Online Hitting Set algorithm for an arbitrary set P of n points in the plane, and a sequence
of disks of radii in the interval [1, M ] (Theorem 12 in Section 4). Previously, an O(log n)-
competitive algorithm was known only for congruent disks [12]. In particular, our result is
the first O(log n)-competitive algorithm that works for disks of radii in the interval [1, 1 + ε]
for any constant ε > 0 (Corollary 13).

However, a finite set of disks in the plane do not necessarily have the lowest-point
property. We reduce the problem to objects with the lowest-point property in two steps.
First, we consider a restricted version, the line-separated setting (Section 3), where the
centers of disks in C lie on one side of a line (w.l.o.g., the x- or y-axis), while P lies on the
other side. We use the concept of disk hull for a point set (introduced by Dumitrescu et
al. [10]), which generalizes the notion of convex hulls and α-hulls. Among other important
properties, the boundary of the disk hull is monotone w.r.t. the separating line. Using these
properties, we reduce the Hitting Set problem in the line-separated setting to objects with
the lowest-point property, and obtain an O(log n)-competitive algorithm in the line-separated
setting (Theorem 9 in Section 3).

In general, there is no restriction on the location of the points in P and the centers of
disks. We reduce the general problem to the line-separated setting as follows: We partition
the disks of radii in the interval [1, M ] into O(log M) layers, ensuring that the ratio of radii
of disks in each layer is bounded by at most 2. For each layer, our algorithm maintains a
tiling of the plane into axis-aligned squares such that (a) any disk of a given layer contains
the entire tile that contains the disk center, and (b) each disk intersects only O(1) tiles.
Our algorithm simultaneously runs several invocations of the line-separating algorithm (one
for each directed grid line). When a disk arrives, our algorithm inserts it into all relevant
invocations of the line-separating algorithms; we show that only O(1) invocations are relevant.
In the competitive analysis, we show that for each point p in an offline optimum solution,
our algorithm uses O(log n) hitting points for the disks in each layer that contain p. Since
there are O(log M) layers, our algorithm is O(log M log n)-competitive.

Homothets of a Convex Body with Diameters in [1, M ]. We generalize our main result
from disks to positive homothets of any convex body in the plane, where the radii in the
interval [1, M ] are replaced by scaling factors in the interval [1, M ] (Theorem 14 in Section 5).
Our online algorithm is based on a two-stage approach, similar to the case of disks, and it is
O(log M log n)-competitive. The key technical difficulty arises from the geometric differences
between a disk and a general convex body. It is easy to extend the concept of a disk hull
to hulls for homothetic convex bodies. However, unlike for disks, the boundary of the hull
is not necessarily x- or y-monotone: We show that it is monotone w.r.t. some carefully
chosen directions. To generalize a layered decomposition of axis-parallel lines, we need two
directions in which the hull is monotone, the two directions must be far apart (in the space of
directions), to create a tiling with properties (a) and (b) above. We call a pair of directions
satisfying these requirements a good pair of directions. We use a careful geometric argument,
which heavily relies on convexity, a suitable affine transformation, and the variational method
(i.e., the intermediate value theorem) to prove that every convex body in the plane admits a
good pair of directions.

1.1 Further Related Work
When the point set P is infinite, one may further distinguish between the continuous setting
where P = Rd (also known as the piercing problem) and the discrete setting where P is
a discrete subset of Rd (for example, P = Zd).

ESA 2025



50:4 Online Hitting Sets for Disks of Bounded Radii

Continuous Setting. In the geometric setting, the duality between the Hitting Set problem
and the Set Cover problem only holds when the objects are translates of a convex body [5,
Theorem 2]. Hence the results obtained for the Set Cover problem for translates of a convex
body also hold for the Hitting Set problem. Charikar et al. [3] studied the Online Set Cover
problem for translates of a ball. They proposed an algorithm with a competitive ratio
O(2dd log d). They also proved Ω(log d/ log log log d) as the deterministic lower bound of
the competitive ratio for this problem. Dumitrescu et al. [9] improved the bounds on the
competitive ratio for translates of a ball, establishing an upper bound of O(1.321d) and a
lower bound of Ω(d + 1). For translates of a centrally symmetric convex body, they proved
that the competitive ratio of every deterministic algorithm is at least I(s), where I(s) is
the illumination number of the object s1. For translates of an axis-aligned hypercube in Rd,
Dumitrescu and Tóth [11] proved that the competitive ratio of any deterministic algorithm
for Online Set Cover is at least 2d. Later, De et al. [5] studied the Online Hitting Set problem
for α-fat objects in Rd with diameters in [1, M ] and designed a deterministic algorithm
with competitive ratio O

(
(2 + 2

α )d log M
)
. For hitting axis-aligned homothetic hypercubes

with side lengths in [1, M ], they gave a deterministic algorithm with competitive ratio at
most 3d⌈ log2 M⌉ + 2d. They also proved a Ω(d log M + 2d) lower bound for the problem of
hitting homothetic hypercubes in Rd, with side lengths in the interval [1, M ].

