
When Is String Reconstruction Using de Bruijn
Graphs Hard?
Ben Bals #

CWI, Amsterdam, The Netherlands
Vrije Universiteit Amsterdam, The Netherlands

Sebastiaan van Krieken #

CWI, Amsterdam, The Netherlands
TU Delft, The Netherlands

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit Amsterdam, The Netherlands

Leen Stougie #

CWI, Amsterdam, The Netherlands
Vrije Universiteit Amsterdam, The Netherlands

Hilde Verbeek #

CWI, Amsterdam, The Netherlands

Abstract
The reduction of the fragment assembly problem to (variations of) the classical Eulerian trail problem
[Pevzner et al., PNAS 2001] has led to remarkable progress in genome assembly. This reduction
employs the notion of de Bruijn graph G = (V, E) of order k over an alphabet Σ. A single Eulerian
trail in G represents a candidate genome reconstruction. Bernardini et al. have also introduced the
complementary idea in data privacy [ALENEX 2020] based on z-anonymity. Let S be a private
string that we would like to release, preventing, however, its full reconstruction. For a privacy
threshold z > 0, we compute the largest k for which there exist at least z Eulerian trails in the
order-k de Bruijn graph of S, and release a string S′ obtained via a random Eulerian trail.

The pressing question is: How hard is it to reconstruct a best string from a de Bruijn graph
given a function that models domain knowledge? Such a function maps every length-k string to an
interval of positions where it may occur in the reconstructed string. By the above reduction to de
Bruijn graphs, the latter function translates into a function c mapping every edge to an interval
where it may occur in an Eulerian trail. This gives rise to the following basic problem on graphs:

Given an instance (G, c), can we efficiently compute an Eulerian trail respecting c?

Hannenhalli et al. [CABIOS 1996] formalized this problem and showed that it is NP-complete.
Ben-Dor et al. [J. Comput. Biol. 2002] showed that it is NP-complete, even on de Bruin graphs with
|Σ| = 4. In this work, we settle the lower-bound side of this problem by showing that finding a
c-respecting Eulerian trail in de Bruijn graphs over alphabets of size 2 is NP-complete.

We then shift our focus to parametrization aiming to capture the quality of our domain knowledge
in the complexity. Ben-Dor et al. developed an algorithm to solve the problem on de Bruijn graphs
in O(m · w1.54w) time, where m = |E| and w is the maximum interval length over all edges in E.
Bumpus and Meeks [Algorithmica 2023] later rediscovered the same algorithm on temporal graphs,
which highlights the relevance of this problem in other contexts. Our central contribution is showing
how combinatorial insights lead to exponential-time improvements over the state-of-the-art algorithm.
In particular, for the important class of de Bruijn graphs, we develop an algorithm parametrized
by w(log w + 1)/(k − 1): for a de Bruijn graph of order k, it runs in O(mw · 2

w(log w+1)
k−1) time. Our

result improves on the state of the art by roughly an exponent of (log w + 1)/(k − 1). The existing
algorithms have a natural interpretation for string reconstruction: when for each length-k string, we
know a small range of positions it must lie in, string reconstruction can be solved in linear time.
Our improved algorithm shows that it is enough when the range of positions is small relative to k.

© Ben Bals, Sebastiaan van Krieken, Solon P. Pissis, Leen Stougie, and Hilde Verbeek;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 53; pp. 53:1–53:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bjjb@cwi.nl
https://orcid.org/0009-0009-1054-8444
mailto:sebastiaanvk96@gmail.com
https://orcid.org/0009-0002-0261-3612
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
mailto:stougie@cwi.nl
https://orcid.org/0000-0001-6938-8902
mailto:hilde.verbeek@cwi.nl
https://orcid.org/0000-0002-2399-3098
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

53:2 When Is String Reconstruction Using de Bruijn Graphs Hard?

We then generalize both the existing and our novel FPT algorithm by allowing the cost at every
position of an interval to vary. In this optimization version, our hardness result translates into
inapproximability and the FPT algorithms work with a slight extension. Surprisingly, even in this
more general setting, we extend the FPT algorithms to count and enumerate the min-cost Eulerian
trails. The counting result has direct applications in the data privacy framework of Bernardini et al.

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of computa-
tion → Graph algorithms analysis

Keywords and phrases string algorithm, graph algorithm, de Bruijn graph, Eulerian trail

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.53

Related Version Full Version: https://arxiv.org/abs/2508.03433

Funding Solon P. Pissis: Supported in part by the PANGAIA and ALPACA projects that have
received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreements No 872539 and 956229, respectively.
Leen Stougie: Supported in part by the Netherlands Organisation for Scientific Research (NWO)
through project OCENW.GROOT.2019.015 “Optimization for and with Machine Learning (OP-
TIMAL)” and Gravitation-project NETWORKS-024.002.003.
Hilde Verbeek: Supported by a Constance van Eeden Fellowship.

1 Introduction

One of the most important algorithmic tasks in bioinformatics is that of genome assembly (or
fragment assembly) [30, 8, 23, 9]: the process of taking a large number of short DNA fragments
and putting them back together to create a representation of the original chromosomes from
which the DNA originated. The textbook reduction of the fragment assembly problem to
(variations of) the classical Eulerian trail problem [26] has led to remarkable progress in the
past three decades. This reduction is based on the notion of de Bruijn graph (dBG, in short).

Let S = S[1] . . . S[|S|] = S[1 . . |S|] be a string of length |S| over an alphabet Σ. We fix a
collection S of strings over Σ and define the order-k de Bruijn graph of S as a directed graph,
denoted by GS,k = (V, E), where V is the set of length-(k − 1) substrings of the strings in S
and E has an edge (u, v) if and only if u[1] · v = u · v[k − 1] and u[1] · v occurs in some string
S of S. In applications, we often consider a de Bruijn multigraph where the multiplicity of
an edge is exactly the total number of these occurrences in the strings in S. Then, a single
Eulerian trail in GS,k represents a candidate string reconstruction [26]; see Figure 1.

e1
e2

e8 e7

e5

e6

e4
e3

s

t

e1e3e6e5e2e4e7e8
e1e3e7e2e4e6e5e8
e1e3e7e8e6e5e2e4
e8e6e5e1e3e7e2e4
e8e7e1e3e6e5e2e4
e1e3e6e5e8e7e2e4

Eulerian trails01 11

10 00

0110011010
0110110010
0110100110
0100110110
0101100110
0110010110

String reconstructions

Figure 1 The de Bruijn multigraph GS,k = (V, E) (left), the set of node-distinct Eulerian trails
from s to t (middle), and the corresponding set of string reconstructions (right) for the string
collection S = 001, 010, 011, 011, 100, 101, 110, 110, over the alphabet Σ = {0, 1}, and k = 3.

https://doi.org/10.4230/LIPIcs.ESA.2025.53
https://arxiv.org/abs/2508.03433

B. Bals, S. van Krieken, S. P. Pissis, L. Stougie, and H. Verbeek 53:3

Bernardini et al. have introduced the complementary idea in data privacy [4] based on the
z-anonymity privacy property [27, 29]. Let S be a private string that we would like to release
for data analysis, preventing, however, its full reconstruction. For a privacy threshold z > 0,
we compute the largest k for which there exist at least z node-distinct Eulerian trails in the
order-k dBG of S = {S}, and release a string S′ obtained via a random Eulerian trail. In
Figure 1, we have 6 node-distinct Eulerian trails (and thus 6 distinct strings) corresponding
to S. Under the z-anonymity assumption, one cannot know which of the 6 strings is S unless
they can rely on some additional information about S, such as on domain knowledge.

