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—— Abstract

A path-covering problem on a directed acyclic graph (DAG) requires finding a set of source-to-sink
paths that cover all the nodes, all the arcs, or subsets thereof, and additionally they are optimal with
respect to some function. In this paper we study safe sequences of nodes or arcs, namely sequences
that appear in some path of every path cover of a DAG.

We show that safe sequences admit a simple characterization via cutnodes. Moreover, we
establish a connection between maximal safe sequences and leaf-to-root paths in the source- and
sink-dominator trees of the DAG, which may be of independent interest in the extensive literature
on dominators. With dominator trees, safe sequences admit an O(n)-size representation and a
linear-time output-sensitive enumeration algorithm running in time O(m + o), where n and m are
the number of nodes and arcs, respectively, and o is the total length of the maximal safe sequences.

We then apply maximal safe sequences to simplify Integer Linear Programs (ILPs) for two
path-covering problems, LeastSquares and MinPathError, which are at the core of RNA transcript
assembly problems from bioinformatics. On various datasets, maximal safe sequences can be
computed in under 0.1 seconds per graph, on average, and ILP solvers whose search space is reduced
in this manner exhibit significant speed-ups. For example on graphs with a large width, average

speed-ups are in the range 50 — 250 for MinPathError and in the range 80 — 350 for LeastSquares.

Optimizing ILPs using safe sequences can thus become a fast building block of practical RNA
transcript assembly tools, and more generally, of path-covering problems.
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Safe Sequences via Dominators for Path Covers

1 Introduction

Data reduction, namely simplifying the input to a problem while maintaining equivalent
solutions, has proved extremely successful in solving hard problems in both theory and
practice [26]. While the most well-known approach for data reduction is kernelization [37, 18],
there are also other ways to pre-process the input in order to obtain practical algorithms.

For example, for graph problems where a solution is a set of vertices with certain properties,
Bumpus et al. [8] and Jansen and Verhaegh [29] considered the notion of c-essential vertex
as one belonging to all c-approximate solutions to the problem. They showed that for
some vertex-subset finding problems (e.g. Vertex Cover) and some values of ¢, there exist
algorithms with an exponential dependency only in the number of non-c-essential vertices.

In this paper we pursue a similar data reduction approach, via the notion of safe partial
solution [52], defined as one “appearing” in all solutions to a problem. For solutions that are
sets of paths satisfying certain properties, a safe path can be defined as one appearing as a
subpath of some path of any solution. Intuitively, safety corresponds to 1-essentiality.

For an NP-hard problem, it is usually intractable also to compute all its safe partial
solutions (see e.g. [15]). As such, in this paper we use the following property about safety.
Let S be the (unknown) set of solutions to a problem, and let S’ 2 S be a superset of S
whose safe partial solutions can be computed efficiently. Then, if a partial solution appears
in all solutions in &', it also appears in all solutions in S.

This property was used by Grigorjew et al. [25] when applying safety as a pre-processing
step for the Minimum Flow Decomposition (MFD) problem. The MFD problem asks to
decompose the flow in a directed acyclic graph (DAG) into a minimum number of weighted
source-to-sink paths [4, 53]. As solution superset &’, they considered flow decompositions
with any number of paths, whose safe paths can be computed in polynomial time [30, 31, 2].
Instead of simplifying the input graph, they used the safe paths to simplify an integer linear
program (ILP) for the MFD problem from [17], thus reducing the search space of the ILP
solver. This resulted in speed-ups of up to 200 times on the hardest instances.

In this paper we focus on problems whose input consists of an s-t DAG? G where the
solution superset S’ contains all the sets of paths in G from s to ¢ that together cover all the
nodes or arcs of G (or given subsets thereof). We will refer to these objects simply as path
covers. Note that a flow decomposition is also a path cover of the arcs carrying flow, but
path covers generalize many other problems, especially those modeling practical problems
from bioinformatics, see Section 1.2. Next, we present the contributions of the paper and
further contextualization.

1.1 Optimal enumeration of maximal safe sequences via dominators

Safe sequences as a generalization of safe paths. The notion of a safe path has been
extensively used to capture contiguous safe partial solutions (see e.g. [52, 48, 15, 40, 45, 31, 11]).
However, for our purposes contiguity is not necessary, but only the fact that the nodes/arcs in
a safe partial solution appear in the same order in some path of every solution. For example,
it may be that the only way to reach a node u is via a node v, with some complex subgraph
between them. The sequence u, v thus appears in some path of every path cover of the nodes.

2 By an s-t directed graph we mean one with a unique source s and unique sink ¢ such that all nodes are
reachable from s and all nodes reach t¢; if the graph is acyclic, then it is an s-t DAG. Path-covering
problems on DAGs typically require that paths either start in a source of the graph, or more generally,
in a given set of starting nodes, and analogously end in a sink, or in a given set of terminal nodes.
However, these start/end nodes can naturally be connected to s and ¢, and thus we can assume, without
loss of generality, that our DAGs are s-t DAGs.
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Figure 1 An s-t DAG and its s- and t-dominator trees. Three maximal safe sequences with
respect to path covers of the nodes are shown in solid orange, violet, and yellow. Nodes b and ¢ are
leaves in both dominator trees, and thus their extension into the orange and yellow sequences, resp.,
are maximally safe. (The maximal safe sequences obtained by extending nodes f, ¢ and r are not
shown.) Note that k'k is a unitary path and that extension(k’) = extension(k). The dashed orange
safe sequence is not maximal and can be obtained by extending a.