Discrete Setting. De and Singh [7, 8] studied a variant of this problem where P = Zd

and C consists of translates of a ball or an axis-aligned hypercube in Rd. For translates
of an axis-aligned hypercube, they showed that there is a randomized algorithm with an
expected competitive ratio of O(d2) and also proved that every deterministic algorithm has a
competitive ratio of at least d+1. For translates of a ball in Rd, they proposed a deterministic
algorithm having a competitive ratio of O(d4) and proved that every deterministic algorithm
has a competitive ratio of at least d + 1, for d ≤ 3. Recently, Alefkhani et al. [1] considered
the variant where P = (0, N)d ∩ Zd and C is a family of α-fat objects in (0, N)d, for some
constant α > 0. They proposed a deterministic algorithm with a competitive ratio of at
most ( 4

α + 1)2d log N , and proved that the competitive ratio of every deterministic algorithm
is Ω

(
log N

1+log α

)
. Very recently, De et al. [6] improved both the upper and lower bounds of

Alefkhani et al. [1]. They considered the case where P = Zd and C is a family of α-fat
objects having diameters in [1, M ], for some constant α > 0. They proposed a deterministic
algorithm with competitive ratio O(( 2

α )d log M), and established that the competitive ratio
of any randomized algorithm is Ω(d log M).

2 Bottomless Rectangles and Integer Points

We present an O(log N)-competitive algorithm for the Online Hitting Set problem where P is
a subset of an N × N section of the integer lattice, and the objects are bottomless rectangles
(Section 2.1); and then generalize the algorithm for the same point set but with objects that
have the lowest-point property (Section 2.2).

1 The illumination number of an object s, denoted by I(s), is the minimum number of smaller
homothetic copies of s (λs, where λ ∈ (0, 1)) whose union contains s.
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2.1 Bottomless Rectangles
In this section we present an O(log N)-competitive algorithm for the Online Hitting Set
problem where P is a subset of the integer lattice with nonnegative coordinates less than N ,
that is, P ⊂ [0, N)2 ∩Z2; and the objects are bottomless rectangles. Bottomless rectangles
are of the form ri = [ai, bi) × [0, ci), where 0 ≤ ai < bi ≤ N and 0 ≤ ci ≤ N . Note that there
are only O(N3) combinatorially different rectangles w.r.t. P , so the general result by Alon
et al. [2] gives an algorithm for the online hitting set with competitive ratio O(log2 N). In
this section, we present an O(log N)-competitive algorithm, which is the best possible (a
matching lower bound follows from the lower bound for the Online Hitting Set problem for
intervals in one-dimension [12]).

Preliminaries. We need some preparation before we can present the algorithm. We may
assume w.l.o.g. that N is a power of 2, and every bottomless rectangle ri = [ai, bi) × [0, ci) is
given with integer parameters ai, bi, and ci. An interval I is canonical if it is of the form
I =

[
q2j , (q + 1)2j

)
for some integers q, j ≥ 0. For a canonical interval I =

[
q2j , (q + 1)2j

)
,

we also define the left neighbor L(I) =
[
(q − 1)2j , q2j

)
and the right neighbor R(I) =[

(q + 1)2j , (q + 2)2j
)
. For every canonical interval I, if (I × [0, N)) ∩ P ̸= ∅, then let p(I)

denote a lowest-point in (I × [0, N)) ∩ P ̸= ∅ (that is, a point with minimum y-coordinate;
ties are broken arbitrarily). If (I × [0, N)) ∩ P = ∅, then p(I) is undefined.

For every interval [a, b) with nonnegative integer endpoints, we define a canonical
partition, i.e., a partition of [a, b) into canonical intervals. This partition is standard – we
walk through some of the technical details because we need them for our algorithm and its
analysis. Let j ≥ 0 be the largest integer such that q2j ∈ (a, b), for some q ∈ Z. (Note that
q ∈ Z is unique. Indeed, suppose that q is not unique, say q2j , (q + 1)2j ∈ (a, b). Since q or
q + 1 is even, then q/2 or (q + 1)/2 is an integer. Now, we have q

2 2j+1 or q+1
2 2j+1 ∈ (a, b),

which contradicts the maximality of j.) We call the integer s[a,b) := q2j the splitting
point of [a, b). We can partition a given interval [a, b) into canonical intervals as follows.
If [a, b) is not canonical, find its splitting point s = s[a,b), partition it into two intervals
[a, b) = [a, s) ∪ [s, b), and recurse on [a, s) and [s, b). For example, the splitting point of
interval [5, 11) is 8, and its canonical partition is [5, 11) = [5, 6) ∪ [6, 8) ∪ [8, 10) ∪ [10, 11);
see Figure 1a) for an illustration.

Note also that in the canonical partition of [a, s) (resp., [s, b)), there is at most one
interval of each size, where the possible sizes are powers of 2 between 1 and s − a (resp.,
b − s). Specifically, if I is in the canonical partition of [a, s), then its left neighbor L(I) is
not contained in [a, b), consequently a ∈ L(I), where L(I) is the closure of L(I). Similarly, if
I is in the canonical partition of [s, b), then b ∈ R(I).

Online algorithm ALG for bottomless rectangles. We can now present our online algorithm.
We maintain a hitting set Hi ⊆ P , which is initially empty: H0 = ∅. When the i-th bottomless
rectangle ri = [ai, bi) × [0, ci) arrives, initialize Hi := Hi−1. If ri ∩ Hi ̸= ∅, then do not
add any new points to Hi. Otherwise, we may assume that ri ∩ Hi = ∅. Compute the
splitting point si of [ai, bi), and the canonical partitions Ai and Bi of [ai, si) and [si, bi),
respectively. If ([ai, si) × [0, ci)) ∩ P ̸= ∅, then find the largest canonical interval I ∈ Ai such
that p(I) ∈ ri, and put Hi := Hi ∪ {p(I)}. Similarly, if ([si, bi) × [0, ci)) ∩ P ̸= ∅, then find
the largest interval I ∈ Bi such that p(I) ∈ ri, and put Hi := Hi ∪ {p(I)}. Overall, we add
at most two new points to Hi in step i.