The pressing question arising from these applications is thus: How hard is it to reconstruct
a best string from GS,k given a function modeling domain knowledge? This function maps
every length-k string to an interval of positions where it may occur in the reconstructed
string. By the above reduction, this translates into a function c mapping every edge to an
interval where it may occur in an Eulerian trail, raising the following basic graph problem:

Given an instance (G, c), can we efficiently compute an Eulerian trail respecting c?

Although Hannenhalli et al. [16] formalized this basic problem in the context of dBGs, it
has applications in temporal graphs [7, 22, 24] and other networks [11, 31, 20]. We denote it
here by diET (see Section 2 for a formal definition). Hannenhalli et al. showed that diET
is NP-complete when each node of G has in- and out-degree at most two. Even if their
motivating application was fragment assembly and thus based on dBGs, their result was
shown on general directed graphs. Ben-Dor et al. [3] then showed that diET is NP-complete,
even on dBGs with |Σ| = 4. We settle the negative landscape by showing the following result:

▶ Theorem 3 (*). The diET problem is NP-complete, even on de Bruijn graphs with |Σ| = 2.

Beyond theoretically interesting, Theorem 3 shows that in general it is indeed hard to
reconstruct a private (binary) string from a given dBG, thus providing theoretical justification
for the privacy framework introduced by Bernardini et al. [4]. Given these negative results,
we shift our focus to parametrization aiming to capture the quality of our domain knowledge
in the complexity. This leads to algorithms that are efficient if the intervals are small [16]:
every interval length is bounded by a natural number w, which we term the interval width.
We denote this parametrized version of diET by diET[w]. Hannenhalli et al. [16] showed an
algorithm for diET[w] working in O(m2w+log(2w)) time for any directed graph G = (V, E),
with m = |E| and w = O(1). Ben-Dor et al. [3] developed an algorithm to solve the problem
on dBGs in O(m · w1.54w) time, for any w. Bumpus and Meeks [7] later rediscovered the
same algorithm on temporal graphs, which highlights the relevance of the diET problem in
other contexts. We may thus summarize the state of the art in the following statement.

▶ Theorem 10 (Theorem 11 of [3], Theorem 7 of [7]). There is an O(m · w1.54w)-time
algorithm solving the diET[w] problem. Therefore, diET[w] is in FPT.

We observe that the state-of-the-art algorithm does not exploit the dBG structure. Our
central contribution is developing an algorithm for dBGs parametrized by w(log w+1)/(k−1):

▶ Theorem 11. Let G be a de Bruijn graph of order k over alphabet Σ, |Σ| = O(1). There is
an O(m·λ

w
k−1 +1)-time algorithm solving the diET[w] problem, where λ := min(|Σ|k−1

, 2w−1).

Theorem 11 improves on the state of the art by roughly an exponent of (log w +1)/(k −1).
The existing algorithms [16, 3, 7] all have a natural interpretation for string reconstruction:
when for each length-k substring (k-mer), we know a small range of positions it must lie in,
string reconstruction can be solved in linear time. Theorem 11 shows that it is enough when

ESA 2025

53:4 When Is String Reconstruction Using de Bruijn Graphs Hard?

the range of positions is small relative to the order k of the dBG. In particular, we show that
for dBGs it is sufficient if w log w/(k − 1) is relatively small, which significantly extends the
practical applicability of our technique. For instance, in bioinformatics, it is standard to
use k = 31 [21] and then we have |Σ| = 4 (the size of the DNA alphabet), which implies an
exponential speedup by 30

√
·. Our approach of improving the FPT algorithms for diET based

on combinatorial insights into the structure of the instances suggests further research into
closely-related problems; e.g., the Hierarchical Chinese Postman (HCP) problem [15, 19, 11, 1]
and the related Time-Constrained Chinese Postman (TCCP) problem [31, 28].

We then generalize the above results by allowing the cost at every position of an interval
to vary. We denote this problem here by dicET (see Section 2 for a formal definition). In
this setting, our hardness result (Theorem 3) translates into inapproximability.

▶ Corollary 7 (*). If P ̸= NP there is no constant-factor polynomial-time approximation
algorithm for the dicET problem, even on de Bruijn graphs with interval cost functions.

We show that the FPT algorithms underlying both Theorems 10 and 11 also work in the
optimization version with an interval cost function, which we denote by dicET[w].

▶ Corollary 20 (*). Given a dicET[w] instance, there is an O(m · w1.54w)-time algorithm
finding a min-cost Eulerian trail in G. On a de Bruijn graph of order k over alphabet Σ,
|Σ| = O(1), we can solve this problem in O(m ·λ

w
k−1 +1) time, where λ := min(|Σ|k−1

, 2w−1).

Surprisingly, even in this more general setting, we show how to extend our FPT techniques
to count the number of min-cost Eulerian trails. We show the following result.

▶ Theorem 21. Given a dicET[w] instance, we can count the number of min-cost Eulerian
trails in O(m · w1.54w) time. On a de Bruijn graph of order k over alphabet Σ, |Σ| = O(1),
we can solve this problem in O(m · λ

w
k−1 +1) time, where λ := min(|Σ|k−1

, 2w − 1).

We can also enumerate these trails in the same time as for counting (Theorem 21) plus
time that is linear in the size of the output. Notably, all of our algorithmic results translate
from directed to undirected graphs with the same complexities. It is easy to verify that none
of the proofs depend on the directedness of the graph. For simplicity, we focus our discussion
on directed graphs. Particularly our result for counting Eulerian trails in undirected graphs
is surprising given that the problem is #P-complete in the standard setting [6]. We also
show that most of our algorithmic results generalize to multigraphs. Finally, we show that
the undirected version of dicET, which we denote by uicET, is also NP-complete.

Overview of Hardness Techniques. We consider dBGs over alphabets of size two. Unlike [16,
3], this highly structured setting requires intricate techniques to obtain an (elementary)
reduction from the directed Hamiltonian path problem [18]. For our instances, we harness
the fact that the shortest path between any two nodes in a complete dBG is unique and
has a meaningful string interpretation. The structure of the reduction makes it directly
translatable to the optimization setting implying inapproximability. Similarly, we reduce
the undirected Hamiltonian path problem [18] to finding a min-cost c-respecting Eulerian
trail in an undirected graph. This reduction requires a different approach than the directed
case to ensure that critical parts of the graph can only be traversed in the desired order. We
assign different costs at even and odd time steps to certain edges to achieve that goal.

Overview of Algorithmic Techniques. We apply tools from parametrized algorithms [10]
to solve dicET[w] efficiently. Our techniques can be viewed as a careful combination of
searching in a well-bounded state space and dynamic programming. We further combine

B. Bals, S. van Krieken, S. P. Pissis, L. Stougie, and H. Verbeek 53:5

approaches from graph and string algorithms to enhance the vanilla version of these tools with
combinatorial insights into dBGs and obtain exponential-time improvements. The robustness
of these tools allows us to generalize our algorithm for the decision version of dicET[w] to
both the optimization and the counting versions. The counting result in particular relies on
the fact that the state space compactly captures all possible Eulerian trails, by excluding
impossible trails at the construction level, and representing the possible ones efficiently.