We thus define a safe sequence with respect to the path covers of a DAG G, either of the
nodes or of the arcs, analogously to that of a safe path (see Figure 1 for an example). This
notion is inspired by the work of Ma, Zheng and Kingsford [57], who proposed a problem
(AND-Quant) and a max-flow-based algorithm deciding when a sequence of arcs appears
in some path in every flow decomposition (with any number of paths) of a flow in a DAG.
Here, we are particularly interested in characterizing but also in computing maximal safe
sequences, i.e., safe sequences that are not a proper subsequence of another safe sequence.

Characterization of safe sequences. Assume that the input DAG has n nodes and m arcs.
We show that safe sequences admit a simple characterization in terms of cutnodes. A u-v
cutnode is a node such that all paths from u to v (u-v paths) pass through it. We present
our results for path covers of the nodes and refer to the extended version for the results for
path covers of the arcs. Omitted proofs can be found in the extended version.

» Theorem 1 (Characterization of safe sequences). Let G = (N, A) be an s-t DAG and X be

a sequence of nodes. The following statements are equivalent:

1. X is safe for path covers.

2. There is a node w € N such that every s-t path covering u contains X.

3. There is a node v € N such that X is contained in the sequence obtained as the concaten-
ation of the sequences of s-v and v-t cutnodes.

While outputting the sequences of s and ¢ cutnodes for every node v in the graph can be
done in time O(m) per node, different nodes can thus be extended to the same maximal safe
sequence, and some extensions may not even be maximal (see Figure 1). The challenge is to
characterize those nodes identifying all and only maximal safe sequences, without duplicates.
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Linear-time output-sensitive enumeration via dominators. We show that we can identify
such nodes in an elegant manner using dominators, which is a well-studied concept related
to cutnodes (see e.g. the survey [23] for an in-depth contextualization of dominators). In
particular, the s-dominator tree of an s-t DAG (N, A) has node set N, and u is the parent
of v iff all paths from s to v pass through u, and moreover there is no node reachable from
(except u itself) whose removal makes v unreachable from u.

The key idea behind our results is to work also with the t-dominator tree of GG, which
is defined in an analogous manner, but considering reachabilities o t. By analyzing the
interplay between the two trees, we show that the nodes solving this problem (Theorem 9)
are those that are leaves in both the s- and t-dominator trees, only after overcoming some
technicalities arising from unitary paths (see Figure 1, Lemma 4 and Lemma 8). Since
dominator tree leaves admit a characterization in terms of in- or out-neighborhoods on DAGs
(Lemma 5), this leads to an O(mn)-time algorithm outputting all and only maximal safe
sequences without duplicates, independently of dominator trees:

» Theorem 2. Given an s-t DAG G with n nodes and m arcs, we can compute all and only
the maximal safe sequences of G in O(nm)-time, without constructing dominator trees.

To improve this time bound we resort to the fact that dominator trees admit an O(m +n)
time construction [6, 7, 20], although so far some of these algorithms do not seem to be
practical. See [24, 22, 14] for experimental studies on different dominator tree algorithms.
Regardless, any dominator algorithm serves our purposes and its effect on the runtime of our
algorithm is clear in the proof of the theorem below.

» Theorem 3 (Enumeration of maximal safe sequences). Let G be an s-t DAG with n nodes

and m arcs. The following hold:

1. There is an O(m + o) time algorithm outputting the set of all mazimal safe sequences
with no duplicates, where o denotes the total length of all the maximal safe sequences.

2. There is an O(n)-size representation of all the mazimal safe sequences of G that can be
built in O(m + n) time.

An analogous result to Theorem 3 can be obtained for path covers where only a given
subset C' C N of nodes has to be covered. To achieve that, we have to analyze the dominator
trees induced by the dominance relation restricted to C'. Moreover, analogous results can be
obtained also for path covers of the arcs. The details can be found in the extended version.

1.2 Scaling path-covering ILPs for bioinformatics problems

The motivation of our work comes from bioinformatics, where many NP-hard graph problems
related to sequencing data require finding a set of paths in a DAG satisfying certain properties.
For example, in the RNA transcript assembly problem, we need to recover the RNA transcripts
produced in various abundances by a gene, given only smaller fragments (i.e. RNA-seq reads)
sequenced from the RNA transcripts. This problem is usually solved by first building an
arc-weighted DAG from the fragments, i.e., a splice graph. The RNA transcripts correspond
to a set of source-to-sink weighted paths in the DAG that “best explain” the arc-weights,
under various definitions of optimality, see e.g. [36, 35, 56, 46, 55, 47, 50, 19, 17, 15].