Competitive analysis. We now prove that ALG is O(log N)-competitive.

ESA 2025
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1 2 3 4 5 6 7 8 9 10 11 12

ri

I1 = [6, 8) I2 = [8, 10)
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[a, b] = [1, 9]

I

(b)

Figure 1 (a) When the ith bottomless rectangle ri = [5, 11) × [0, ci) arrives, suppose that the
hitting set Hi contains the orange points, and ri ∩ Hi = ∅. The splitting point of [5, 11) is 8, with
canonical partitions Ai = [5, 6) ∪ [6, 8) and Bi = [8, 10) ∪ [10, 11), respectively. Here, I1 = [6, 8) ⊂ Ai

and I2 = [8, 10) ⊂ Bi are the largest canonical intervals in Ai and Bi, respectively. The blue (resp.,
red) point is the lowest-point in I1 × [0, N) ∩ P (resp., I2 × [0, N) ∩ P ). We add both points to Hi.
(b) The black and red colored points denote the set P , while the red colored points denote the set S.
The yellow strip denotes I × R.

▶ Theorem 1. For the Online Hitting Set problem for a point set P ⊆ [0, N)2 ∩ Z2 and a
sequence of bottomless rectangles, the online algorithm ALG has competitive ratio O(log N).

Proof. Let C be a sequence of bottomless rectangles. Let H and OPT be the hitting set
returned by the online algorithm ALG and an (offline) minimum hitting set of C, respectively.
For a point p ∈ OPT, let Cp be the subsequence of bottomless rectangles that contain p.
It is enough to show that for every p ∈ OPT, our algorithm adds O(log N) points to H in
response to the objects in Cp.

Let p ∈ OPT, with coordinates p = (px, py); and let r1, . . . , rm be a sequence of bottomless
rectangles in Cp for which our algorithm adds new points to the hitting set. We show that
m = O(log N). We can distinguish between two types of rectangles ri = [ai, bi) × [0, ci)
depending on whether the x-coordinate px of p is on the left or right of the splitting point si

of [ai, bi): namely, px < si or si ≤ px. We analyze the two types separately (the two cases
are analogous).

Assume w.l.o.g. that px < si for i = 1, . . . , m. This means that p ∈ [ai, si) × [0, ci), and so
ALG adds the hitting point p(I) for exactly one interval I ∈ Ai. Suppose that the algorithm
adds the hitting point p(I) for I ∈ Ai. Then I is the largest (hence rightmost) canonical
interval in Ai such that (I × [0, ci)) ∩ P ̸= ∅. Recall that ai ∈ L(I), where L(I) is the left
neighbor of the canonical interval I. This implies that px ∈ L(I) ∪ I. That is, either I or
its left neighbor L(I) contains px. Note that px is contained in log N canonical intervals
(one for each possible size), and each of these canonical intervals has a unique right neighbor.
Consequently, I is one of at most 2 log N canonical intervals under the assumption that
px < si for all i = 1, . . . , m. This proves that m ≤ 4 log N . ◀
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2.2 Objects with the lowest-point property
In this section, we generalize Theorem 1 to a broader class of objects. Similarly to Section 2.1,
let P ⊆ [0, N)2 ∩ Z2. For a set S ⊆ P , the span of S, denoted span(S) is the smallest
interval [a, b) with integer endpoints a, b ∈ Z such that S ⊂ [a, b) × R. An object S ⊆ P

has the lowest-point property if for every point s = (sx, sy) in S and every interval
I ⊂ span(S) that contains sx, the object S contains all points in P ∩ (I × R) with the
minimum y-coordinates. For an illustration of set S see Figure 1b. Note, in particular, that
every bottomless rectangle ri = [ai, bi) × [0, ci) has the lowest-point property: Indeed, if
sx ∈ I ⊂ [ai, bi), then I × [0, sy] ⊂ ri.

Our online hitting set algorithm and its analysis readily generalize when the objects
have the lowest-point property. Let C = (S1, . . . , Sm) be a sequence of objects with the
lowest-point property.

Online algorithm ALG0 for objects with the lowest-point property. We maintain a hitting
set Hi ⊆ P , which is initially empty: H0 = ∅. When set Si arrives, initialize Hi := Hi−1.
If Si ∩ Hi ≠ ∅, then do not add any new points to Hi. Suppose that Si ∩ Hi = ∅. Let
[ai, bi) = span(Si). Compute the splitting point si of [ai, bi), and the canonical partitions
Ai and Bi of [ai, si) and [si, bi), respectively. If ([ai, si) × R) ∩ Si ∩ P ̸= ∅, then find the
largest interval I ∈ Ai such that p(I) ∈ Si, and put Hi := Hi ∪ {p(I)}. Similarly, if
([si, bi) × R) ∩ Si ∩ P ̸= ∅, then find the largest interval I ∈ Bi such that p(I) ∈ Si, and put
Hi := Hi ∪ {p(I)}. Overall, we add at most two new points to Hi in step i.

Correctness and competitive analysis. When ALG0 adds a points p(I) to Hi in step i,
the lowest-point property ensures that p(I) ∈ Si. Therefore, ALG0 maintains that Hi is a
hitting set for {S1, . . . , Si}, proving the correctness of ALG0. We now show that ALG0 is
O(log N)-competitive.

▶ Theorem 2. For the Online Hitting Set problem for a point set P ⊂ [0, N ]2 ∩ Z2 and
a sequence C = (S1, . . . , Sm) of objects with the lowest-point property, algorithm ALG0 has
competitive ratio O(log N).

