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—— Abstract

One of the classic problems in online decision-making is the secretary problem, where the goal is

to hire the best secretary out of n rankable applicants or, in a natural extension, to maximize
the probability of selecting the largest number from a sequence arriving in random order. Many
works have considered generalizations of this problem where one can accept multiple values subject
to a combinatorial constraint. The seminal work of Babaioff, Immorlica, Kempe, and Kleinberg
(SODA’07, JACM’18) proposed the matroid secretary conjecture, suggesting that there exists an
O(1)-competitive algorithm for the matroid constraint, and many works since have attempted to
obtain algorithms for both general matroids and specific classes of matroids. The ultimate goal of
these results is to obtain an e-competitive algorithm, and the strong matroid secretary conjecture
states that this is possible for general matroids.

One of the most important classes of matroids is the graphic matroid, where a set of edges in
a graph is deemed independent if it contains no cycle. Given the rich combinatorial structure of
graphs, obtaining algorithms for these matroids is often seen as a good first step towards solving
the problem for general matroids. For matroid secretary, Babaioff et al. (SODA’07, JACM’18) first
studied graphic matroid case and obtained a 16-competitive algorithm. Subsequent works have
improved the competitive ratio, most recently to 4 by Soto, Turkieltaub, and Verdugo (SODA’18).

In this paper, we break the 4-competitive barrier for the problem, obtaining a new algorithm
with a competitive ratio of 3.95. For the special case of simple graphs (i.e., graphs that do not
contain parallel edges) we further improve this to 3.77. Intuitively, solving the problem for simple
graphs is easier as they do not contain cycles of length two. A natural question that arises is whether
we can obtain a ratio arbitrarily close to e by assuming the graph has a large enough girth.

We answer this question affirmatively, proving that one can obtain a competitive ratio arbitrarily
close to e even for constant values of girth, providing further evidence for the strong matroid secretary
conjecture. We further show that this bound is tight: for any constant g, one cannot obtain a
competitive ratio better than e even if we assume that the input graph has girth at least g. To our
knowledge, such a bound was not previously known even for simple graphs.
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1 Introduction

In the past two decades there has been a renewed interest in online item selection problems
where a sequence of items arrive one by one, revealing their weight, and a decision maker
needs to irrevocably decide whether or not to accept each item as it arrives. The goal is to
maximize the total accepted weight, subject to a feasibility constraint on the chosen items.
An algorithm’s performance is typically measured by its competitive ratio, which compares
the algorithm’s total weight with the offline optimum — the total weight achievable if all item
weights were known in advance. These problems are appealing both from a mathematical
perspective, as they are concise models for online decision making, and from an economical
perspective, as they have close connection to pricing and auction theory [30, 29, 8, 12].

In the absence of any information about future items, the problem is essentially hopeless
as any single item could be significantly heavier than all others, and the decision maker has
no way of deciding which it is. As such, most works make distributional assumptions on
either the weight of the arriving items, or their arrival order. The former class of problems
are generally referred to as prophet inequalities while the latter are known as secretary
problems. Numerous works have studied secretary problems for a large class of combinatorial
constraints [38, 19, 34, 33, 20, 44, 46, 23, 31] and objective functions [10, 25], and considered
close variants of these problems such as the prophet-secretary problem [22].

Perhaps the most important open question in the area of online decision making is the
matroid secretary problem posed by the seminal work of Babaioff, Immorlica, Kempe, and
Kleinberg (SODA’07,JACM’18) [8, 7]. In the matroid secretary problem, items arrive in a
random order, and each item corresponds to an element in a matroid M = (FE, I),where E is
the set of elements and I is the collection of independent sets in matroid M. Upon arrival,
the weight of each item is revealed, and the decision maker must immediately decide whether
to accept or reject it. The goal is to maximize the total weight of accepted items, with the
constraint that the selected items form an independent set in the matroid. The matroid
secretary conjecture [8, 7] states that there exists a constant-competitive ratio algorithm for
this problem, and the strong matroid secretary conjecture (e.g., see [46]) states that there
exists an e-competitive algorithm. Many works have studied the problem for both general
matroids and specific cases.