In our work we consider two path-covering problems used for RNA transcript assembly,
in which we use safe sequences to fix some variables of the corresponding ILPs. We assume
that in every arc uv of the input graph there is an associated positive weight w(uv). We now
briefly describe the ILPs.
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We selected a classical least-squares model (which we call LeastSquares) that is at the
core of several RNA assembly tools e.g. [34, 12, 21, 33, 38, 51]. This minimizes the sum
of squared differences between the weight of an arc and the weights of the solution paths
passing through the arc. The ILP formulation requires no additional constraints, and the

ILP objective function is:>

& 2
min Z (w(uv) - qumwz> . (1)
uvEA =1

While this model is popular, it has quadratic terms in its objective function, which makes
it harder to solve. Therefore, as second model (which we call MinPathError), we chose one
that was recently introduced in [16]. Then, for k paths to be a solution to the ILP, we require
that the absolute difference between the weight of an arc and the weights of the solution
paths passing through the arc must be below the sum of the errors (or slacks) of the paths
passing through the arc. Formally, we add the constraint:*

k
< qumpi, Yuv € A, (2)

i=1

2
w(uv) — Z Tuvili

i=1

with objective function: min Zle pi. By definition, the solution paths must cover every
arc uv, since otherwise the above condition becomes w(uv) < 0, which contradicts the
assumption that w is positive everywhere. See [17] for further details.

On various datasets, maximal safe sequences can be computed in under 0.1 seconds
per graph, on average, and such safety-optimized ILPs show significant speed-ups over the
original ones. More specifically, on the harder instances of graphs with a large width, average
speed-ups are in the range 50 — 250x for MinPathError and in the range 80 — 350x for
LeastSquares. As such, our optimizations can become a scalable building block of practical
RNA transcript assembly tools, but also of general path-covering problems.

2 Notation and preliminaries

Graphs. In this paper we consider directed graphs, especially directed acyclic graphs (DAGs).

For a DAG G = (N, A) with node set N and arc set A, we let n = |N| and m = |A|. We
denote an arc from u to v as uv and a path p through nodes vy,...,v; as p = v ...vx. Two
paths are considered distinct if they differ in at least one node. The set of in-neighbors

(out-neighbors) of a node v is denoted N, (N,}), and its indegree (outdegree) as d, (d}).

For nodes u, v we say that there is a u-v path if there is a path whose first node is v and last

node is v (we also say that u reaches v). An antichain is a set of pairwise unreachable nodes.

The size of the largest antichain in a DAG is called width. Analogously, for arcs uv, xy we
say that uwv reaches xy if v reaches x. An arc-antichain is a set of pairwise unreachable arcs,
and the arc-width of a DAG is the size of the largest arc-antichain of the graph.

For X C N we denote a sequence X through nodes uy,...,us as X = uq,...,up if there
is a u;-u; 41 path for all 1 <4 < ¢ —1; in particular, a path is a sequence. We say that X
covers or contains a node v if v = w; for some i € {1,..., ¢}, and we write u € X. If Y is a
sequence and each node of X is contained in Y we say that X is a subsequence of Y, or that
X is contained in Y. Since G is a DAG, the nodes of X appear in the same order as in Y.

3 Note that the terms @y;w; are not linear, but can be linearized using a simple technique, see [17, 16].
4 Note again that the terms x,,;w; and x,.:p; are not linear, but can be linearized using a simple
technique, see [16].
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Let X’ = vy1,v9,...,vp be a sequence such that there is a path from the last node
ug of X to v;. The concatenation of X and X’ is simply the sequence X X’ obtained
as X followed by X’. If uy, = vy, then the repeated occurrence of v; is removed, i.e.
XX :=uq,...,usv9,...,v¢. We adopt the convention that lowercase letters w, v, w,z,y, z

denote nodes and uppercase letters X,Y denote sequences of nodes.

Safety. We define a path cover of G to be a set P of s-t paths such that Vu € N I3p € P :
u € p; we also say cover instead of “s-t path cover of G” when the graph G is clear from the
context. Two path covers are distinct if they differ in at least one path. We assume that
every node of G lies in some s-t path. We say that a sequence X is safe for G if in every
path cover P of GG it holds that X is a subsequence of some path in P. If X is not safe we
say that it is unsafe. A sequence X is mazimally safe if it is not a subsequence of any other
safe sequence. We assume that there is always an s-t path containing a given sequence of
nodes, otherwise that sequence is vacuously unsafe. Note that imposing the collection of s-t
paths of a cover to be minimal with respect to inclusion results in an equivalent definition of
safety: any sequence that is safe for path covers is also safe for minimal path covers since
every minimal path cover is a path cover; but also, if X is safe for minimal path covers then
it is also safe for general path covers, as otherwise we could have a path cover P avoiding X
from which arbitrary s-t paths can be removed until P becomes minimal.

Graph compression. We define a unitary path as a path where each node has indegree
equal to one but the first one, and each node has outdegree equal to one but the last one.
For example, in Figure 1, the paths de and pq are unitary, the path cde is maximally unitary.
With respect to G, we define the compressed graph of G as the graph where every maximal
unitary path of G is contracted into a single node. It is a folklore result that compressing a
graph can be done in linear time (see e.g. [13, 52]). We state this fact in the next lemma
together with an additional property stating that compressed graphs cannot have arcs uv
with v the unique out-neighbor of v and u the unique in-neighbor of v, since uv would then
be a unitary path.