Other Related Work. Our work is closely related to exploring temporal graphs [24, 13,
14, 12, 2, 7, 22]: graphs where every edge is available at an arbitrary subset of the time
steps. Most relevant to our work are perhaps the works by Bumpus and Meeks [7] and by
Marino and Silva [22]. The former proved that deciding whether a temporal graph has an
Eulerian trail is NP-complete even if each edge appears at most r times, for every fixed r ≥ 3.
They also apply similar parametrized tools to interval-membership-width, a temporal graph
parameter related to our interval width, but they do not consider directed graphs, costs,
or counting. Marino and Silva [22] showed, for undirected graphs, that, if the edges of a
temporal graph (G, λ) with lifetime τ are always available during the lifetime, then deciding
whether (G, λ) has an Eulerian trail is NP-complete even if τ = 2. They also showed that
this problem is in XP when parametrized by τ + tw(G), where tw(G) is the treewidth of G.

Our work is also closely related to the HCP problem [15, 19, 11, 1] (and the related TCCP
problem [31, 28]). In HCP, we are given an edge-weighted undirected graph G = (V, E),
a partition P of E into k classes, and a partial order ≺ on P, and we are asked to find a
least-weight closed walk traversing each edge in E at least once such that each edge e in
a class E′ is traversed only after all edges in all classes E′′ ≺ E′ are traversed. The main
differences to our problem are two: (1) In HCP, there is a partition on the edges and then a
partial order between the classes, whereas we have an arbitrary interval per edge; and (2) in
HCP, one must traverse each edge at least once, whereas we have to do this exactly once.

Paper Organization. We begin by formalizing diET and dicET in Section 2. We present
our hardness and inapproximability results in Section 3. We complement these negative
results with positive algorithmic results for diET[w] in Section 4. In Section 5, we extend
our algorithms to counting Eulerian trails and discuss the relationship to the data privacy
applications. In the full version, we discuss how most of our algorithms extend to multigraphs.
The formal statements, with proofs or details deferred to the full version, are marked with *.

2 Preliminaries

For a, b ∈ N, let [a, b] := {x ∈ N | a ≤ x ≤ b}, [a, b) := {x ∈ N | a ≤ x < b}, and [b] := [1, b].
Further let Ib := {[i, j] | 1 ≤ i ≤ j ≤ b} ∪ {{}} be the set of intervals on [b].

We imagine a trail as “walking” through a graph and thus refer to the ranks of the edges
as happening at certain time steps (e.g., the second edge is associated with the time step 2).
This vocabulary borrowed from temporal graphs makes the discussion more intuitive.

▶ Definition 1. Let G = (V, E) be a directed or undirected graph with m = |E|. We call a
function c : E → Im an interval function for G. We extend this notion to an interval cost
function where, for each e ∈ E, each time step from the interval c(e) is associated with a cost
from Z. As an abuse of notation, we write c(e, t) for this cost. If t ̸∈ c(e), we set c(e, t) := ∞.

When the relevant graph G = (V, E) is clear from context, we set n := |V | and m := |E|.
We next formalize the main problems in scope on directed graphs.

ESA 2025

53:6 When Is String Reconstruction Using de Bruijn Graphs Hard?

▶ Problem. Eulerian Trails in Digraphs with Interval functions (diET)

Given: Directed graph G = (V, E), interval function c : E → Im

Decide: Is there an Eulerian trail P = e1 . . . em in G such that for all t ∈ [m], t ∈ c(et)?

Similarly, we consider the version with interval cost functions.

▶ Problem. Eulerian Trails in Digraphs with Interval Cost functions (dicET)

Given: Directed graph G = (V, E), interval cost function c : E × [m] → Z∪{∞}, cbudget ∈ N

Decide: Is there an Eulerian trail P = e1 . . . em in G such that
∑m

t=1 c(et, t) ≤ cbudget?

In addition, we consider the uicET problem as the natural undirected version of dicET.
Note that in all cases, we allow setting every interval to the whole [m]. In the case

without costs, this yields the classical Eulerian trail problem [17]. In the case with costs, this
yields a min-cost Eulerian trail problem without any interval restrictions, which is a natural
special case we will call out when considering it to be particularly relevant. See Figure 2 for
an example of a graph with an interval function and the corresponding edge availabilities.

ab

bc

cd

da

ac

1 2 3 4 5a

b

c

d
[3, 5]

[3, 4]
[4, 5]

[2, 2]

[1, 2]

Figure 2 On the left is the input graph G: every edge is labeled with the time steps at which
it is available. On the right is a table illustrating the interval every edge is available: abcdac is an
Eulerian trail; the edge usages corresponding to this trail are indicated with red vertical lines.

The following definition makes our arguments based on an interval function more legible.

▶ Definition 2. We call an edge e ∈ E available at t ∈ [m], if t ∈ c(e). For a time step
t ∈ [m], we write E(t) to denote the set of edges available at t. Given an interval T ⊆ [m],
we similarly write E(T) for the set of edges available at at least one time step from T .

3 NP-hardness and Inapproximability

In this section, we consider both the directed and undirected case from the hardness
perspective. Since in the directed case, dBGs are a particularly relevant application, we
give strong results, even when restricting the instances to this graph class. We are the
first to show the hardness for alphabets of all sizes (except |Σ| = 1, where the problem is
trivial). In particular, we settle the question for the important case of binary alphabets. In
the undirected case, we consider general graphs, which we believe is nonetheless insightful
regarding what makes this problem class hard.

We first settle the computational complexity of diET.

▶ Theorem 3 (*). The diET problem is NP-complete, even on de Bruijn graphs with |Σ| = 2.

We reduce from the directed Hamiltonian path problem, which is NP-complete [18]. Let
G = (V, E) be the directed graph in which we want to find a Hamiltonian path.

B. Bals, S. van Krieken, S. P. Pissis, L. Stougie, and H. Verbeek 53:7

Construction of the dBG. We consider any two-letter alphabet; for example, here we will
consider the subset Σ := {A, T} of the DNA alphabet. We set ℓ := ⌈log2(|V |)⌉ and construct
a diET instance (G′ = (V ′, E′), c) as the complete dBG on the set of nodes each labeled by
a string of length k − 1 = 4ℓ + 10, as well as an interval function c that we will describe later.
Note that, by the choice of ℓ and Σ, G′ has |Σ|k−1 = 24ℓ+10 = O(|V |4) nodes. We will pay
special attention to some of the nodes in G′, which we assign an interpretation in terms of G.

For each v ∈ V , let idv ∈ Σℓ be a unique identifier among V . By the choice of ℓ, this
numbering is always possible. Similarly, let idv′ ∈ Σ4ℓ+10 be the string associated with a
node v′ ∈ V ′. With each node v ∈ V , we associate two nodes v′

1 and v′
2 in V ′ such that:

idv′
1

:= Aℓ+3 · T · idv · T · Aℓ+3 · T · idv · T and idv′
2

:= Aℓ+2 · T · idv · T · Aℓ+3 · T · idv · T · A,

where Ai is the string of i A’s. We use the notation a
x→ b to denote a directed edge ab labeled

x, where x is the letter used to obtain b from a in the dBG. We extend this notation to
a

X
⇝ b to denote the path from a to b using string X. Observe that by the choice of the

underlying strings, we have an edge v′
1

A−→ v′
2 in the dBG. We call this the inner edge for v.

With each edge e = vu ∈ E, we associate two nodes e′
1 and e′

2 such that:

ide′
1

:= Aℓ+3 · T · idv · T · Aℓ+3 · T · idu · T and ide′
2

:= Aℓ+2 · T · idv · T · Aℓ+3 · T · idu · T · A.