Proof. Let C be a sequence of objects with the lowest-point property. Let H and OPT be
the hitting set returned by the online algorithm ALG0 and an (offline) minimum hitting set
of C, respectively. For each p ∈ OPT, let Cp the subsequence of sets in C that contain p.
It is enough to show that for every p ∈ OPT, our algorithm adds O(log N) points to H in
response to the objects in Cp.

Let p ∈ OPT, with coordinates p = (px, py); and let S1, . . . , Sm be a sequence of sets in
Cp for which our algorithm adds new points to the hitting set. We show that m = O(log N).
We can distinguish between two types of sets Si depending on whether the x-coordinate px

of p is to the left or right of the splitting point si: namely, px < si or si ≤ px. We analyze
the two types separately (the two cases are analogous).

Assume w.l.o.g. that px < si for i = 1, . . . , m. This means that p ∈ [ai, si) × R, and so
ALG adds the hitting point p(I) for exactly one interval I ∈ Ai. Suppose that the algorithm
adds the hitting point p(I) for I ∈ Ai. Then I is the largest (hence rightmost) canonical
interval in Ai such that (I × R) ∩ P ̸= ∅. Recall that ai ∈ L(I), where L(I) is the left
neighbor of the canonical interval I. This implies that px ∈ L(I) ∪ I. That is, either I or
its left neighbor L(I) contains px. Note that px is contained in log N canonical intervals
(one for each possible size), and each of these canonical intervals has a unique right neighbor.
Consequently, I is one of at most 2 log N canonical intervals under the assumption that
px < si for all i = 1, . . . , m. This proves that m ≤ 4 log N . ◀

ESA 2025
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3 Disks in the Plane: Separated Setting

In this section, we consider the Online Hitting Set problem in the plane, where P is a
finite set above the x-axis (given in advance); and C consists of disks of arbitrary radii with
centers located on or below the x-axis (arriving one-by-one). Note that the disks in C do not
necessarily have the lowest-point property; see Figure 2.

x

S

yy

I

sxpx span(S)

p s

Figure 2 Disk S with center below the x-axis does not have the lowest-point property: We have
s ∈ S, and the interval I ⊂ span(S) contains sx, but S does not contain the point p ∈ P with
minimum y-coordinate in the strip I × R.

Disk hulls for a point set w.r.t. disks and its properties. The unit disk hull of a point
set was introduced by Dumitrescu et al. [10] as an analogue of the convex hull. Recall that
the convex hull conv(P ) of a point set P ⊂ R2 is the smallest convex set in the plane that
contains P . Equivalently, it is the intersection of all closed half-planes that contain P ; it can
be computed by the classical “rotating calipers” algorithm, where we continuously rotate
a line ℓ around P while P remains in one closed half-plane bounded by ℓ. Intuitively, we
obtain the unit disk hull of P by rolling a unit disk, with center on or below the x-axis,
around P . We generalize this notion to disks of any fixed radius t > 0.

x

P

∂hull3(P )

hull3(P ) PP

Figure 3 A point set P (red) and region hull3(P ) (pink). The boundary ∂hull3(P ) is composed
of horizontal lines and circular arcs.

▶ Definition 3. Let P ⊂ R2 be a finite set of points above the x-axis and let t > 0. Let
Dt be the set of all disks of radius t with centers on or below the x-axis. Let Mt(P ) be
the union of all disks D ∈ Dt such that P ∩ int(D) = ∅. Now, we define the t-hull of P

as hullt(P ) = R2 \ int(Mt(P )). The boundary of hullt(P ) is denoted by ∂hullt(P ); for an
illustration see Figure 3.
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Dumitrescu et al. [10, Lemma 4] proved that ∂hullt(P ) is x-monotone2 for any t > 0, and
established other properties, which were used by Conroy and Tóth [4], as well.

▶ Lemma 4 (Dumitrescu et al. [10]). For a finite set P ⊂ R2 above the x-axis and t > 0, the
following holds:
1. ∂hullt(P ) lies above the x-axis;
2. every vertical line intersects ∂hullt(P ) in one point, thus ∂hullt(P ) is an x-monotone

curve;
3. for every disk D ∈ Dt, the intersection D ∩ (∂hullt(P )) is connected (possibly empty);
4. for every disk D ∈ Dt, if P ∩ D ̸= ∅, then P ∩ D contains a point in ∂hullt(P ).

x

∂hull3(P )

hull3(P ) P

∂hull1(P )

hull1(P )

D

Figure 4 A point set P (red), hull3(P ) (pink), and hull1(P ) (light blue or pink). A disk D ∈ D3

of radius 3 (dotted blue), where the intersection D ∩ (∂hull1(P )) has two components.

Since we consider the case of disks with bounded radii, for our purposes, we need to
compare two disk hulls for the same point set P w.r.t. different radii; see Figure 4. We start
with an easy observation.

▶ Lemma 5. Let γ1 and γ2 be circular arcs lying entirely above the x-axis, such that γ1
and γ2 are arcs of circles C1 and C2, resp., of radii r1 and r2, with centers on or below the
x-axis.
1. Then both γ1 and γ2 are x-monotone and concave curves.
2. Furthermore, if points p1, p2 ∈ R2 are contained in both γ1 and γ2, and r1 < r2, then γ1

lies above γ2 (i.e., for every vertical line L that separates p1 and p2, point γ1 ∩ L lies
above point γ2 ∩ L).