In this paper, we focus on the specific case of graphic matroids. In this case, the arriving
items correspond to the edges of a graph and the goal is to accept a set of edges that do not
contain a cycle. Solving problems for graphic matroids is often viewed as a promising first
step toward addressing arbitrary matroids, as graphs possess rich combinatorial structures
and graphic matroids, along with linear matroids, are among the most intuitive examples of
non-trivial matroids. Many counterexamples for candidate matroid secretary algorithms are,
in fact, graphic matroids [8, 9]. It is common to illustrate the main ideas behind general
algorithms by showing their behavior on this specific case [47]. Recent work has also explored
whether techniques for graphic matroids can be extended to general matroids [1].
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The seminal paper of Babaioff et al. originally studied the graphic matroid secretary
problem, obtaining a 16-competitive algorithm for the problem. Babaioff et. al. [6] designed
a 3e-competitive algorithm. The competitive ratio was later improved to 2e by Korula and
Pal [38] and later to 4 by Soto, Turkieltaub, and Verdugo [46]. Whether or not the ratio can
be improved has been open at least since 2018.1

1.1 Our results and techniques

In this paper we obtain an algorithm with competitive ratio 3.95 for the problem, breaking
the 4-competitive barrier. We further improve this result for the specific case of simple
graphs, i.e., graphs that do not have parallel edges. Intuitively, simple graphs represent an
easier special case as they don’t have any cycles of length 2; since the algorithm is forbidden
from accepting edges that form a cycle, the lack of 2-cycles gives the algorithm more freedom
to accept edges. Our main result is the following theorem.

» Theorem 1. There exists a 3.95-competitive algorithm for the graphic matroid secretary
problem. Furthermore, if the input graph is assumed to be simple, there exists an algorithm
with competitive ratio 3.77.

The basic approach for this result is to, at each step, compute a set of outgoing edges such
that each node has exactly one outgoing edge. More exactly, at each step we compute a
maximum spanning forest, then direct the edges in this forest toward an arbitrary root; each
node then has a unique outgoing edge. We then argue that if the algorithm only accepts
an edge for whose endpoints it has not previously accepted an outgoing edge, then the
algorithm’s set of taken edges will always be independent.

Given this, the key aspect of Algorithm 1 that allows it to obtain an improved competitive
ratio is a slightly stronger condition used to determine whether an edge is taken. Specifically,
while for one endpoint we only demand that we have not taken an outgoing edge, for the
other endpoint we demand that we have not even seen an outgoing edge. We can then show
an increased probability for the former condition being satisfied for a currently considered
edge by using the fact that the latter condition may not be satisfied by a previously seen
outgoing edge, causing said edge to not be taken. Algorithm 1 furthermore makes use of
random choice in determining which endpoint to apply the stronger condition to, which is
crucial for handling the case of duplicate edges. When the input graph is guaranteed to be
simple, this random choice is unnecessary — removing this random choice gives our algorithm
for simple graphs (see the full version of the paper) which allows us to obtain an even lower
competitive ratio.

Motivated by the improvement for simple graphs, we additionally study, for the first time,
the landscape of the graphic matroid secretary problem for graphs of high girth, where we
recall that the girth of a graph is the length of its shortest cycle. We note that the fact that
a graph is simple follows from the assumption that girth is at least 3. We show that when
the graph has large (but constant) girth, one can obtain a competitive ratio arbitrarily close
to e. Formally, we prove the following theorem.

» Theorem 2. For any graph G with girth at least g, there exists an (e + 04(1))-competitive
algorithm.

! This paper was previously submitted to STOC’25 on November 4, 2024. Independently of our work, on
November 18, 2024, Bérczi et al. [11] posted a preprint on arXiv, obtaining a 3.99-competitive algorithm
and a 3.71-competitive algorithm for general graphs and simple graphs, respectively.
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The result builds on yet another property of the combinatorial structure of the set of outgoing
edges introduced in the proof of Theorem 1. We first observe that the fact that every vertex
has at most one outgoing edge implies that, in a graph induced by the outgoing edges, each
edge belongs to at most one cycle. On the other hand, we prove that if Algorithm 1 were to
accept outgoing edges without respecting the graphic matroid independence condition, it
would yield a higher acceptance probability of % for an edge from the maximum independent
set. These observations lead to a natural approach: accepting an outgoing edge only with
a certain probability such that, for every cycle of length g, the probabilities of taking each
edge of this cycle are equal. Intuitively, as the length of the shortest cycle increases, this
probability tends towards % We refer the reader to the full version of the paper for more
details.

The best competitive ratios we attain over the three algorithms we introduce are listed in
Table 1 for girths less than 10.