Again, we have an edge e′
1

A−→ e′
2 in the dBG. We call this the inner edge for e. For every

other string of length 4ℓ + 10 over Σ a node v′ exists in V ′, but it is not associated with a
node v ∈ V or an edge e ∈ E. See Figure 3 for an illustration of this construction. A crucial
property that we will later utilize is that for every pair of nodes v, u ∈ V , such that vu ∈ E,
there is a unique shortest path of length 2ℓ + 4 in G′ between v′

2 and (vu)′
1; this path is

associated with the string Aℓ+2 · T · idu · T (see Figure 3). The analogous property holds for
(vu)′

2 and u′
1: there is a unique shortest path of length 2ℓ + 4 in G′ from (vu)′

2 to u′
1.

v

u

vu

⇒

v′1 v′2

(vu)′1 (vu)′2

u′
1 u′

2

Aℓ+2 · T · idu · T

Aℓ+2 · T · idu · T

A

A

A

A

A

A

Figure 3 A directed graph G (left) and the corresponding part of graph G′ (right). The nodes in
G′ that correspond to nodes in G are colored black; the nodes in G′ that correspond to edges in G

are colored red. Inner edges in G′ are colored gray and squiggly lines indicate paths of length 2ℓ + 4.

It is straightforward to verify that the claimed path (from v′
2 to (vu)′

1) exists. To see
that this is the shortest possible, notice that idv′

2
contains the substring Aℓ+3 starting at

position 2ℓ + 5 (i.e., after the first occurrence of idv · T). Any one edge on a path to (vu)′
1

shifts this substring left by one letter. By the strategic placement of T around the id parts,
the substring Aℓ+3 occurs precisely at positions 1 and 2ℓ + 6 in id(vu)′

1
. Thus, the closest

occurrence of Aℓ+3 left of position 2ℓ + 6 in id(vu)′
1

starts at position 1 (i.e., requires a left
shift by at least 2ℓ + 4 letters). Therefore, any path from v′

2 to (vu)′
1 must contain at least

2ℓ + 4 edges. The argument is analogous for the path from (vu)′
2 to u′

1.

Construction of the Interval Function. Let us set τ := 2n − 1 + 2(n − 1)(2ℓ + 4). We dub
the time steps 1 to τ early and all others late. The intuition is that the first τ edges on any
c-respecting Eulerian trail in G′ will correspond to a Hamiltonian path in G. For ease of
notation, we set m′ := |Σ|k = 24ℓ+11 to be the number of edges in G′.

ESA 2025

53:8 When Is String Reconstruction Using de Bruijn Graphs Hard?

For the interval function c, we set c(v′
1v′

2) := [1, τ], for all v ∈ V . For any non-edge e ̸∈ E

we set c(e′
1e′

2) := [τ + 1, m′]. All other edges in G′ have the full interval [m′]. This also
holds for all inner edges for the edges in E. Note that with these choices, the inner edges for
nodes v ∈ V are only available early, and for a node pair v, u ∈ V , the edge (vu)′

1 → (vu)′
2 is

available early only if v → u is an edge in E.

▶ Lemma 4. If G has a Hamiltonian path, there is a c-respecting Eulerian trail in (G′, c).

Proof. Let P = v1 . . . vn be a Hamiltonian path in G. Then for the Eulerian trail in G′, set

P ′
1 := (v1)′

1
A→ (v1)′

2
Aℓ+2·T·idv2 ·T
⇝ (v1v2)′

1
A→ (v1v2)′

2 ⇝ · · ·⇝ (vn)′
1

A→ (vn)′
2.

Notice that P ′
1 traverses all inner edges for nodes and that P ′

1 has length exactly τ . Thus all
inner edges for nodes are available by construction at their time steps on P ′

1. Similarly, for
any i ∈ [n − 1], we have that vivi+1 ∈ E since P is a Hamiltonian path in G. Thus, the inner
edges for edges are available on P ′

1 as well. Finally, all other edges on P ′
1 have their Aℓ+3

substring in such positions that they do not fall under any of the edge classes whose interval
is restricted, thus they are available for the full interval [m′]. We conclude that P ′

1 respects c.
As we want P ′

1 to be the prefix of an Eulerian trail, we must ensure that no edge repeats
in P ′

1. The nodes of types v′
1, v′

2, e′
1, and e′

2 in G′, for some v ∈ V or e ∈ E, each appears at
most once on P ′

1 by construction, and thus so must their inner edges. Therefore, if there is an
edge xy in G′, for two nodes x and y, that appears twice on P ′

1, it must be on some subpath

of type (vi)′
2

Aℓ+2·T·idvi+i
·T

⇝ (vivi+1)′
1 (or analogously of the type (vivi+1)′

2
Aℓ+2·T·idvi+1 ·T

⇝ (vi+1)′
1)

as well as at some other part of P ′
1. Let us analyze the string corresponding to node x. As x

appears on the path from (vi)′
2 to (vivi+1)′

1, it must have the form r1 · Aℓ+3 · T · idvi
· T · r2,

where r1 is a suffix of Aℓ+2 · T · idvi · T and r2 is a prefix of Aℓ+3 · T · idvi+1 · T. Consider that
therefore the string corresponding to x contains the substring Aℓ+3 ·T · idvi

·T somewhere in the
middle. Since, however, our id’s are unique, x may only appear on the subpath corresponding
to an out-edge of vi in G and a Hamiltonian path can only include one out-edge per node.
Finally, no edge can repeat within the same such subpath as this is a shortest path. The
above discussion contradicts our assumption that xy repeats on P ′

1. Therefore, we conclude
that all edges on P ′

1 are unique.
We are left to show that we can complete P ′

1 to traverse every edge of G′ exactly once.
Observe that since G′ is a complete dBG, the in- and out-degree of every node is |Σ| = 2.
Therefore, in G′ − P ′

1 (which we define as G′ without the edges in P ′
1) the in- and out-degree

of every node is the same except for (v1)′
1 (where the out-degree is one less than the in-degree)

and for (vn)′
2 (where the out-degree is one more than the in-degree). Also notice that G′ − P ′

1
remains weakly connected (as any strongly connected 2-regular directed graph remains weakly
connected if a path is removed). By these properties, there is an Eulerian trail P ′

2 in G′ − P ′
1.

In particular, it must start at (vn)′
2 and end at (v1)′

1. Hence P ′ := P ′
1P ′

2 is an Eulerian trail
in G′. As the time steps of all edges from P ′

1 remain the same, that prefix of P ′ still respects
c. For the suffix of P ′ defined by P ′

2, observe that all edges are used at time steps later than
τ and that none of the edges are inner edges for nodes. Thus, all edges in the P ′

2 part of P ′

are also available under c. We conclude that P ′ is an Eulerian trail in (G′, c). ◀

Similar ideas allow us to prove the other direction, yielding the following lemma.

▶ Lemma 5 (*). If there is a c-respecting Eulerian trail in G′, G has a Hamiltonian path.

Lemma 4 and Lemma 5 allow us to deduce Theorem 3.

B. Bals, S. van Krieken, S. P. Pissis, L. Stougie, and H. Verbeek 53:9

Consequences. The construction we used is quite restrictive in that it uses only two letters
to construct the dBG and is within the framework of interval functions without costs. This
allows us to deduce the following two corollaries, narrowing down the hardness landscape of
the general problem even further. Corollary 6 was first shown by Hannenhalli et al. [16].

▶ Corollary 6 ([16]). The diET problem remains NP-hard even on 2-regular graphs.