» Lemma 4. Let G be a directed graph with n nodes and m arcs. Then the following hold:
1. We can compute the compressed graph of G in O(n +m) time.
2. In a compressed graph there is no arc uv such that Nt = {v} and N,; = {u}.

The compression of unitary paths preserves safety: every s-t path in G traversing the
unitary path traverses the corresponding node in the compressed graph of G, and every s-t
path traversing a node in the compressed graph of G necessarily traverses the unitary path
it corresponds to in G. This idea appeared in the context of walk-finding problems in [11].

Cutnodes and dominators. In the dominator literature, the directed graphs on which
dominators are computed have a single start node s from which every node is reachable.
In some cases, the graphs have instead or additionally a unique sink ¢ which is reached
by every node, in which case the dominance relation is referred to as post-dominance (see
e.g., [5, 27]). A prominent application of dominators is in the context of program analysis,
where s corresponds to the entry point of the program and ¢ to its exit point. Our graphs
always have unique abstract nodes s and ¢, hence, diverging from standard notation, we
parameterize the domination relation by s and ¢t. We borrow standard concepts and notation
from the literature of dominators, which we describe next.
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Let G be an s-t directed graph. A node u is said to s-dominate a node v if every s-v
path contains u, hence u is an s-v cutnode if and only if u s-dominates v. Every node s- and
t-dominates itself. We also say that v t-dominates u if every u-t path contains v, which is
equivalent to v being a u-t cutnode. We say that u strictly s-dominates v if u s-dominates v
and u # v. For v # s, the immediate s-dominator of v is the strict s-dominator of v that is

dominated by all the nodes that strictly dominate v, in which case we write idoms(v) = u.

The domination relation on G with respect to s can be represented as a rooted tree at s with
the same nodes as G, called the s-dominator tree of G. In this tree, the parent of every node
is its immediate s-dominator, every node is s-dominated by all its ancestors and s-dominates
all its descendants and itself. A node is said to be an s-dominator if it strictly s-dominates
some node. The same terminology will be used for the t-domination relation. We also define
a function dom : N x N* — N on rooted trees as follows. Let domg(v, k) := idoms(v) when
k =1 and domg(v, k) := doms(doms(v, 1),k — 1) when k > 1. If k is larger than the number
of strict dominators of a given node, then it defaults to s (resp. t) in the s-dominator tree
(resp. t-dominator tree). Essentially, dom gives the k-th ancestor of a node in a rooted tree,
if it is well defined, otherwise it returns the root of the tree. For example, in Figure 1, the
immediate s-dominator of b is a (doms(b,1) = a) and dom(q,3) = t. Node c is a strict
t-dominator of the nodes {a, b, k, k’'}. See [23] for an in-depth presentation of dominators.

In DAGs, dominators admit a characterization, which we state in Lemma 5 below. This
was first presented by Ochranové [41], but with an incomplete proof. This characterization
was also discussed by Alstrupt et al. [6, Sec. 5.1]. To the best of our knowledge, we did not
find a complete proof of this characterization in the literature, and hence one can be found
in the extended version.

» Lemma 5 (Characterization of node-dominators in DAGs). Let G = (N, A) be an s-t DAG.
A node u € N is an s-dominator (resp. t-dominator) if and only if there is a node v such
that N = {u} (resp. N ={u}).

3 Safe sequences via dominators

3.1 Characterization of safe sequences

We start by proving Theorem 1.

Proof of Theorem 1. (1 = 2) If for every node u € N there is an s-t path covering u that
avoids X, then we can build a path cover by considering for every node u of G an s-t path
avoiding X that covers u. This contradicts the safety of X.

(2 = 3) Since every s-t path covering u contains the sequence of s-u cutnodes followed by
the sequence of u-t cutnodes and X is contained in every such path, the implication follows
by taking u = v.

(3 = 1) Since X is a subsequence of a sequence containing every s-v and v-t cutnode and
v must be covered in every path cover by some s-t path, any of which contains the s- and
t-cutnodes of v, it follows that X is safe. <

We will heavily use the type of sequence obtained as in point 3 of Theorem 1. As
such, we define the extension of a node v, extension(v), as the sequence obtained from
the concatenation of the sequence of s-v cutnodes with the sequence of v-t cutnodes. By
Theorem 1 every maximal safe sequence is the extension of some node, and so in a DAG
with n nodes and m arcs there are at most n maximal safe sequences. Moreover, for any
node v € N, extension(v) can be computed in time O(m + n) by computing the s-v cutnodes

55:7
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and v-t cutnodes with e.g. the simple algorithm of Cairo et al. [9]. Thus, Theorem 1 implies
that we can compute in time O(nm) a set of safe sequences containing every maximal safe
sequence of G, by reporting extension(v) for every node v. However, the reported sequences
may not be maximal and the same sequence may be reported multiple times.

Because of the correspondence between cutnodes and dominators explained in Section 2,
the extension of a node can also be expressed as suitable paths in dominator trees. We will
use this fact in the rest of the paper.