Table 1 The best competitive ratio we obtain for graphic matroid secretary when the input
graph is restricted to have girth at least g for g < 10. g = 2 corresponds to multigraphs, while g =3
corresponds to simple graphs. As g approaches infinity, the competitive ratio approaches e. See the
full version of the paper for the algorithms for simple graphs and high girth graphs.

Girth (g9) Competitive Ratio Algorithm
2 3.95 Algorithm 1
3 3.77 Simple graph algorithm
4 3.77 Simple graph algorithm
5 3.76 High girth algorithm
6 3.61 High girth algorithm
7 3.50 High girth algorithm
8 3.42 High girth algorithm
9 3.35 High girth algorithm

Perhaps more surprisingly, we show that this is tight: no algorithm can achieve a
competitive ratio better than e, even for graphs with high girth. To our knowledge, this
lower bound was not previously known even for simple graphs, and our techniques may be of
independent interest for related online arrival problems.

» Theorem 3. For any g € N, there does not exist an algorithm for the graphic matroid
secretary problem on graphs of girth at least g that obtains competitive ratio less than e.

The two results fully characterize the landscape of the secretary problem in the high-girth
setting, essentially showing that the problem becomes as easy as the single secretary problem
in the limit. To prove the lower bound in Theorem 3, we first show that weighted single
secretary, also known as a cardinal secretary, is hard “on average” in the following sense. We
demonstrate the existence of a finite distribution over the instances of this problem such
that even if the adversary samples instances, as opposed to choosing them in a worst-case
manner, from that distribution, it is still hard for any algorithm to choose the maximum
weight element.

We then construct a high girth bipartite graph based on Ramanujan graphs, where
vertices of one bipartition have same degree d. The hard distribution of instances of weighted
single secretary of size d can now be sampled independently and embedded on the edges
incident to each degree-d vertex on one side of the constructed bipartite graph. Given an
algorithm that performs well on this graph, we obtain an algorithm performing well on
the original distribution of weighted single secretary by simulating the first algorithm and
mimicking the choices that it makes on a single degree-d vertex.
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Our construction of the input graph in addition to high-girth Ramanujan graphs uses the
probabilistic method. Our construction of the sets of hard weights is based on an extension
of a similar argument from an infinite to a finite version of Ramsey theorem. We employ
zero-sum games duality argument to show an existence of the final probabilistic distribution
over the instances.

2 Related work

Many other derivations and specific cases of the general matroid secretary problem have been
given attention over the years. Hajiaghayi, Kleinberg and Parkes [30] had first introduced
the multiple-choice value version of the problem, aka the uniform matroid secretary problem,
in which the goal is to maximize the expected sum of the at most k selected numbers.
Kleinberg [36] later presented a tight (1—O(y/1/k))~!-competitive algorithm for the k uniform
secretary resolving an open problem of [30]. Transversal matroids were first considered in [8]
who gave 4d-competitive algorithm, where d is the degree of the transversal matroid. This was
improved by Dimitrov and Plaxton [19] who showed a ratio of 16 for all transversal matroids.
The optimal ratio of e follows from the e-competitive algorithm for secretarial online weighted
bipartite matching problem [35], which generalizes the problem on transversal matroids. For
the laminar matroids, a long line of work led to 3v/3e competitive ratio [32, 33, 41], which
was improved to 9.6 in [41], 3v/3 in [46], 4.75 in [31], and 3.26 in [11]. The challenging general
class of regular matroids was proven to admit 9e-competitive algorithm [20].

Other generalizations of the secretary problem such as the submodular variant have been
initially studied by the Bateni, Hajiaghayi, and ZadiMoghaddam [10] and Gupta, Roth,
Schoenebeck, and Talwar [28]. The connection between the secretary problem and online
auction mechanisms has been explored by Kesselheim et al. [34], who give a e-competitive
solution to the online bipartite weighted matching problem.

The prophet secretary problem is another well-studied variant of the secretary problem,
closely related to prophet inequalities. In the prophet inequality setting, introduced by
Krengel and Sucheston [39, 40], we know the distributions of n arriving items and aim to
maximize the ratio of the expectation of the selected item’s value to the expectation of
the sequence maximum, with a tight competitive ratio of 2. Research connecting prophet
inequalities and online auctions, initiated by Hajiaghayi, Kleinberg, and Sandholm [29],
led to follow-up studies such as Alaei, Hajiaghayi, and Liaghat’s work [3] on the bipartite
matching variant of prophet inequality, also achieving a competitive ratio of 2 [3]. Feldman
et al. [24] expanded the problem to combinatorial auctions with multiple buyers, achieving
the same bound through a posted pricing scheme, and Kleinberg and Weinberg [37] extended
this result to matroids with a 2-competitive algorithm. A recent paper explores matroid
structures that allow breaking the tight competitive ratio of 2 [4]. Contrary to results
presented in this paper, they prove that in the general matroid setting, a high girth is not a
sufficient condition while considering k-fold matroid unions suffices.