Proof. Notice that the construction for Theorem 3 uses only the letters {A, T} and thus the
complete dBG (over that alphabet) is 2-regular. ◀

Our hardness reduction also directly implies that dicET is NP-hard: we set the costs of
every edge to 0 within its interval and to 1 outside its interval. We also set cbudget := 0. As
our proof of Theorem 3 relies only on distinguishing zero and non-zero cost instances, we
deduce the following inapproximability result, which is to the best of our knowledge new.

▶ Corollary 7 (*). If P ̸= NP there is no constant-factor polynomial-time approximation
algorithm for the dicET problem, even on de Bruijn graphs with interval cost functions.

Interestingly, the problem remains hard and inapproximable, even when restricting dicET
to instances where every interval is the full interval [m] (effectively dropping the interval
requirement and only considering edge costs). This reduction simply extends, for each edge,
its interval and let all costs outside the original interval be cbudget + 1.

Although we can find an Eulerian trail in an undirected graph in linear time by Hier-
holzer’s algorithm [17], counting the number of Eulerian trails in an undirected graph is
#P-complete [6]. Given this complexity landscape and our results on directed graphs, it is
natural to ask about the complexity of deciding if an Eulerian trail of at most some fixed cost
exists. We show that this problem is NP-complete and inapproximable in the full version.

4 FPT by Interval Width

After these strong negative results, it is now natural to ask whether there is a restricted
setting in which we can efficiently solve diET. Interval functions (see Definition 1) are a
restricted class of functions that are natural to the string reconstruction application. In this
setting, it is equally natural to ask if more precise domain knowledge leads to more efficient
algorithms. Providing tighter intervals for the time step each edge is to be used reduces the
combinatorial complexity as there are fewer valid combinations to consider. This observation
also translates to string reconstruction, where we might expect that reconstructing a string
is easier when the location of every k-mer is narrowed down to a small interval.

▶ Definition 8. Given a diET instance ((V, E), c) with interval function c, we define the
instance’s interval width w as the length of the longest interval of any edge e ∈ E under c.

Interestingly, this concept is closely related to the notion of interval-membership width
(imw, in short) studied by Bumpus and Meeks in the context of temporal graphs [7]. This
notion asks how many edges in the graph are relevant to the decision at a specific time step
t by looking at the set of edges which have been available at or before t and will also be
available at or after t. The imw is the largest size of such a set for any t. In Lemma 9,
we show that this parameter is related to the length of the longest interval in our setting
(Definition 8). A special case of this observation also underlies the FPT algorithm of Ben-Dor
et al [3]. This relates the length of time any single edge is available to the total number
of edges relevant at a given time. With this observation, we unveil the equivalence of the
algorithms by Bumpus and Meeks and by Ben-Dor et al.

ESA 2025

53:10 When Is String Reconstruction Using de Bruijn Graphs Hard?

For dBGs of order k, we severely speed up these algorithms by roughly an exponent
of (log w + 1)/(k − 1). In fact, we show that on dBGs, the problem is not only in FPT by
w, but also by w log w/k; namely, we show that it suffices if w is small compared to k to
make the problem tractable. We achieve this by extending the techniques in [3, 7] with the
properties of dBGs and their underlying string interpretation. By utilizing a significantly
more general setting, Bumpus and Meeks [7] have shown that the algorithm by Ben-Dor et
al. [3] applies to a significantly broader graph class than dBGs. We observe that this leaves
plenty of dBG-specific structure unexploited to speed up the task. Finally, we show how to
extend both the existing and our novel approach to find min-cost Eulerian trails.

Considering Definition 8, the definition of the parametrized problem diET[w] is canonical.
We first consider simple graphs, deferring the discussion of multigraphs to the full version.

▶ Problem. diET[w]

Parameter: w ∈ N+

Given: Directed graph G = (V, E), interval function c : E → Im with interval width w

Decide: Is there an Eulerian trail P = e1 . . . em such that for all t ∈ [m], t ∈ c(et)?

The following structural insight (Lemma 9) generalizes [3, Lemma 8] and underpins their
algorithm and our reduction to the Bumpus and Meeks version of the FPT algorithm: Since
any edge is available only at a bounded number of time steps, a similar bound applies to the
set of edges available at an individual time step. This insight implies that there are relatively
few choices on which edge to select at a specific time step in an Eulerian trail.

▶ Lemma 9 (*). If (G, c, w) is a YES-instance of diET[w] and T is an interval in [m], then
|E(T)| ≤ |T | + 2w − 2.

In particular, Lemma 9 implies that at any specific time step (i.e., an interval of length 1),
there are at most 2w − 1 edges available. Thus, we have that any graph with interval width
w has imw at most 2w − 1. The condition of this lemma is easy to check in time O(mw) by
testing if the number of edges available at each time step is at most 2w − 1. If this is not
the case for any time step, we deduce that (G, c, w) is a NO-instance for diET[w]. We will
henceforth assume that the condition has been checked and deduce the following result.

▶ Theorem 10 (Theorem 11 of [3], Theorem 7 of [7]). There is an O(m · w1.54w)-time
algorithm solving the diET[w] problem. Therefore, diET[w] is in FPT.

Three remarks are in order regarding the version of this theorem by Bumpus and Meeks
[7]. First, note that this rendering of the theorem requires a small modification, as we are
interested in any Eulerian trail, not necessarily a cycle. This allows us to slash a factor of
w. Second, their algorithm is for undirected graphs, but it naturally translates to directed
graphs. Third, their version of the algorithm does not exclude a small number of irrelevant
states and is thus slightly slower (by another factor of

√
w) than the version by Ben-Dor et al.

For the sake of completeness, we provide a proof with these modifications in the full version.
Specializing the parametrized technique of [3, 7] to dBGs allows us to design an algorithm

that achieves a significant speedup. Our improvements rely on exploiting the specific structure
in the dBG graph class in which we are particularly interested in finding Eulerian trails.

▶ Theorem 11. Let G be a de Bruijn graph of order k over alphabet Σ, |Σ| = O(1). There is
an O(m·λ

w
k−1 +1)-time algorithm solving the diET[w] problem, where λ := min(|Σ|k−1

, 2w−1).

Since λ is defined as a minimum, the algorithm underlying Theorem 11 always runs in
time O(mw · 2

w(log w+1)
k−1), as shown by the following lemma.

B. Bals, S. van Krieken, S. P. Pissis, L. Stougie, and H. Verbeek 53:11

▶ Lemma 12. For any w, k ∈ N+, (2w − 1)
w

k−1 +1 = O(w · 2
w(log w+1)

k−1).

Proof. Note that (2w − 1)
w

k−1 +1 = (2w − 1) · (2w − 1)
w

k−1 . We first bound the exponential
term. Then multiplying by (2w − 1) gives the claimed upper bound. We have that

(2w − 1)
w

k−1 = 2
w log(2w−1)

k−1 ≤ 2
w log(2w)

k−1 = 2
w(log w+log 2)

k−1 = 2
w(log w+1)

k−1 . ◀

Notice that the exponential part is higher than for the O(mw1.5 · 4w)-time algorithm only
if w(log w + 1)/(k − 1) > 2w, that is, if w = Ω(4k); but in this case, since λ is defined by
the minimum, our new algorithm takes O(mw · |Σ|w) time. Thus, for alphabets of size at
most 4, in the extreme edge case, our new algorithm is at least a

√
w factor faster than the

state of the art. Note that since n ≤ |Σ|k−1, for alphabets of size at most 4, this extreme
edge case can only occur if w is linear in n, where by our Theorem 3 the problem is not
tractable. Specifically, in that case, the running time of both the state of the art and our
novel approach become unrealistic.