» Remark 6. In an s-t DAG G, extension(v) is the same as the path from s to v in the
s-dominator tree of G concatenated with the path from v to ¢ in the ¢-dominator tree of G.

3.2 Properties of s- and t-dominator trees

We start with a lemma showing an interplay between s-domination and ¢-domination on
general s-t directed graphs.

» Lemma 7. Let G = (N, A) be an s-t directed graph, let u,v € N be nodes, and let k € N*.
If u is the k-th ancestor of v in the s-dominator tree, then dom(u, k) t-dominates v, and v
is not a t-dominator of u unless v = domy(u, k).

Proof. Note that u # ¢ since u is an s-dominator. Let w = domy(u, k) and let y1, ..., yp—1
be the nodes between u and v in the s-dominator tree. We can assume w # v.

Observe that w # y; for all i € {1,...,k — 1}. Suppose otherwise. Then w # t because
t is not an s-dominator. Hence, by definition of dom,, there are k — 1 nodes z1,...,z5_1
between w and u in the {-dominator tree. Some x; is not between » and w in the s-dominator
tree, and hence there is a u-w path avoiding x;. Further, since x; is strictly ¢-dominated
by w there is a w-t path avoiding z;. Concatenating these paths at w results in a u-t path
avoiding x;, contradicting the fact that x; ¢-dominates w.

Suppose now for a contradiction that v is not strictly ¢-dominated by w. From the point
above, there is a u-v path avoiding w. This path concatenated with a v-t path avoiding w
gives a u-t path also avoiding w, contradicting the fact that w t-dominates u.

It remains to show that v cannot t-dominate u. Suppose otherwise. Then we have
v = z; for some ¢ € {1,...,k — 1}, since v is strictly t-dominated by w and t-dominates
u. Thus, some y; is not between v and u in the t-dominator tree, implying that there is a
u-v path avoiding y;. Since y; is s-dominated by u, there is an s-u path avoiding y;, which
concatenated with the previous path gives an s-v path also avoiding ¥;, contradicting the
fact that y; s-dominates v. |

Lemma 7 can be interpreted for the special case of k = 1 as follows: if u immediately
s-dominates v then the immediate t-dominator of u ¢t-dominates v (see Figure 2). Another
consequence of this result is that if u is an s-dominator, then at most one node immediately
s-dominated by w is in the path from ¢ to u in the dominator tree of ¢, which must be the
immediate t-dominator of wu.

Observe now in Figure 1 that ¢ is the immediate s-dominator only of d and that d
is the immediate t-dominator only of ¢, and likewise for d and e, and so extension(c) =
extension(d) = extension(e). This redundancy and asymmetry introduced by unitary paths is
undesirable in the characterization of maximal safe sequences. This discussion motivates the
following result.

» Lemma 8. Let G = (N, A) be a compressed s-t DAG and let u,v € N be distinct nodes. If u
immediately s-dominates v and v immediately t-dominates u then u immediately s-dominates
some node different from v and v immediately t-dominates some node different from u.
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Figure 2 Illustration of the proof of Lemma 7. The two dominator trees discussed in the proof
are shown on the left. On the right, an abstract graph for the special case of k = 1 is shown; node v
cannot reach ¢ without w, without contradicting the fact that dom:(u, 1) = w.

Proof. Assume without loss of generality that u immediately s-dominates only node v.

We claim that N, = {u}. Suppose otherwise. If N, is empty then v = s, and so v is not
a t-dominator, a contradiction. So there is an arc wv with w # u. Since u s-dominates v, it
must also s-dominate every in-neighbour of v, namely w. But v immediately s-dominates
only v, thus, v must s-dominate w, implying that there is a v-w path. Since wv € A, G
contains a cycle, a contradiction.

Since v is a t-dominator, by Lemma 5 there is a node whose unique out-neighbour is v. If
this node is u, we contradict the fact that the graph is compressed by Lemma 4. Therefore,
v must have at least two distinct in-neighbors, a contradiction. |

3.3 Characterization and enumeration of maximal safe sequences

Using Lemmas 7 and 8, we can give a precise characterization of maximal safe sequences.

» Theorem 9 (Characterization of maximal safe sequences). Let G = (N, A) be a compressed
s-t DAG and let w € N be a node. Then extension(u) is a mazimal safe sequence if and only
if u is a leaf in both the s- and t-dominator trees of G.

Proof. (<) If u is a leaf in both dominator trees then extension(u) is maximal: no other
node can be added to this sequence by the equivalence of safe sequences and paths in the
dominator trees given by Remark 6 and Theorem 1.

(=) Suppose that extension(u) is a maximal safe sequence but « is not a leaf in both
dominator trees. Without loss of generality suppose that u is not a leaf in the s-dominator
tree. Note that u # ¢ since v is an s-dominator. Let v be a node immediately s-dominated
by u and let w denote the immediate ¢-dominator of wu.

First we argue that there is a node z that is immediately s-dominated by u and that
is strictly t-dominated by w. We consider two cases. If v # w then we can take z = v,
because by Lemma 7 for £ = 1 we can conclude that w t-dominates v, and since v # w, it
strictly ¢-dominates v. If v = w then we can take z = v/, since by Lemma 8 there is a node
v’ # v that is immediately s-dominated by w; applying Lemma 7 to u and v’ with k = 1, we
conclude that w t-dominates v, and since w = v # v, w strictly t-dominates v'.