The prophet secretary model, introduced by Esfandiari, Hajiaghayi, Liaghat, and Mon-
emizadeh [22], assumes a random arrival order and known item distributions. They de-
signed an algorithm achieving a competitive factor of (-%5), which has proven challenging
to improve. However, Azar et al. [5] and Correa et al. [16, 17] improved this bound to
(1—1/e+1/30)"! ~ 1.502. For the single-item i.i.d. case, Abolhasani et al. [2] achieved
a 1.37-competitive ratio, later improved to 1.342 by Correa et al. [14]. Recently, Peng and
Tang [43] achieved a 1.379-competitive algorithm for the free order case, however finding the
tight competitive bound for the general prophet secretary problem remains open.
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Last but not least, extensions beyond matroids for the secretary problem have also
been studied. For example, Kleinberg and Weinberg [37] provided an O(p)-competitive
algorithm for the intersection of p matroids, later generalized to polymatroids by Diitting
and Kleinberg [21]. Rubinstein [44] and Rubinstein and Singla [45] considered prophet
inequalities and secretary problems in arbitrary downward-closed set systems. For such
settings, Babaioff et al. [8] proved a lower bound of Q(lognloglogn), and further studies
have explored combinatorial optimization applications [18, 26, 27, 42].

3 Preliminaries

Graph Notation

In this paper, we assume all graphs are undirected, weighted, and may contain multiple
edges between the same pair of vertices. Specifically, a graph is defined as a triple G =
(V,E,w: E — R), where V, with |V| = n, is the set of vertices; E, with |E| = m, is the
multiset of edges; and w assigns weights to the edges. We assume graphs do not contain
loops (i.e., edges connecting a vertex to itself?). Given any vertex u € V, we denote the
degree of u by dege(u). A graph is called simple if there is at most one edge connecting
any pair of vertices. For a graph G, we denote g as the girth of G, representing the length
of its shortest cycle. In graphs with multiple edges, a cycle is defined as any multiset of
edges C = {(a1,b1),..., (ak,b)}, for k > 2, such that Vi<j<k—1b; = a;+1 and by = aq. For
an integer g > 2, let G, denote the set of all graphs with girth at least g. We also denote
[n] ={1,2,...,n}.

Matroids

A matroid M = (E,I) is a combinatorial structure that generalizes independence. It consists
of a finite set E and a collection I of independent subsets of F satisfying: (1) the empty
set is independent, (2) any subset of an independent set is also independent, and (3) if one
independent set is larger than another, an element from the larger set can extend the smaller
one while preserving independence. These properties capture the concept of independence,
making matroids useful for modeling optimization problems where we seek a maximum-weight
or maximum-cardinality independent subset of elements.

A graphic matroid M(G) associated with a graph G has as its elements the edges in the
multiset E, and defines independent sets as acyclic subsets of edges (i.e., subgraphs without
cycles). The weight of an independent set is the sum of its edge weights.

Problems

Consider a graphic matroid M(G) associated with a multigraph G = (V, E,w : E — R). In
the online secretary problem on graphic matroids, the elements of E are presented to the
algorithm in a random order, chosen uniformly from all possible permutations of the multiset
E. Elements arrive one at a time, effectively creating m time steps during the algorithm’s
execution. Upon the arrival of an element, the algorithm must decide whether to accept or
reject it, with the constraint that an element can only be accepted if it forms an independent
set with the already accepted elements. Decisions are irrevocable.

2 As explained in the following paragraph, such edges are irrelevant in the context of graphic matroids.
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The objective is to design an algorithm that maximizes the expected sum of the weights
of the accepted elements, referred to as the algorithm’s gain. For an algorithm ALG, we
denote its (random) gain by ALG and its expected gain by E(ALG).

Let OPT denote an independent set with maximum weight in the matroid M(G). We
say an algorithm ALG is a-competitive (or has an o competitive ratio, for some o > 1) for a
family of matroids if a.- E(ALG) > W(OPT) for all matroids in that family, where W(OPT)
is the weight of OPT.