Proof. (1) For every i ∈ {1, 2}, the center of Ci is below the x-axis, and so the leftmost and
rightmost points of C1 are also below the x-axis. The leftmost and rightmost points partition
Ci into two halfcircles, one above the center and one below the center. Both halfcircles are
x-monotone: The lower halfcircle is convex curve and the upper halfcircle is concave. Since
γi lies entirely above the x-axis, it is contained in the upper halfcirlce, which is x-monotone
and concave.
(2) The locus of centers of circles that contain both p1 and p2 is the orthogonal bisector of
the line segment p1p2, that we denote by (p1p2)⊥. Note that p1p2 is not vertical (or else
(p1p2)⊥ would be a horizontal line above the x-axis, and the centers of C1 and C2 would also
be above the x-axis). As the center a circle containing p1 and p2 continuously moves from
the center of C1 down to y = −∞, the circular arc between p1 and p2 deforms continuously
from γ1 to the line segment p1p2. Since γ1 concave, it lies above the segment p1p2. Since
r1 < r2, the arc γ2 lies between the arc γ1 and the segment p1 and p2. Consequently, then
γ2 lies below γ1, as claimed. ◀

2 A curve in the plane is x-monotone if every vertical line intersects it at most once.
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▶ Lemma 6. For every finite set P ⊂ R2 above the x-axis, the following holds:
1. If 0 < s < t, then for every disk D ∈ Ds of radius s, the intersection D ∩ (∂hullt(P )) is

connected (possibly empty).
2. Suppose that p ∈ P lies on the curve ∂hullt(P ) for some t > 0. Then there is a radius

rp ∈ (0, t) such that p is also on ∂hulls(P ) for all s ∈ [rp, t], but p is below ∂hulls(P ) for
all s ∈ [0, rp).

Proof. (1) Let D ∈ Ds. Suppose, to the contrary, that the intersection D ∩ (∂hullt(P )) has
two or more components. By Lemma 4(2), the x-coordinates of the components form disjoint
intervals, and the components have a natural left-to-right ordering. Let q1 be the rightmost
point in the first component, and let q2 be the leftmost point in the second component.
Clearly q1, q2 ∈ ∂D. Let q′ be an arbitrary point in ∂hull(A) between q1 and q2. Then
q′ lies on the boundary of some disk D′ of radius t whose center is below the x-axis, and
whose interior is disjoint from P . In particular, neither q1 nor q2 is in the interior of D′.
Since the center of D′ is below the x-axis, ∂D′ contains two interior-disjoint circular arcs
between q and the x-axis; and both arcs must cross ∂D. We have found two intersection
points p1, p2 ∈ ∂D ∩ ∂D′ above the x-axis. Furthermore, between p1 and p2, the circular arc
∂D lies above the circular arc ∂D′, contradicting Lemma 5(2). This completes the proof of
Property 1.
(2) Consider a point p ∈ P that lies on the curve ∂hullt(P ) for some t > 0. Then there exists
a disk D ∈ Dt of radius t centered at some point c below the x-axis such that p ∈ ∂D. Let
c1 be the intersection point of the x-axis the line cp, and c2 the orthogonal projection of p

to the x-axis. We describe two continuous motions, where the disk D continuously changes
while p is in the circle ∂D and there is no point in P in the interior of D: First, a central
dilation from center p continuously moves D to a disk D1 centered at c1. Second, the center
of D moves from c1 towards c2 continuously until its center reaches c2 or a point c3 where
∂D contains both p and another point p′ ∈ P . Let rp be radius of D at that time. The
continuous motion shows that p ∈ ∂hulls(P ) for all s ∈ [rp, t], but it is not in ∂hulls(P ) for
all s < rp. ◀

Note that Lemma 6(1) is not symmetric for s < t: For a disk D ∈ Dt of radius t, the
intersection D ∩ (∂hulls(P )) is not necessarily connected; see Figure 4 for an example.

Reduction. We can reduce the Online Hitting Set problem for a finite set P ⊂ R2 and
disks of bounded radii in the separated setting, to the Online Hitting Set problem for a finite
subset of integer points and objects with the lowest-point property. We achieve the reduction
in two steps:
(1) We choose a subset Q ⊆ P of points that are relevant for a hitting set (Lemma 7); and
(2) we map the points in P into a set of integer points P ′ ⊂ [0, n]2 ∩ Z2 (Lemma 8).

For a finite point set P in the plane above the x-axis, let Q = Q(P ) be the set of points
p ∈ P such that p ∈ ∂hullt(P ) for some t > 0.

▶ Lemma 7. For a finite point set P in the plane above the x-axis, Q = Q(P ) has the
following property: For every disk D centered below the x-axis, if D ∩ P ̸= ∅, then D ∩ Q ̸= ∅.

Proof. Let D be a disk of radius t > 0 centered below the x-axis. By Lemma 4(4), D ∩ P

contains a point in ∂hullt(P ). By the definition of Q, this point is in Q. ◀

We may assume that the points in P have distinct x-coordinates (if two or more points in P

have the same x-coordinate, w.l.o.g. a minimum hitting set would contain only the point with
the smallest y-coordinate). Sort P by increasing x-coordinates such that P = {p0, . . . , pn−1}.



M. De, S. Singh, and C. D. Tóth 50:11
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p4p1
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Figure 5 Description of the function π. Left: ∂hull1(P ) is orange, ∂hull2(P ) is green, and
∂hull3(P ) is blue. Right: The grid points π(p0), . . . , π(p9) corresponding to p0, . . . , p9.