We describe how to encode a diET[w] instance (G = (V, E), c, w), where G is a dBG,
using an auxiliary directed graph H = (V ′, E′) of size O(m · λ

w
k−1 +1) in which there is a

path between the designated source and target nodes if and only if the instance contains
a c-respecting Eulerian trail. The graph H consists of a sequence of m + 1 layers of nodes
with edges only between consecutive layers. In this model, traversing an edge of H between
layers t − 1 and t means traversing a corresponding edge of G at time step t. We show the
construction of graph H = (V ′, E′) and start by defining the construction of the nodes in V ′.

The algorithms in [3, 7] rely on enumerating states, where a state is described by a node v

of G (this is the end location of the current partial trail), a time step t, and some information
about the edges of the partial trail. Both [3] and [7] achieve their FPT runtime by observing
that it is unnecessary to encode the entire partial trail; instead, it suffices to consider the
last w edges of it. They are even able to show that it is unnecessary to remember the order
these edges are used on the trail. Applying Lemma 9 shows that, for each v ∈ V and t ∈ [m],
it suffices to consider all subsets of a fixed size. These are at most

(2w−1
w

)
= O(4w/

√
w); see

the full version. We will use additional structural insights into dBGs to severely reduce the
number of states that need to be considered in many relevant cases.

Henceforth, we set λ := min(|Σ|k−1
, 2w − 1) as in Theorem 11. For ease of notation, we

also set ℓ := ⌈min(w, t)/(k − 1) + 1⌉ when t is clear from the context. Intuitively, ℓ is the
number of nodes required to uniquely represent a path of length min(w, t) in G. By idv we
denote the string of length k − 1 associated with the node v ∈ V .

The Nodes of H. We add a node to V ′ for every tuple (t, α) such that:
t ∈ [0, m] is a time step; and
α ∈ Σmin(w,t)+k−1 is a string of length min(w, t) + k − 1 over Σ, such that, for all i ∈ [ℓ],
the node of G corresponding to the substring α[(i − 1)(k − 1) + 1 . . i(k − 1)] of α has an
incoming edge labeled α[i(k − 1)], available at time step t − w + (i − 1)(k − 1).

In order to avoid edge casing, we say that the incoming-edge requirement is fulfilled vacuously
for time step 0: for layers t ≤ w, we do not require the first encoded node to have an incoming
edge. We also add to V ′ auxiliary source and target nodes, denoted by s and z, respectively.
▶ Remark 13. While this construction appears overtechnical at first glance, by the definition
of a dBG G = (V, E), the string α is equivalent to a sequence of nodes vℓ, . . . , v1 ∈ V , such
that vi has an incoming edge labeled idvi [k − 1] available at time step t − (i − 1) · (k − 1).

Intuitively, this construction relies on the insight that any path (of length r) in a dBG is
fully described by the string (of length r + k − 1) it generates and that this string in turn is
fully described by examining every (k − 1)-th node on the path.

ESA 2025

53:12 When Is String Reconstruction Using de Bruijn Graphs Hard?

The Edges of H. For a node (t, α) in V ′, we now potentially create an outgoing edge for
each letter x ∈ Σ to (t + 1, α[2 . . |α|] · x), essentially deleting the leftmost letter of α and then
appending x. However, we add the edge (t, α) x→ (t + 1, α[2 . . |α|] · x) to E′ only if:

both the head and tail node exist in V ′; and
α[|α| − k + 2 . . |α|] · x (the last k − 1 letters of α appended with x) does not occur in α.

The first condition ensures that the head and tail nodes fulfill the condition that the encoded
nodes have incident edges at the required time steps. The second condition ensures that
the edge of G with label x that starts at the node v with idv = α[|α| − k + 2 . . |α|] is not
traversed more than once in the (Eulerian) trail we aim to construct.

We also add an edge from the source node s to all nodes in layer 0 (i.e., all nodes where
t = 0), and from all nodes in layer m (i.e., all nodes where t = m), to the target node z.

See Figure 4 for an illustration of this construction.

t = 1

t = 2

(0, AT) (0, TT) (0, TA) (0, AA)

(1, ATA) (1, TAA). . .

(2, ATAA)

(3, TAAT)

. . .

t = 3

. . .

.

z

s

T

A

AAT TT

TA AAA
[1, 2]

[2, 3]
T

[1, 2]
A

[4, 5]
T

[5, 5]
A

. . . (2, TAAT)

T

. . .

A

Figure 4 The input de Bruijn graph G (on the left) and the construction of graph H (on the
right) for k = 3, |Σ| = 2, w = 2, and thus w + k − 1 = 4. For instance, for t = 2, ℓ = 2, and
i = 2, we add node (t, α) = (2, ATAA) to layer t = 2 in H, because the node of G corresponding to
α[(i − 1)(k − 1) + 1 . . i(k − 1)] = AA has an incoming edge labeled α[i(k − 1)] = A available at time
step t − w + (i − 1)(k − 1) = 2. A c-respecting Eulerian trail in G is indicated in red in H.

▶ Lemma 14. Graph H has O(m · λ
w

k−1 +1) nodes and O(m |Σ| · λ
w

k−1 +1) edges, where
λ := min(|Σ|k−1

, 2w − 1). Graph H can be constructed in time linear in its maximum size.

Proof. Firstly, for any layer t > 0 in H, there can be at most |Σ|w+k−1 =
(

|Σ|k−1
) w

k−1 +1

choices for α. Secondly, by Lemma 9, there are at most 2w − 1 edges available at any time
step t > 0, thus there can be at most that many nodes with at least one incoming edge
available at t. Thus, by Remark 13, there can be at most (2w − 1)ℓ such strings α.

By construction, there are precisely n nodes in layer 0. Counting s and z as well and by
the choice of λ, there are at most 2 + n + m · λ

w
k−1 +1 nodes in H. For the edges, observe

that every node (except s) has out-degree at most |Σ|. Node s has out-degree n and node z

has in-degree the size of the last layer, that is at most λ
w

k−1 +1. This yields the bound on the
number of edges. We next discuss how H can be efficiently constructed.

To construct H efficiently, we perform a DFS over its implicit representation. For each
node (t, α), we store the last letter of α, and associate each incoming edge with the letter
it removed from the string in the previous layer to obtain α. The only part that requires
a little care is when our DFS is at some node (t, α) and has to decide whether to add
an edge with letter x ∈ Σ. In such a case, we have to check the condition that the string
α[|α|−k+2 . . |α|] ·x does not occur in α. Instead of storing the entire string α and performing

B. Bals, S. van Krieken, S. P. Pissis, L. Stougie, and H. Verbeek 53:13

the pattern matching explicitly, we use a single bit-string of length m during the DFS that
maintains the set of w previously used edges (which are equivalent to the strings of length
k that can appear in this form). This set can be maintained by correctly flipping the bits
corresponding to the edges at the top and at the w-th position in the DFS stack every time
the DFS moves forward or backward. In the word RAM model, each edge id is from [m] and
so it fits into one machine word. We therefore decide on the existence of each possible edge
of H in O(1) time. To conclude, constructing H takes linear time in its maximum size. ◀

Formalizing the intuition behind the aim of the construction yields the following central
lemma. See also Figure 4 that illustrates the properties stated in the lemma.

▶ Lemma 15 (*). For any t ∈ [m] and α ∈ Σmin(w,t)+k−1, the graph H contains a path from
s to the node labeled (t, α) if and only if there exists a trail W = e1 . . . et in G such that:
1. every edge from G occurs at most once in W ;
2. for every t′ ∈ [t], the edge et′ is available at time step t′;
3. the last w edges of W correspond to α; namely, they start at the node labeled α[1 . . k − 1]

and then follow the edges corresponding to α[k . . |α|].