Now we show that extension(z) properly contains extension(u). Consider extension(u),
which by definition consists of the sequence of s-u cutnodes (call it Y1) concatenated with the
sequence of u-t cutnodes (call it ¥3). In extension(u), by definition, the double occurrence
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of u is removed, and thus let Y3 be the sequence of w-t cutnodes. That is, extension(u) can
be written as Y1Y5. Consider also extension(z), which can be written analogously as X7 XJ.
Since u is the parent of z in the s-dominator tree, we have that Y7 is strictly contained in X7,
and since z is a proper descendant of w in the ¢t-dominator tree, we have that Y is contained
in X} (possibly Yy = X3). Therefore, extension(u) is a proper subsequence of extension(z),
contradicting our assumption that extension(u) is a maximal safe sequence. <

The idea in the above theorem of targeting special nodes or arcs in order to characterize
every maximal safe object is a recurring theme in safety problems. For instance, [31, 2]
proposed the notion of representative arc, [48] proposed that of core, and [10] found a special
class of walks, coined macrotigs, from where every maximal safe walk can be built. Each of
these constructs was used in a different safety problem.

While the above characterization uses dominator trees, we can derive an equivalent
characterization of dominator-tree leaves just in terms of in- and out-neighborhoods via
Lemma 5, since a node is a leaf if and only if it is not a dominator. Computing the extension
of every node satisfying such condition leads to a simple O(mn) time algorithm outputting
all and only maximal safe sequences, without needing to compute the dominator trees, from
which Theorem 2 follows.

Since dominator trees can be built in O(m + n) time (see, e.g., the algorithm by Alstrup
et al. [6], Buchsbaum et al. [7]), or Fraczak et al. [20]), we can prove Theorem 3.

Proof of Theorem 3. Let G’ be the compressed graph of G. Build the dominator trees of
G’ and compute all the leaves common to both trees. These three steps take O(m + n) time.

1: For every node that is a leaf in both dominator trees, output extension(v). By
Theorem 9 we find every maximal safe sequence during this process. Further, no duplicate
safe sequence is computed since different leaves common to both trees have different extensions.
Therefore the algorithm runs in time equal to the length of all the maximal safe sequences
plus the time required to build two dominator trees over G’, so O(m + o) altogether.

2: With the equivalence given by Theorem 9, we have that every maximal safe sequence
is the result of extension(v) for every node v of G’ that is a leaf in both dominator trees. The
sequence extension(v) is encoded in the dominator trees by Remark 6. <

4 Experiments

The experiments were performed on an AMD 32-core machine with 512GB RAM. The source
code of our project is publicly available on Github®. All our algorithms are implemented
in Python3, as are the scripts to produce the experimental results. To solve ILPs, we use
Gurobi’s Python API (version 11) under an academic license. For every graph, we run Gurobi
with 4 threads and set up a timeout of 300 seconds in Gurobi’s execution time.

Implementation. As described in Section 1.2, we study experimentally the potential of
applying safe sequences in two arc-path covering problems, LeastSquares and MinPathError.

We did not use an external algorithm to compute arc-dominator trees because these are
mostly tailored for node-dominators. Instead, we compute the immediate s-dominator and
t-dominator of all arcs with an O(m?) time procedure via the algorithm of [9], appropriately
handling the reversed graph of G for the immediate s-domination relation. The classical

5 https://github.com/algbio/safe-sequences
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algorithm of Aho and Ulman [3] to build dominator trees has the same running time as our
procedure. We remark that even with a suboptimal algorithm to compute the dominator
trees, our entire safety-preprocessing step takes less than 0.1 seconds on average.

With the dominator trees, we can compute all the maximal safe sequences with respect
to arbitrary subsets C' C A of arcs to be covered, all in time proportional to the total length
of all the maximal safe sequences, completely analogously to the discussion in Section 3.

The ILPs were optimized as in [25] by fixing ,,,; variables to 1 based on the maximal
safe sequences of the input DAG, which reduces the search space of the linear program and
hence speeds-up the solver. Let X1,..., X; be sequences in the input DAG such that: (a)
each X;, 7 € {1,...,t}, must appear in some solution path of the ILP, and (b) there exists
no path in the DAG containing two distinct X; and X;. In the case that every X; is a path,
Grigorjew et al. [25] noticed that if the two mentioned properties hold, then Xi,..., X;
must appear in ¢ distinct paths of among the k solution paths of the ILP (see the three
solid-colored sequences shown in Figure 1 which must appear in different paths of any path
cover). As such, without loss of generality, one can set x,,; = 1 for each arc uv of X;,
for all 4 € {1,...,t}. When using sequences to set binary variables, we can proceed in a
completely analogous manner. To have a large number of binary variables set to 1, we follow
the approach of [25]. Namely, for every arc uv, we define its weight as the length of the
longest safe sequence containing uv. Then we find a maximum-weight antichain of arcs in
the DAG using the min-flow reduction of [39]. Then, for each a; in the maximum-weight
antichain, we consider a longest safe sequence X; containing a; to fix variables to 1. Note
that a path covering two such sequences X; and X; would witness that a; and a; cannot be
in an antichain. Finally, we set k to the arc-width of the graph and run Gurobi to solve the
ILP.