4 Improved bounds for graphic matroid secretary: proof of Theorem 1

In this section, we prove the following theorem, which contains the result from Theorem 1
for general graphs.

» Theorem 4. There exists a 3.95-competitive algorithm for graphic matroid secretary.

To prove the theorem, we present an algorithm that attains a competitive ratio less than
3.95 for the graphic matroid secretary problem, surpassing a result of Soto, Turkieltaub, and
Verdugo [46] attaining a competitive ratio of 4 that previously stood for six years as the best
result achieved for graphic matroid secretary; this algorithm is described in Section 4.1.

To prove Theorem 1 for simple graphs, we consider a slight modification of our algorithm.

See the full version of the paper for details.

4.1 Improvement for general graphs

Algorithm 1 New algorithm for graphic matroid secretary.

Let E’ be the first m’ edges // set of observed edges
A0 // set of accepted edges
Yv € V: seen_outgoing(v) < False
Yo € V: taken_outgoing(v) <— False
forte {m +1,...,m} do
Let e; be the edge arriving in time ¢
Add e; to E’
TPP* + maximum weighted directed forest on G[E']
Yv € V : outgoing(v) + the edge directed away from v in TtOpt if it exists
Vv € V such that outgoing(v) = null : outgoing(v) + a unique edge in E’ not in
0Pt
if ¢; € T " then
et  (u,v) // where e, is directed from u to v in T}
(a,b) + either (u,v) or (v,u) with equal probability
if seen_outgoing(a) = False and taken__outgoing(b) = False then
taken_ outgoing(u) < True
add e; to A
end

end

if outgoing(w) = e; for some w € V then
| seen_outgoing(w) < True
end

end

52:7
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The pseudocode of the algorithm is provided in Figure 1. The algorithm consists of two
phases. During the first m’ steps (where m’ depends only on m), edges are only observed
without being taken. In later steps, let e be the presented edge. The algorithm computes
a maximum spanning forest T P" of all edges seen so far. We assume the forest is rooted,
where the root for each tree is chosen lexicographically for simplicity; how we choose the root
does not affect the algorithm as long as it depends only on the set of the edges already seen
and not their order. This forest is directed towards the root, so that every edge is directed
and each node has at most one outgoing edge. We additionally compute an array of outgoing
edges: for each node v, if v has an outgoing edge in T} Pt then that is its outgoing edge; if it
does not, then we choose an arbitrary edge not already assigned to be the outgoing edge
of another vertex ® and declare that to be the outgoing edge from v. Note that said edge
does not even have to have v as an endpoint. Also note that crucially, the choice of edges
declared to be outgoing for the vertices that need it depends on the set of edges observed so
far but not their order.

We only consider e if it is in T} P In this case, it points from some u to some v, and so
is the outgoing edge for u. In order to take e, we randomly order u,v as a,b and impose the
following constraints on e:

No edge €’ has been taken such that ¢’ was the outgoing edge for b when ¢’ was presented.

No edge ¢’ has appeared such that ¢ was the outgoing edge for a when ¢’ was presented.
If e satisfies both constraints then it is taken. Otherwise, the algorithm still notes that e
could have been selected for u.

The distinct constraints used for a, b are key — the stronger condition applied to endpoint
a allows us to lower bound the probability that an edge is blocked from being taken, which
can then be used to show an increased probability that the weaker condition for endpoint b
is satisfied for an edge that we would like to be taken. The randomness in ordering u, v into
a, b is also essential. To see why, consider the specific example of an edge e; € OPT with
endpoints u, v that is presented at step ¢, and consider some step j < t. Suppose that T;pt
contains an edge e* outgoing from u to a third node = and an edge e¥ outgoing from v to a
fourth node y. We would like to argue that in the case that either e“ or e’ is the edge e;
presented at step j, there is a possibility that some outgoing edge from = or y respectively
had already been presented prior to step j, meaning that e or e¥ could not have been taken.

This means that, for example, if e* were the edge presented at step j, we would desire
that, in the case of edge e;, b = u, and in the case of edge e; = e*, a = = (and so b = u),
so that e" could be blocked by an edge outgoing from = simply being presented, while e;
is then not blocked because e* was not actually taken. This suggests that we could simply
always take b = v and a = v, applying the stronger condition to the endpoint which the edge
is directed towards.