From Lemma 15, we can deduce the following crucial property, which both proves the
correctness of our algorithm (i.e., Theorem 11) and underpins our extensions.

▶ Lemma 16 (*). Graph H contains an s-to-z path if and only if there exists an Eulerian
trail W = e1 . . . em in G, such that for every i ∈ [m], edge ei is available at time step i.

Lemma 14 and Lemma 16 imply Theorem 11. We stress that, by Lemma 14, if we waive
the assumption that |Σ| = O(1), we get an algorithm that is slower only by a factor of |Σ|.

Generalizations. We now discuss how to exploit this construction to solve more general
problems. These extensions work analogously on the algorithm underlying Theorem 10 for
general directed graphs. As a first extension, we can use these algorithms to report a witness:
a c-respecting Eulerian trail in G. The following result makes this precise.

▶ Corollary 17 (*). For any instance (G, c), where c is an interval function with width
w, there is an O(m · w1.54w)-time algorithm finding a c-respecting Eulerian trail in G if
it exists and correctly deciding non-existence otherwise. On a de Bruijn graph of order
k over alphabet Σ, |Σ| = O(1), we can solve this problem in O(m · λ

w
k−1 +1) time, where

λ := min(|Σ|k−1
, 2w − 1).

For small w log w/(k − 1) values, the algorithm on dBGs is highly efficient. At first
glance, that is unintuitive, as even if for each pair of consecutive positions there are only
two available k-mers (edges), there could already be 2m/2 possible orderings. Yet, our result
shows that the additional structure of the graph allows us to efficiently select the correct
ordering. The following remark captures the significant improvement over previous works
which required w to be tractably small to efficiently solve the string reconstruction problem.
▶ Remark 18. Let |Σ| = O(1). For any w·log w

k−1 = O(1), the diET[w] problem on dBGs can be
solved in O(mw) time. For any w = O(1), diET[w] on dBGs can be solved in O(m) time.

It is important to note that in many practical applications, especially in bioinformatics and
data privacy (see Figure 1), the dBGs considered are multigraphs (have parallel edges). For
our FPT technique, the analysis above relies on the fact that an edge is uniquely determined
by its endpoints, but with some extra care it can be adjusted to extend to multigraphs. We
give a full discussion in the full version, but we restate the following main observation here.

ESA 2025

53:14 When Is String Reconstruction Using de Bruijn Graphs Hard?

▶ Observation 19. If there is a c-respecting Eulerian trail in a de Bruijn multigraph
G = (V, E), with m = |E|, then there is a c-respecting Eulerian trail W = e1 . . . em such that
for any time step t where the edge et has a parallel edge e′ that is also available at t and
appears after et on W , we have that max c(et) ≤ max c(e′).

Moreover, as mentioned above, we can generalize our technique to interval cost functions
and retain the same running time, for both general directed graphs and for dBGs.

▶ Corollary 20 (*). Given a dicET[w] instance, there is an O(m · w1.54w)-time algorithm
finding a min-cost Eulerian trail in G. On a de Bruijn graph of order k over alphabet Σ,
|Σ| = O(1), we can solve this problem in O(m ·λ

w
k−1 +1) time, where λ := min(|Σ|k−1

, 2w−1).

Note that in this setting, we can allow an edge to become temporarily unavailable by
setting its cost to at least cbudget + 1. In such a case, the width of the edge’s interval remains
the difference between the last and the first time step at which the edge is available.

Corollary 20 directly implies that dicET parametrized by w is in FPT. On dBGs, dicET
is also in FPT when parametrized by w log w/(k − 1).

5 Counting Eulerian Trails with Applications in Data Privacy

Our results are of crucial relevance for the data privacy applications presented in [4] and [5].
On the one hand, our hardness results (Theorem 3 and Corollary 7) show that in general
it is indeed hard to reconstruct a private (binary) string from a given dBG, thus providing
theoretical justification for the privacy model introduced in [4]. On the other hand, our
algorithmic results (Theorem 11 and Corollary 20) show that, with sufficiently specific domain
knowledge, one can reconstruct such a (best) string in linear time. To address this concern,
the algorithms of [4, 5] rely on a counting routine to efficiently ensure that the released string
has at least κ possible reconstructions. To verify that the κ-anonymity property continues to
hold even when reconstruction is aided by domain knowledge, we can directly employ the
following result as the counting routine in the main algorithm of [4, 5].

▶ Theorem 21. Given a dicET[w] instance, we can count the number of min-cost Eulerian
trails in O(m · w1.54w) time. On a de Bruijn graph of order k over alphabet Σ, |Σ| = O(1),
we can solve this problem in O(m · λ

w
k−1 +1) time, where λ := min(|Σ|k−1

, 2w − 1).

Proof. Observe that by Lemma 16 and Corollary 20, there is a one-to-one correspondence
between min-cost s-to-z paths in H and min-cost c-respecting Eulerian trails in G. Thus, we
can apply the folklore linear-time shortest-path counting DAG dynamic program [25]. ◀

▶ Remark 22. The algorithm underlying Theorem 21 can be trivially extended to enumerate
all such Eulerian trails in additional time that is linear in the size of the output.

References
1 Vsevolod A. Afanasev, René van Bevern, and Oxana Yu. Tsidulko. The hierarchical Chinese

postman problem: The slightest disorder makes it hard, yet disconnectedness is manageable.
Oper. Res. Lett., 49(2):270–277, 2021. doi:10.1016/J.ORL.2021.01.017.

2 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Christoforos L. Raptopoulos.
The temporal explorer who returns to the base. J. Comput. Syst. Sci., 120:179–193, 2021.
doi:10.1016/J.JCSS.2021.04.001.

3 Amir Ben-Dor, Itsik Pe’er, Ron Shamir, and Roded Sharan. On the complexity of posi-
tional sequencing by hybridization. J. Comput. Biol., 8(4):361–371, 2002. doi:10.1089/
106652701752236188.

https://doi.org/10.1016/J.ORL.2021.01.017
https://doi.org/10.1016/J.JCSS.2021.04.001
https://doi.org/10.1089/106652701752236188
https://doi.org/10.1089/106652701752236188

B. Bals, S. van Krieken, S. P. Pissis, L. Stougie, and H. Verbeek 53:15

4 Giulia Bernardini, Huiping Chen, Gabriele Fici, Grigorios Loukides, and Solon P. Pissis.
Reverse-safe data structures for text indexing. In Guy E. Blelloch and Irene Finocchi,
editors, Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX
2020, Salt Lake City, UT, USA, January 5-6, 2020, pages 199–213. SIAM, 2020. doi:
10.1137/1.9781611976007.16.

5 Giulia Bernardini, Huiping Chen, Gabriele Fici, Grigorios Loukides, and Solon P. Pissis.
Reverse-safe text indexing. ACM J. Exp. Algorithmics, 26:1.10:1–1.10:26, 2021. doi:10.1145/
3461698.

6 Graham R. Brightwell and Peter Winkler. Counting Eulerian circuits is #P-complete. In Camil
Demetrescu, Robert Sedgewick, and Roberto Tamassia, editors, Proceedings of the Seventh
Workshop on Algorithm Engineering and Experiments and the Second Workshop on Analytic
Algorithmics and Combinatorics, ALENEX /ANALCO 2005, Vancouver, BC, Canada, 22
January 2005, pages 259–262. SIAM, 2005. URL: http://www.siam.org/meetings/analco05/
papers/09grbrightwell.pdf.