Note that any solution to MinPathError is also a path cover, since each arc weight is
positive, and thus the simplified ILP has equivalent optimal solutions. This may not be the
case for LeastSquares, since some arcs may not be covered by any solution path. To handle
such scenarios we propose using maximal safe sequences for path covers where only a subset
C of nodes or arcs can be trusted to appear in any optimal solution. As an illustration of
this approach, we perform experiments by choosing the subset C' as those arcs whose weight
is at least as large as the 25-th percentile of the weights of all arcs, since we can heuristically
infer that the solution paths of LeastSquares cover the arcs of large enough weight.

Datasets. We experiment with seven datasets. The first four contain splice graphs with
erroneous weights created directly from gene annotation by [16].° These were created starting
from the well-known dataset of Shao and Kingsford [49], which was also used in several other
studies benchmarking the speed of minimum flow decomposition solvers [17, 32, 54]. The
original splice graphs were created in [49] from gene annotation from Human, Mouse and
Zebrafish. This dataset also contains a set of graphs (SRR020730) from human gene
annotation, but with flow values coming from a real sequencing sample from the Sequence
Read Archive (SRR020730), quantified using the tool Salmon [42]. To mimic splice graphs
constructed from real read abundances, [16] added noise to the flow value of each arc,
according to a Poisson distribution. The last three datasets contain graphs constructed
by a state-of-the-art tool for RNA transcript assembly, IsoQuant [44]. Mouse annotated
transcript expression was simulated according to a Gamma distribution that resembles real
expression profile [44]. From these expressed transcripts, PacBio reads were simulated using

6 Available at https://doi.org/10.5281/zenodo . 10775004
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IsoSeqSim [1] and fed to IsoQuant for graph creation (we call this Mlouse PacBio), and
ONT reads were simulated using Trans-Nanosim [28], which was modified to perform a more
realistic read truncation (see [44]), and fed to IsoQuant for graph creation (we call this
Mouse ONT). For the latter one, there is also a simpler version where no read truncation
was introduced (Mouse ONT.tr). These are available at [43].

Discussion. We group the graphs in each dataset by width (column “w”). For each width-
interval we show different metrics, namely the number of graphs “#g”, the average number
of arcs “avg m” (and the maximum number of arcs in parenthesis), the time taken in seconds
by the safety preprocessing step in “prep”, the percentage of fixed arc-variables x,,,; of the
ILP out of all mk variables in “vars”, the number of solved instances by the ILP with and
without safety in “#solved” (and in parenthesis the average time taken in seconds to solve
those instances), and in the column “x” we show the average speedup obtained by advising
the linear program with safety. The speed-ups are computed by considering for each graph
the ratio between the time taken by the original ILP (or 300 sec. if this timed-out) divided
by the time taken by the optimized ILP, and averaging these ratios. In the “prep” and “vars”
column, a dash is written only if no instance was solved with safety information. In the
remaining columns a dash means not applicable.

In Table 1 we show the experimental results of the safety-optimized ILPs for MinPathFEr-
ror.(As explained before, for this problem it is correct to select C' = A.) When the width
of the graph is small, the speed-ups are also small. However, such graphs are fast to solve
without safety in the first place. The challenging cases are the graphs of larger widths and
more arcs (indeed, the solver with no safety information performs poorly and it becomes
slower as the width increases). The speed-up of the solver significantly increases as the width
of the graph increases, becoming more than 200 in some datasets. Moreover, these speed-up
are obtained almost for free, in the sense that the time needed to compute safe sequences is
negligible for all datasets, i.e. below 0.1 seconds, and often even much faster. We highlight
the notable difference between the number of instances solved with no safety and with safety.
In Table 2 for LeastSquares we observe the same phenomena, obtaining in some datasets
speed-ups of 300x on graphs of larger widths, and solving always more instances with safety
than without safety. In the extended version results for C' C A in the MinPathError and for
C = A in the LeastSquares can be found.
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Table 1 Experimental results of MinPathError. Safety is with respect to path covers of C' = A.