For every point q ∈ Q, let t(q) > 0 be the maximum radius such that q ∈ ∂hullt(q)(P ).
Consider the set of radii T = {t(q) : q ∈ Q}. Sort the radii in T in decreasing order
as t0 > t1 > . . . > t|T |−1. We can now define the function π : P → [0, n)2 ∩ Z2. For
every pi ∈ Q, let π(pi) = (i, j) if and only if t(pi) = tj , that is, the first coordinate of
π(pi) corresponds to the index i of pi (the x-order of all points in Q), and the second
coordinate of π(pi) corresponds to index j of the radius tj = t(pi). For every pi ∈ P \ Q, let
π(pi) = (i, |T |); see Figure 5 for an illustration. Finally, let P ′ = π(P ) = {π(pi) : pi ∈ P} and
Q′ = π(Q) = {π(pi) : pi ∈ Q}. Note that the points in P ′ \Q′ lie above all points in Q′. Since
π is injective, then it is a bijection between P and P ′. Note also that |T | ≤ |Q| ≤ |P | = n,
consequently P ′ ⊂ [0, n]2 ∩ Z2.

▶ Lemma 8. For a set P of n points in the plane above the x-axis and for every disk D

centered below the x-axis, the set π(D ∩ P ) has the lowest-point property.

Proof. Let D be a disk centered below the x-axis. We rephrase the lowest-point property
in terms of D ∩ P . Recall that the points in P are sorted by x-coordinates. Suppose that
s = (sx, sy) is in D ∩ P and sx ∈ I ⊂ span(D ∩ P ). Consider the point sets P (I) := {p =
(px, py) ∈ D ∩ P : px ∈ I}. By Lemma 7, we know that D ∩ Q ̸= ∅; let t be the largest
radius in T such that Q(I) ∩ ∂hullt(P ) ̸= ∅. We need to show that D contains all points in
P (I) ∩ ∂hullt(P ).

Let qleft and qright ∈ P (I), resp., be the leftmost and rightmost points in P (I) ∩ Q; and
let Lleft and Lright be the vertical lines through qleft and qright. By the definition of Q, we
have qleft ∈ ∂hullt(qleft)(P ) and qright ∈ ∂hullt(qright)(P ), and t ≥ max{t(qleft), t(qright)} by the
definition of t. Consequently, the intersection point ℓ := Lleft ∩∂hullt(P ) lies at or below qleft,
the intersection point r := Lright ∩∂hullt(P ) lies at or below qright. Since qleft, qright ∈ D, then
D contains both ℓ and r. We know that ∂hullt(P ) is an x-monotone curve by Lemma 4(2),
and D ∩ ∂hullt(P ) is connected by Lemma 6(2). Since D contains both ℓ and r, then D

contains the sub-curve of ∂hullt(P ) between r and ℓ. Since all points in P (I) are between the
vertical lines Lleft and Lright, then D contains all points in P (I) ∩ ∂hullt(P ), as required. ◀

Online algorithm for disks in the separated setting. We can now complete the reduction.

▶ Theorem 9. For the Online Hitting Set problem for a set P ⊂ R2 of n points above the
x-axis and disks centered below the x-axis, there is an O(log n)-competitive algorithm.

Proof. We are given a set P ⊂ R2 of n points above the x-axis, and we receive a sequence
C = (D1, . . . , Dm) of disks centered on or below the x-axis in an online fashion. Let OPT ⊆ P

be a minimum hitting set for C.
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Initially, we compute the set P ′ ⊂ [0, n]2 ∩ Z2 as defined above Lemma 8. When a disk
Di arrives, we compute the set Si = π(Di ∩ P ), which has the lowest-point property by
Lemma 8. The bijection π maps OPT to a set OPT′ = π(OPT) ⊆ P ′, where |OPT| = |OPT′|.
Here, OPT′ is a hitting set for the sets C′ = (S1, . . . , Sm).

We run the online algorithm ALG0 described in Section 2.2 for the point set P ′ and the
sequence C′ of sets. By Theorem 1, ALG returns a hitting set H ′ ⊆ P ′ of size |OPT′| ·O(log n).
By Lemma 7, H = π−1(H ′) ⊂ P is a hitting set for C, and its size is bounded by |H| =
|H ′| ≤ |OPT′| · O(log n) = |OPT| · O(log n), as required. ◀

4 Disks of Bounded Radii: General Setting

In this section, we consider the Online Hitting Set problem, where P is a finite set (given
in advance) in the plane; and the objects are disks with radii in the interval [1, M), where
M > 1 is a constant.

Distinguishing layers of disks, according to their radii. We partition the disks of radii in
the interval [1, M) into ⌊log M⌋ + 1 layers as follows: for each j ∈ {0, 1, . . . , ⌊log M⌋}, let
layer Lj be the set of disks of radii in the interval [2j , 2j+1). The index of each layer Lj is
denoted by j.

Tiling of the plane for each layer index j. For every j ∈ {0, 1, . . . , ⌊log M⌋}, let Λj =
{α1v1 + α2v2 : (α1, α2) ∈ Z2} be a two-dimensional lattice spanned by vectors v1 = 2j−1/2e1
and v2 = 2j−1/2e2, where e1 = (1, 0) and e2 = (0, 1) are the standard basis vectors. Let
τj =

[
0, 2j−1/2]2 be a square of side length 2j−1/2 with lower-left corner at the origin.

Translates of τj (tiles), with translation vectors in the lattice Λj , form the tiling Tj . Let Lj

denote the set of axis-parallel lines spanned by the sides of the tiles in Tj .

x

y

τj

D

p

Figure 6 A section of the tiling Tj , the tile τj of side length 2j−1/2, and a disk D of radius 2j+2.