7 Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal graphs. Algorithmica,
85(3):688–716, 2023. doi:10.1007/S00453-022-01018-7.

8 Massimo Cairo, Paul Medvedev, Nidia Obscura Acosta, Romeo Rizzi, and Alexandru I.
Tomescu. Optimal omnitig listing for safe and complete contig assembly. In Juha Kärkkäinen,
Jakub Radoszewski, and Wojciech Rytter, editors, 28th Annual Symposium on Combinatorial
Pattern Matching, CPM 2017, July 4-6, 2017, Warsaw, Poland, volume 78 of LIPIcs, pages
29:1–29:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.
CPM.2017.29.

9 Massimo Cairo, Romeo Rizzi, Alexandru I. Tomescu, and Elia C. Zirondelli. Genome assembly,
from practice to theory: Safe, complete and Linear-Time. ACM Trans. Algorithms, 20(1):4:1–
4:26, 2024. doi:10.1145/3632176.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Moshe Dror, Helman Stern, and Pierre Trudeau. Postman tour on a graph with precedence
relation on arcs. Networks, 17(3):283–294, 1987. doi:10.1002/NET.3230170304.

12 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. J.
Comput. Syst. Sci., 119:1–18, 2021. doi:10.1016/J.JCSS.2021.01.005.

13 Thomas Erlebach and Jakob T. Spooner. Faster exploration of degree-bounded temporal
graphs. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31,
2018, Liverpool, UK, volume 117 of LIPIcs, pages 36:1–36:13. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPICS.MFCS.2018.36.

14 Thomas Erlebach and Jakob T. Spooner. Non-strict temporal exploration. In Andréa Werneck
Richa and Christian Scheideler, editors, Structural Information and Communication Complexity
- 27th International Colloquium, SIROCCO 2020, Paderborn, Germany, June 29 - July 1, 2020,
Proceedings, volume 12156 of Lecture Notes in Computer Science, pages 129–145. Springer,
2020. doi:10.1007/978-3-030-54921-3_8.

15 Gianpaolo Ghiani and Gennaro Improta. An algorithm for the hierarchical Chinese postman
problem. Oper. Res. Lett., 26(1):27–32, 2000. doi:10.1016/S0167-6377(99)00046-2.

16 Sridhar Hannenhalli, William Feldman, Herbert F. Lewis, Steven Skiena, and Pavel A.
Pevzner. Positional sequencing by hybridization. Comput. Appl. Biosci., 12(1):19–24, 1996.
doi:10.1093/BIOINFORMATICS/12.1.19.

17 Carl Hierholzer and Chr Wiener. Über die möglichkeit, einen linienzug ohne wiederholung
und ohne unterbrechung zu umfahren. Mathematische Annalen, 6(1):30–32, 1873.

18 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

ESA 2025

https://doi.org/10.1137/1.9781611976007.16
https://doi.org/10.1137/1.9781611976007.16
https://doi.org/10.1145/3461698
https://doi.org/10.1145/3461698
http://www.siam.org/meetings/analco05/papers/09grbrightwell.pdf
http://www.siam.org/meetings/analco05/papers/09grbrightwell.pdf
https://doi.org/10.1007/S00453-022-01018-7
https://doi.org/10.4230/LIPICS.CPM.2017.29
https://doi.org/10.4230/LIPICS.CPM.2017.29
https://doi.org/10.1145/3632176
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1002/NET.3230170304
https://doi.org/10.1016/J.JCSS.2021.01.005
https://doi.org/10.4230/LIPICS.MFCS.2018.36
https://doi.org/10.1007/978-3-030-54921-3_8
https://doi.org/10.1016/S0167-6377(99)00046-2
https://doi.org/10.1093/BIOINFORMATICS/12.1.19
https://doi.org/10.1007/978-1-4684-2001-2_9

53:16 When Is String Reconstruction Using de Bruijn Graphs Hard?

19 Peter Korteweg and Ton Volgenant. On the hierarchical Chinese Postman Problem with linear
ordered classes. Eur. J. Oper. Res., 169(1):41–52, 2006. doi:10.1016/J.EJOR.2004.06.003.

20 Orna Kupferman and Gal Vardi. Eulerian paths with regular constraints. In Piotr Faliszewski,
Anca Muscholl, and Rolf Niedermeier, editors, MFCS, volume 58 of LIPIcs, pages 62:1–62:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.MFCS.2016.
62.

21 Antoine Limasset, Jean-François Flot, and Pierre Peterlongo. Toward perfect reads: self-
correction of short reads via mapping on de Bruijn graphs. Bioinform., 36(2):651, 2020.
doi:10.1093/BIOINFORMATICS/BTZ548.

22 Andrea Marino and Ana Silva. Eulerian walks in temporal graphs. Algorithmica, 85(3):805–830,
2023. doi:10.1007/S00453-022-01021-Y.

23 Paul Medvedev. Modeling biological problems in computer science: a case study in genome
assembly. Briefings Bioinform., 20(4):1376–1383, 2019. doi:10.1093/BIB/BBY003.

24 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs. Theor.
Comput. Sci., 634:1–23, 2016. doi:10.1016/J.TCS.2016.04.006.

25 Matús Mihalák, Rastislav Srámek, and Peter Widmayer. Approximately counting
approximately-shortest paths in directed acyclic graphs. Theory Comput. Syst., 58(1):45–59,
2016. doi:10.1007/S00224-014-9571-7.

26 Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753,
2001. doi:10.1073/pnas.171285098.

27 Pierangela Samarati and Latanya Sweeney. Generalizing data to provide anonymity when
disclosing information (abstract). In Alberto O. Mendelzon and Jan Paredaens, editors,
Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 1-3, 1998, Seattle, Washington, USA, page 188. ACM Press, 1998.
doi:10.1145/275487.275508.

28 Jinghao Sun, Guozhen Tan, and Xianchao Meng. Graph transformation algorithm for the time
dependent Chinese Postman Problem with Time Windows. In 2011 International Conference
on Mechatronic Science, Electric Engineering and Computer (MEC), pages 955–960, 2011.
doi:10.1109/MEC.2011.6025623.

29 Latanya Sweeney. k-Anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl. Based Syst., 10(5):557–570, 2002. doi:10.1142/S0218488502001648.

30 Alexandru I. Tomescu and Paul Medvedev. Safe and complete contig assembly through
omnitigs. J. Comput. Biol., 24(6):590–602, 2017. doi:10.1089/CMB.2016.0141.

31 Hsiao-Fan Wang and Yu-Pin Wen. Time-constrained Chinese postman problems. Computers &
Mathematics with Applications, 44(3):375–387, 2002. doi:10.1016/S0898-1221(02)00156-6.

https://doi.org/10.1016/J.EJOR.2004.06.003
https://doi.org/10.4230/LIPIcs.MFCS.2016.62
https://doi.org/10.4230/LIPIcs.MFCS.2016.62
https://doi.org/10.1093/BIOINFORMATICS/BTZ548
https://doi.org/10.1007/S00453-022-01021-Y
https://doi.org/10.1093/BIB/BBY003
https://doi.org/10.1016/J.TCS.2016.04.006
https://doi.org/10.1007/S00224-014-9571-7
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1145/275487.275508
https://doi.org/10.1109/MEC.2011.6025623
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1089/CMB.2016.0141
https://doi.org/10.1016/S0898-1221(02)00156-6

	1 Introduction
	2 Preliminaries
	3 NP-hardness and Inapproximability
	4 FPT by Interval Width
	5 Counting Eulerian Trails with Applications in Data Privacy