However, as in general graphs it is possible for multiple edge to have the same endpoints,
it is possible that we in fact have x = v, in which case an edge outgoing from x would block
e; itself. This is illustrated in the top-left quadrant of Figure 1. Therefore, in order to
guarantee an improvement, we crucially allow for the possibility that in the case of edge e,
b = v, and in the case of edge e¢; = €”, a = y — if ¢ has the same endpoints as e;, then e’
cannot as T;’ Pt i a spanning tree, and so y will necessarily be distinct from u, meaning that
there is a possibility for e” to be blocked by an edge outgoing from y while still allowing e;
to be taken. This is illustrated in the bottom-left quadrant of Figure 1.

3 Note that if m is too small (specifically, if m’ 4+ 1 < n) then there may not exist sufficiently many edges
for this to be possible. However, if this is the case, we can simply mix in “dummy edges” that the
algorithm can treat the same as real edges in order to cause m’ + 1 to be at least n. The details of this
mixing in are described in the proof of Theorem 4.
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e a=v,b=u e a=v,b=u
gj=e': a=v,b=u 0 ej=e': a=ub=v °
&j ©j
Legend
et e et g
€
Edge presented and taken
Edge p d but not taken
e a=ub=v e a=ub=v —
Edge presented, may or
may not have been taken
Edge not presented

Ei

Figure 1 The described “worst-case” example for Algorithm 1. At step t, we are presented with
an edge e; in the optimum solution. e; may be blocked from being taken due to an earlier step j.
We suppose that the outgoing edge e from w in Tfpt goes to v while the outgoing edge e” from v in
T;’pt goes to a third vertex y; these are the only possible values of e; with a potential to block e;.
All of e;,e", e’ are depicted. Additionally depicted is an edge e; outgoing from the endpoint of e;
selected as b — this edge being presented at step ¢ would block e; from being taken. Each of the four
images depicts one equally likely possibility for the random choice of (a, b) in the case of e; as well
as in the case of ej, where e; is assumed to be the edge outgoing from b in T;’pt (as this is the only
case relevant for an increased probability arising from e; not being taken). Only in one case is et
guaranteed to be taken (assuming steps other than those depicted do not block e; from being taken).

Analysis

We now proceed with a formal analysis. Due to space constraints, parts of the proof are
deferred to the full version of the paper. We first show that any set of edges accepted by
Algorithm 1 is independent, meaning that the algorithm is a valid graphic matroid secretary
algorithm.

» Lemma 5. The set A of accepted edges in Algorithm 1 is always an independent set in the
graphic matroid.

We now proceed to demonstrate that Algorithm 1 has the desired approximation factor
for an appropriate choice of m’. We first define quantities f, g, h below that will be crucial
for the analysis:

» Definition 6. Define f, s(i) to be the probability that after step i, seen_outgoing(u) =
False, given that S is the set of edges that are presented in steps 1,... 3.

» Definition 7. Define gy.,.s(i) to be the probability that after step i, both
seen__outgoing(u) = False and seen__outgoing(v) = False, given that S is the set of
edges that are presented in steps 1,... 1.

» Definition 8. Define hy ., s(i) to be the probability that after step i, if we take (a,b)
to be either (u,v) or (v,u) with equal probability, then seen_outgoing(a) = False and
taken_outgoing(b) = False, given that S is the set of edges that are presented in steps

52:9
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The condition used to define A is the same condition checked to see whether an edge between
u and v can be taken.

A key tool for our analysis is the following. Note that for any node u, seen_ outgoing(u)
is set to True when at some step j we observe an edge e such that e is in T ;pt and is directed
from u. Importantly, T;’pt depends only on the set of edges presented up to step j and not
their order. Therefore, conditioned on the set of edges that appears in steps 1,...,J, the
probability that at step j we are presented with the outgoing edge from u is at most %
because there is exactly one such edge, and this edge, if it exists, is presented at step ¢ with
probability %

The above idea is applied in the following lemma:

’

» Lemma 9. For all vertices u, all i from m' to m, and all S with |S| =i, fus(i) = "-.

The next lemma uses the same idea to derive a similar expression for g:
» Lemma 10. For allu,v € V and i € [m',m], and all S with |S| =1, guv,s(i) > %
We now proceed to lower bound h; we again use the same idea but now additionally take
advantage of the stronger condition applied to a in the algorithm to derive a bound for h
superior to the one we derived for g by lower bounding the probability that an edge that
would have been selected for one of u,v was not actually taken. As the lower bound for h is
more complicated, we define its lower bound as an additional function hs.