We observe two key properties of the construction of layers and the tilings.

▶ Observation 10. For every j ∈ {0, 1, . . . , ⌊log M⌋}, if σ ∈ Lj and the center of σ is in a
tile τ ∈ Tj, then τ ⊂ σ; see Figure 6.
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Proof. Since σ ∈ Lj , the radius of the disk σ is in at least 2j . The tile τ is a translate of
τj = [0, 2j−1/2]2, and so its diameter is

√
2 · 2j−1/2 = 2j . If the center c of σ is in S, then

every p ∈ τ is within distance 2j from c, which implies that τ ⊂ σ. ◀

▶ Observation 11. For every j ∈ {0, 1, . . . , ⌊log M⌋}, every disk D of radius at most 2j+2

intersects at most 24 lines in Lj: at most 12 horizontal and 12 vertical lines.

Proof. Let D be a disk of radius 2j+2; see Figure 6. The orthogonal projection of D to the
x-axis (resp., y-axis) is an interval of length at most 2j+3. Since the distance between any
two consecutive vertical (resp., horizontal) lines in Lj is 2j−1/2, then D intersects at most
⌈2j+3/2j−1/2⌉ = ⌈27/2⌉ = 12 horizontal and at most 12 vertical lines in Lj . ◀

Subproblem for a directed line L. For a directed line L, we denote by L− and L+ the
closed half-plane on the left and right of L, respectively. Given a directed line L and the
input (P, C) of the Online Hitting Set problem, where P is a set of points, and C is a sequence
of disks in the plane, we define a subproblem (PL, CL) as follows: Let PL = P ∩ L−, and let
CL be the subsequence of disks σi ∈ C such that the center of σi is in L+ and σi contains at
least one point in PL. Now for each subproblem (PL, CL), we can run the online algorithm
ALG0 described in Theorem 9, which was developed for the separated setting in Section 3.
Let ALG0(L) denote the online algorithm, where we run the online algorithm ALG0 on the
subproblem (PL, CL).

Online algorithm. We can now present our online algorithm ALG. In the current algorithm,
we use the online algorithm ALG0(L) as a subroutine. For each j ∈ N ∪ {0}, let layer Lj

be the set of disks of radii in the interval [2j , 2j+1). The algorithm maintains a hitting set
H ⊆ P for the disks presented so far. Upon the arrival of a new disk σ with radius r, if it is
already hit by a point in H, then do nothing. Otherwise, proceed as follows.

First, find the layer Lj , where j = ⌊log r⌋, in which σ belongs.
Find the tile τ ∈ Tj that contains the center of σ.

If P ∩ τ ̸= ∅, then choose an arbitrary point p ∈ P ∩ τ and add it to H.
Otherwise, for every line L ∈ Lj that intersects σ, direct L such that L+ contains the
center of σ, feed the disk σ to the online algorithm ALG0(L), and add any new hitting
point chosen by ALG0(L) to H.

Competitive analysis. We now prove that ALG is O(log M log n)-competitive.

▶ Theorem 12. For the Online Hitting Set problem for a set P of n points in the plane and
a sequence C = (σ1, . . . , σm) of disks of radii in the interval [1, M ], the online algorithm ALG
has competitive ratio O(log M log n).

Proof. Let C be a sequence of disks. For each j ∈ {0, 1, . . . , ⌊log M⌋}, let Cj be the collection
of disks in C with radii in the interval

[
2j , 2j+1)

. Let H and OPT, resp., be the hitting set
returned by the online algorithm ALG and an (offline) minimum hitting set for C. For every
point p ∈ OPT, let Cp be the set of disks in C containing p. For each j ∈ {0, 1, . . . , ⌊log M⌋},
let Cj

p be the set of disks in Cj containing p, i.e., Cj
p = Cj ∩ Cp. Let Hj

p ⊆ H be the set of
points that ALG adds to H in response to hit objects in Cj

p. It is enough to show that for
every j ∈ {0, 1, . . . , ⌊log M⌋} and p ∈ OPT, we have |Hj

p | ≤ O(log n).
Let τ be the tile in Tj that contains p, and let C′j

p ⊆ Cj
p be the subset of disks whose

centers are located in τ . To hit the first disk σ ∈ C′j
p, our algorithm adds a point from P ∩ τ

to H. By Observation 10, any point in P ∩ τ hits σ, as well as any subsequent disks in C′j
p.

Our algorithm adds at most 1 point to H to hit all the disks in C′j
p.
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It remains to bound the number of points our algorithm adds for disks in Cj
p \ C′j

p. Notice
that a disk D0 centered at p of radius 2j+1 contains all the centers of the disks in Cj

p \ C′j
p.