avg m vars #solved (avg time (s))
v e (max m) | PreP (s) (%0) no safety safety 8
G 1-3 | 15405 4 (210) 0.003 | 87.5 | 15405 (0.011) | 15405 (0.011) 1.2
U‘:‘f 4-6 239 35 (156) 0.007 | 29.5 239 (1.927) 239 (0.095) 14.6
G 7-9 6 70 (158) 0.015 | 15.3 4 (71.070) 6 (0.645) | 244.3
N1 1ot 1 81 (81) 0.016 | 13.1 0 () 1(3.421) | 88.1
= 1-3 | 10729 5 (331) 0.003 | 78.9 | 10729 (0.020) | 10729 (0.014) 1.4
g 4-6 947 35 (163) 0.008 | 24.7 944 (4.031) 947 (0.147) 19.0
T 7-9 92 54 (105) 0.012 | 14.1 3 (63.346) 92 (3.924) | 116.6
10+ 12 | 80 (104) 0.019 | 11.7 (189 233) 9 (32.264) | 35.0
@ 1-3 | 12280 4 (128) 0.003 | 84.4 | 12280 (0.014) | 12280 (0.011) 1.3
3 4-6 749 35 (126) 0.007 | 27.4 749 (2.295) 749 (0.121) 15.0
= 7-9 60 58 (231) 0.015 | 17.5 3 (52.717) 60 (4.955) 73.3
10+ 9| 79 (121) 0.014 | 152 (262 851) 7 (34.163) | 69.2
R 1-3 | 35069 9 (186) 0.002 | 84.7 | 35069 (0.015) | 35069 (0.010) 1.4
§ 46 | 4497 | 33 (171) 0.007 | 20.4 | 4496 (2.043) | 4497 (0.124) | 12.7
§ 7-9 1008 52 (131) 0.010 | 11.9 844 (42.962) 1007 (1.692) | 117.1
ﬁ 10+ 296 75 (184) 0.015 7.9 0 (63.971) 289 (22.945) | 142.5
S| 13| 18527 1 (129) 0.003 | 81.4 | 18527 (0.013) | 18527 (0.011) 1.3
3Z | 46 3083 31 (387) 0.007 | 30.2 3083 (0.203) 3083 (0.041) 4.8
=0 7-9 762 48 (157) 0.010 | 18.1 755 (2.495) 762 (0.180) 38.7
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9.8 | 1-3 | 14256 1 (382) 0.003 | 83.5 | 14256 (0.010) | 14256 (0.011) | 1.2
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Table 2 Experimental results of LeastSquares. Safety is with respect to path covers of the subset

C of arcs whose weight is at least as large as the 25-th percentile of the weights of all arcs.

avg m vars solved (avg time (s
v 78 (max m) prep (s) (%) ?io safet}(f : ( s?zifety %
fg 1-3 | 15405 14 (210) 0.003 | 83.1 | 15405 (0.031) | 15405 (0.023) 1.5
@ 4-6 239 35 (156) 0.007 | 18.1 224 (13.295) 238 (3.061) 15.9
S | 79 6 70 (158) 0.011 | 8.4 0 (-) 2 (62.840) 4.8
N1 o 1 81 (81) i 0() 0() ;
= 1-3 | 10729 15 (331) 0.003 | 74.6 | 10729 (0.046) | 10729 (0.031) 1.8
S 4-6 947 35 (163) 0.007 | 16.3 862 (17.153) 930 (6.334) 12.9
as] 7-9 92 54 (105) 0.011 9.6 4 (69.195) 3 (71.207) 29.1
10+ 12 80 (104) - - 0 (-) 0 (-) -
@ 1-3 | 12280 14 (128) 0.003 | 80.0 | 12280 (0.035) | 12280 (0.026) 1.6
8 4-6 749 35 (126) 0.007 | 16.9 696 (14.851) 744 (5.917) 12.4
= 7-9 60 58 (231) 0.015 9.9 0 (-) 6 (64.253) | 121.9
10+ 9 79 (121) - - 0 (-) 0 (-) -
E 1-3 | 35069 9 (186) 0.002 | 83.2 | 35069 (0.026) | 35069 (0.017) 1.7
2 4-6 4497 33 (171) 0.007 | 15.5 | 4428 (13.082) 4494 (1.275) 16.7
E 7-9 1008 52 (131) 0.011 8.9 | 269 (127.595) 899 (25.515) 82.7
ﬁ 10+ 296 75 (184) 0.015 6.8 1 (7.363) 104 (61.880) 68.0
A 1-3 | 18527 11 (129) 0.003 | 75.9 | 18527 (0.020) | 18527 (0.017) 1.6
8% 4-6 3083 31 (387) 0.007 | 22.5 3077 (1.448) 3082 (0.310) 7.6
= 7-9 762 48 (157) 0.010 | 13.5 693 (15.761) 754 (1.602) | 116.2
10+ 442 87 (589) 0.018 | 85 | 222 (37.135) | 405 (11.143) | 301.0
@ b 1-3 | 18029 12 (131) 0.003 | 74.7 | 18029 (0.020) | 18029 (0.017) 1.5
g; 4-6 3028 32 (187) 0.007 | 21.7 3012 (1.693) 3022 (0.426) 7.1
= Q| 79 803 50 (419) 0.011 | 13.5 727 (14.958) 794 (2.087) 76.2
10+ 476 89 (549) 0.021 | 8.8 | 251 (32.631) 423 (8.422) | 183.2
8.9 1-3 | 14256 14 (382) 0.003 | 74.4 | 14256 (0.034) | 14256 (0.025) 1.7
82% 4-6 1376 33 (187) 0.007 | 22.1 1356 (2.622) 1372 (1.189) 12.3
=1 7-9 182 49 (159) 0.010 | 14.0 146 (37.428) 174 (6.627) | 137.8
10+ 63 | 109 (1178) 0.015 | 10.3 5 (110.413) 46 (17.775) | 370.6
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