» Definition 11. Define hs(i) recursively by hs(m') =1 and hs(i) = (1 — 2)hs(i — 1) + 2 -
m’(m’—1) - om’

i—1D(—2) [1 i—l}'

We parameterize h by § as h will reused later with a different value of ¢.

» Lemma 12. For all vertices u,v, all i from m' to m, and all S with |S| =14, hy v s(i) >
ha ().
4

As mentioned before, the conditions defining h,, , s(i) are identical to the conditions for
taking an edge given that it is in T} Pt As any edge in the overall optimum is in Tfpt, lower
bounding the probability of such an edge being taken allows us to lower bound the overall
approximation factor. This is expressed in the following lemma.

» Lemma 13. Let W(S) be the sum of the weights of edges in S, and recall that A is the set
of edges accepted by Algorithm 1. Then,

EW4)] _ 1 <
W(OPT) = 2 hylt-1).

o

t=m’'+1

It now only remains to give a concrete lower bound for - 37" ', hi(t—1). We proceed

to derive such a bound in the following lemma.

1
4
» Lemma 14. If we let m’ = |am], then

1 & 5
"}i—r’nooai:%,:ﬂhé(i_l) za—a2+5a21na+§(a—a3).

Setting o = 0.4914, we can show that the above lemma implies Theorem 4. We refer to the
full version of the paper for the full proof.
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5 Impossibility result for high girth graphs: proof of Theorem 3

In this section, we prove a hardness result for high-girth graphs. We begin by showing that
the weighted single secretary problem remains hard even when the instance is drawn from a
known distribution, using the Finite Ramsey Theorem and zero-sum game duality. We then
reduce this to the weighted graphic matroid secretary problem on large-girth graphs via a
construction based on Ramanujan graphs. Specifically, by carefully removing edges using the
probabilistic method, we construct bipartite graphs with certain properties and embed hard

instances of single secretary into them to obtain similarly hard graphic secretary instances.

Due to space constraints, parts of the proofs are deferred to the full version of the paper.

We note that it is crucial that the hardness holds even when the distribution is known in
advance, unlike deterministic instances that are only hard when the instance is hidden. This
allows us to present multiple instances from the distribution without the algorithm gaining
any advantage from earlier ones — since it already knows the distribution fully.

5.1 Hard inputs for single secretary

We first prove that no algorithm for the secretary problem can achieve a competitive ratio
better than 1/e, even if the weights are drawn from a known finite set.

» Theorem 15. For any ¢ > 0 and for any p > 1, there exists an integer n and a finite set
of numbers W C {1, p, p2,...} over which no (randomized) algorithm for the single secretary
problem with n items can choose the mazimum with probability % + €.

See the full version of the paper for the proof. The result essentially serves as the starting
point of our proof as it provides “hard instances” of the secretary problem which we then
carefully embed in graphs of large girth. Correa et al. [15, 13] previously proved this theorem
for infinite sets; our proof modifies their technique using the finite version of Ramsey’s
theorem.

While the generalization to finite sets may seem like a small technical issue, it has
important consequences. As we will see, the finite assumption is necessary as it allows us
to invoke the Minimax theorem for finite games. This in turn allows us to guarantee that
there is a hard distribution over inputs, rather than just a single instance. As we will need to
simultaneously embed multiple “independent” hard instances of the single secretary problem

to obtain a hard instance of the graphical matroid secretary, this generalization is necessary.

We will now use the Minimax principle and Theorem 15 to prove the following.

» Theorem 16. For any ¢ > 0 and for any p > 1, there exists an integer n, a finite set
W c {1,p,0% ...}, and a finite distribution D over all subsets of size n from W with the
following property. If a random instance of the secretary problem is drawn from D, for any
algorithm, the probability of choosing the maximum element from the random instance is at
most % + €, where the probability is over the randomness of the instance and the algorithm.

5.2 Embedding single secretary in simple graphs
This subsection presents the proof of Theorem 3. We first describe some preliminaries which
are used in our analysis.

Preliminaries

It is straightforward to reduce the single secretary problem to the graphic matroid secretary
problem when the graph allows for multiple edges. In that case, given the single secretary
problem with n adversarial weights, we create a multi-graph with just two vertices u and v
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and a set of n parallel edges between u and v, with each edge assigned exactly one of these n
adversarial weights. Note, that this multi-graph has girth 2. We will need to work harder to
reduce the single secretary problem to the graphic matroid problem on simple graphs, where
we will even assume that the simple graph has an arbitrarily large girth.