By the triangle inequality, a disk D centered at p of radius 2j+2 contains all disks in Cj
p \ C′j

p.
For any disk σ ∈ Cj

p \ C′j
p, our algorithm uses algorithm ALG0(L) for a line L ∈ Lj , directed

such that L+ contains the center of σ. According to Observation 11, the disk D intersects at
most 24 lines in Lj . However, depending on the location of the center of σ, each line may be
used in either direction for ALG0(L). As a result, for all disks in Cj

p \ C′j
p, algorithm ALG0(L)

is called with at most 48 directed lines L.
For each directed line L, the online algorithm ALG0(L) maintains a hitting set H(L) for

the disks fed into this algorithm. For the point p, let Hj
p(L) denote the set of points that

algorithm ALG0(L) adds to H(L) in response to a disk in Cj
p \ C′j

p that it receives as input.
By Theorem 9, we have |Hj

p(L)| ≤ O(log |Cj
p \ C′j

p|) ≤ O(log n) for every directed line L. This
yields |Hj

p | ≤ 1 + 48 · O(log n) = O(log n), as required.
By construction, we have H =

⋃⌊log M⌋
j=0

⋃
p∈OPT Hj

p . We have shown that |Hj
p | =

O(log n), for all j ∈ {0, 1, . . . , ⌊log M⌋} and p ∈ OPT. Consequently, we obtain |H| ≤∑⌊log M⌋
j=0

∑
p∈OPT O(log n) = (⌊log M⌋ + 1) |OPT| O(log n) = O(log M log n)|OPT|. ◀

For disks of radii in [1, 1 + ε] where ε > 0 is constant, Theorem 12 implies the following.

▶ Corollary 13. For the Online Hitting Set problem for a set P of n points in the plane
and a sequence C = (σ1, . . . , σm) of disks of radii in the interval [1, 1 + ε], where ε > 0 is a
constant, the online algorithm ALG is O(log n)-competitive.

5 Generalization to Positive Homothets of a Convex Body

In this section, we generalize Theorem 12 for positive homothets of an arbitrary convex body
C in the plane. A set C ⊂ R2 is a convex body if it is convex and has a nonempty interior;
and it is centrally symmetric (w.r.t. the origin) if C = −C, where −C = {−p : p ∈ C}.

The key components of our O(log n)-competitive algorithm for disks of comparable sizes
were an O(log n)-competitive online algorithm in the line-separated setting and a grid tiling
that allowed a reduction to the line-separated setting. Specifically, Observation 10 and
Observation 11 formulate the two essential properties of a tiling: If a center of disk σ lies in a
tile τ , then τ ⊂ σ (Observation 10); and every disk intersects O(1) grid lines (Observation 11).

We state the main result of this section here. For a detailed explanation and the complete
proof, please refer to the full version of the paper.

▶ Theorem 14 (⋆). Given any convex body σ ⊂ R2 and a parameter M ≥ 1, there is an
online algorithm with a competitive ratio of O(log M log n) for the Online Hitting Set problem
for a set P of n points in the plane and a sequence C = (σ1, . . . , σm) of positive homothets
σi = aiσ + bi, where ai ∈ [1, M ].

For positive homothets of a convex object with scaling factor in [1, 1 + ε], where ε > 0 is
a constant, Theorem 14, implies the following.

▶ Corollary 15. Given any convex body σ ⊂ R2 and constant ε > 0, there is an online
algorithm of competitive ratio O(log n) for the Online Hitting Set problem for a set P of
n points in the plane and a sequence C = (σ1, . . . , σm) of positive homothets σi = aiσ + bi,
where ai ∈ [1, 1 + ε].
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A good pair of lines. The key technical tool for the proof of Theorem 14 is Definition 16.
Given a convex body C, we first consider an inscribed triangle of the maximum area (see [13]).
We then apply an area-preserving (unary) affine transformation to transform C so that this
inscribed triangle of the maximum area becomes an equilateral triangle. (This is similar to
mapping the minimum enclosing ellipse of C into a circle, or assuming that C is “fat” after a
suitable affine transformation.) We may further assume, by scaling, that the inscribed circle
of this triangle has a unit diameter.

▶ Definition 16. Let C be a convex body in the plane such that an inscribed triangle of the
maximum area is an equilateral triangle Tin, and the circle inscribed in Tin is a circle of a
unit diameter. A pair of lines {ℓ1, ℓ2} is a good pair for C if they satisfy the following
properties:
1. The angle between the two lines is bounded from below by ∠(ℓ1, ℓ2) ≥ π/15.
2. For i ∈ {1, 2}, there exist points pi, qi ∈ ∂C such that the two lines tangent to C parallel

to ℓi contain pi and qi, respectively; furthermore, C contains the disk B(x, 1
50 ) of diameter

1
25 centered at the intersection point x = p1q1 ∩ p2q2.

In the full version, we prove that every convex body C specified in Definition 16 admits a
good pair of lines, which can be computed in polynomial time if C is a convex polygon. No
attempts were made to optimize the constants π/15 and 1

50 in Definition 16.

6 Conclusions and Open Problems

We revisited the Online Hitting Set problem for a set of n points in the plane and geometric
objects that arrive in an online fashion, such as disks or homothets of a convex body of
comparable sizes, or bottomless rectangles in the plane. In all these cases, we designed
O(log n)-competitive online algorithms, which is the best possible. It remains an open
problem whether our results generalize to 3- or higher dimensions. In fact, no O(log n)-
competitive algorithm is currently known for simple geometric objects in 3-space, for example,
a set of n points and a sequence of unit balls in R3; or a set of n points P ⊂ [0, n)3 ∩ Z3 and
a sequence of axis-aligned cubes in R3.

Our results provide further evidence that there may exist O(log n)-competitive algorithms
for the Online Hitting Set problem for n points in Rd and any sequence of objects C of
bounded VC-dimension – an open problem raised by Even and Smorodinsky [12]; see also [14].
This problem remains open: The current best lower and upper bounds are Ω(log n) and
O(log2 n) [2]. No better bounds are known even in some of the most common geometric
range spaces, for example, when P is a subset of the grid [0, n)2 ∩ Z2 and C is a sequence of
axis-aligned rectangles in the plane; or when P is a set of n points in the plane, and C is a
sequence of disks of arbitrary radii.
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