For said reduction, we define below three different measures of performance of a secretarial
algorithm. Given an algorithm a € A and an instance I of the matroid secretary problem, we
abuse the notation from the previous section and denote by a(I) the set of elements of the
matroid output by a on instance I. Let also opt(I) be the optimal solution to the problem
on the instance I. Given any subset X of the matroid’s elements, we denote by w(X) the
sum of the weights of all elements in X.

Let IT be a matroid secretary problem on a matroid which has n € N elements. Given
a finite set of numbers (weights) W C Ry, let D be a probability distribution over the set
W™. We will later on instantiate Il with the single secretary problem and with the graphic
matroid secretary problem.

Let a € A be a (randomized) algorithm for problem II. Given an instance I of II,
let S,(I) be a random variable such that S,(I) = 1 if a outputs the optimal solution on
instance I, that is, when a(I) = opt(I); and S, (I) = 0 if a(I) # opt(I). Then we have that
E[S.(I)] = Prla(I) = opt(I)]; note that the probability is over the internal randomness of
algorithm a and over the randomness in the arrival order of the matroid elements.

For the convenience of this subsection, it will be useful to define an algorithm a as having
a performance guarantee o < 1 of

type 1 if E;.p[E[S.(I)]] > .

That is, the algorithm chooses the optimum with probability at least « in expectation

over instances.

type 2 if Eroplw(a(l))/w(opt(I))] > «a.

That is, the expected ratio of the algorithm’s weight to the optimum’s weight is at least

a, where the expectation is over instances, algorithm randomness, and element order.

type 3 if E;plw(a(l))] > Erwplw(opt(I))] - e

That is, the algorithm’s expected weight is at least an « fraction of the expected optimum

weight. The first expectation includes all randomness; the second expectation is over

instances only.

We next reformulate Theorem 16 in terms of the type 1 performance guarantee.

» Theorem 17. For any € > 0, p > 1, there exists a finite distribution D of instances of
weighted single secretary such that no algorithm’s type 1 performance guarantee is > % + €.
For any instance I of single secretary in the support of D, any two weights in I differ by at
least a factor of p.

We now extend the result of Theorem 17 to the type 2 performance guarantee. This
proof will make use of the guarantee depending on p provided by Theorem 17 to bound the
weight attained by an algorithm when it fails to select the maximum.

» Lemma 18. For any € > 0, there exists a finite distribution D of instances of weighted
single secretary such that no algorithm’s type 2 performance guarantee is > é + €.

The following lemma then shows an equivalence in hardness between the type 2 and type
3 performance guarantees. The idea of its proof is to reweight the distribution D by making
the probability of each instance being chosen inversely proportional to its optimum weight.

» Lemma 19. For any matroid secretary problem 11, there exists a bijection B between finite
distributions over instances of Il such that if D' = B(D), then there exists an algorithm
with a type 2 performance guarantee of r on D iff there exists one with a type 3 performance
guarantee of v on D’.
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We now move to the portion of the proof that extends the hardness of the single secretary
problem to the graph setting. As part of this reduction, we first show the following lemma,
demonstrating the existence of bipartite graphs of high girth with the key property that one
part is both much larger than the other and has high degree. This construction proceeds by
applying the probabilistic method to derive a graph with our desired properties by removing
edges from a high-girth Ramanujan graph.

» Lemma 20. For any d,g,t € N with d > 2, t > 4, there exist m,n € N such that > >t
and there exists a graph G’ of girth at least g, whose vertices can be partitioned into sets A
and B, such that |A] = m, |B| = n, all edges are between A and B, and each vertex in B
has degree at least d.

We now apply the graph provided by Lemma 20 to extend the hardness of a distribution
of instances of the single secretary problem to hardness of matroid secretary on a high-girth
graph. The proof, which is quite technical, is provided in the full version of the paper.

» Lemma 21. [f there exists a finite distribution D of instances of weighted single secretary
such that no algorithm has a type 3 performance guarantee > r on D, then for anye > 0,9 € N
there exists a graph G with girth > g and a finite distribution Dg of instances of weighted
graph secretary on G such that no algorithm has a type 3 performance guarantee > r + €
onD'.

Combining the above results, we obtain Theorem 3; see the full version of the paper for
more details.
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