PLS-Completeness of String Permutations

Dominik Scheder &
TU Chemnitz, Germany

Johannes Tantow &
TU Chemnitz, Germany

—— Abstract

Bitstrings can be permuted via permutations and compared via the lexicographic order. In this paper

we study the complexity of finding a minimum of a bitstring via given permutations. As finding a
global optimum is known to be NP-complete [1], we study the local optima via the class PLS[8] and
show hardness for PLS. Additionally, we show that even for one permutation the global optimization
problem is NP-complete and give a formula that has these permutation as its symmetries. This
answers an open question inspired from Kolodziejczyk and Thapen [9] and stated at the SAT and
interactions seminar in Dagstuhl [14].

2012 ACM Subject Classification Theory of computation — Problems, reductions and completeness
Keywords and phrases PLS, total search problems, local search, permutation groups, symmetry
Digital Object Identifier 10.4230/LIPIcs.ESA.2025.56

Related Version Full Version: https://arxiv.org/abs/2505.02622

Acknowledgements We want to thank Neil Thapen for introducing the problem to us.

1 Introduction

Given a string x € {0,1}™ and a couple of permutations in S,,, we can apply a permutation
to x and obtain a new bit string. What is the lexicographically smallest string we can obtain
this way? This problem is known [1] to be NP-hard. What about finding a local minimum,
i.e., arriving at a bit string that cannot be further improved by a single application of a
permutation? In this paper, we show that this problem is PLS-complete.

To be more formal, we are given a string x € {0, 1}" and permutations 7y, ..., 7, on the set
[n]. When we view x as a function [n] — {0,1}, the notation x o 7 makes sense and is the
string obtained from x by permuting the coordinates according to . By (m1,...,m) we
denote the subgroup of S}, generated by the ;. The problem k-PERMUTATION GLOBAL
ORBIT MINIMUM asks for the 7 € (1, ..., 7) such that x o 7 is lexicographically minimal.
Babai and Luks [1] showed that this is NP-hard even for k = 2. In fact, we will see that it is
NP-hard even for k =1, i.e., a single permutation.

k-PERMUTATION LOCAL ORBIT MINIMUM asks for a local minimum. That is, an element
m € (m,...,) such that

XOoT Sy Xxomom; foralll<i<k,

i.e., a single application of a permutation m; cannot further improve the string x o 7.
A local optimum always exists and hence this is an instance of a total search problem. Total
search problems where solutions are recognizable in polynomial time form the class TFNP.
Total search problems that can be stated as finding a local optimum with respect to a
certain cost function and a neighborhood relation constitute the subclass PLS (polynomial
local search). Known hard problems for PLS include finding a pure Nash-equilibrium in
a congestion game[4] or finding a locally optimal max cut (LocALMAXCuT) [13]. Almost
all known PLS-complete problems require quite involved cost functions. Our problem
© Dominik Scheder and Johannes Tantow;

37 licensed under Creative Commons License CC-BY 4.0
33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 56; pp. 56:1-56:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:dominik.scheder@informatik.tu-chemnitz.de
https://orcid.org/0000-0002-9360-7957
mailto:johannes.tantow@informatik.tu-chemnitz.de
https://orcid.org/0009-0006-0408-6966
https://doi.org/10.4230/LIPIcs.ESA.2025.56
https://arxiv.org/abs/2505.02622
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

56:2

PLS-Completeness of String Permutations

k-PERMUTATION LOCAL ORBIT MINIMUM has the benefit of using the possibly simplest
cost function - the lexicographic ordering. The only other PLS-complete problem using
a lexicographic cost function that we know of is FLIP, which asks to minimize the m-bit
output of a circuit C', where the solutions are all n-bit inputs and the neighborhood relation
is defined by flipping a single bit.

Thus, our result unifies two desirable properties - our PLS-complete problem is very
combinatorial in nature (in contrast to FLIP) and uses a very simple cost function (in
contrast to LocALMAXCUT)

1.1 SAT Solving and Symmetry Breaking

When encoding a combinatorial problem as a CNF formula F' (think of “is there a k-Ramsey
graph on n vertices?”), the formula will often contain many symmetries. To make the problem
easier for SAT solvers, one can take the statement

The satisfying assignment o should be a local lexicographical minimum with respect
to those symmetries,

encode it as a CNF formula G and feed F' A G to the SAT solver. Clearly, F' A G is satisfiable
if and only if F' is. In case that F' A G is unsatisfiable, SAT solvers are often expected to
produce a proof of unsatisfiability. A popular proof system used in this context is DRAT [15].
However, it is not known to what extend DRAT can handle symmetry breaking [7], that is,
whether a short DRAT-refutation of F'A GG can be transformed into a short DRAT-refutation
of F. In this context, Thapen [14] asked whether there exists a polynomial algorithm that,
given a CNF formula F, a handful of symmetries thereof, and a satisfying assignment «,
finds a satisfying assignment [that is a local lexicographical minimum with respect to those
symmetries. In this paper, we show that this problem is PLS-complete, which is evidence
that such a polynomial time algorithm might not exist.

2 Preliminaries

2.1 Total search problems and PLS

The class FNP is the functional correspondent of NP. TFNP C FNP is the subset of total
search problems, i.e., problems that always have a solution. As this is a semantic class,
TFNP has no known complete problems, and thus it is usually studied via its subclasses.
These subclasses are based on the combinatorial principle that proves the existence of a
solution. These principles include the existence of sinks in directed acyclic graphs (PLS)[8],
the parity argument for directed and undirected graphs (PPAD, PPA) or the pigeonhole
principle (PPP) (all introduced in [11]). Nonetheless, not all problems in TFNP can be
categorized in one of the known subclasses, FACTORING being a prime example.

By the above characterization, PLS requires finding a sink of a directed acyclic graph G.
This would be possible in polynomial time if G was given explicitly. Instead, G is always
given implicitly via a circuit that computes the successor list of a given node. To make sure
that G is acyclic, we have a second circuit computing a topological ordering, that is, a “cost”
function that is strictly decreasing along the edges. A solution to the problem is a sink of G
or an edge (u,v) with cost(u) < cost(v), i.e., violating the decreasing cost condition. This
guarantees the totality of the problem.

D. Scheder and J. Tantow

An alternative definition is the following. For a PLS problem P we have a set of instances
I. Each instance ¢ € I has a set of feasible solutions S (e.g. for the Euclidean traveling
salesman problem the solutions are exactly the Hamilton cycles of K,,). Additionally, we
require the following polynomial-time computable algorithms (usually given as circuits):
1. an algorithm that decides whether a given s is a feasible solution.
2. an algorithm that computes a starting solution s € S
3. an algorithm that computes for a feasible solution s the neighborhood N (s)
4

. an algorithm that computes for a solution s the cost cost(s)

A feasible solution s is a local minimum if cost(s) < cost(s’) for all s € N(s). The
definition is given for a minimization problem, but can be also defined in terms of a
maximization problem.

We can easily transform this into a directed acyclic graph by keeping only those neighbors
in N(s) having strictly smaller cost—or even keeping only the one neighbor s’ € N(s) of
minimal cost (breaking ties arbitrarily).

Similar to NP, there is also a hardness structure in PLS. Let P and @ be two problems
in PLS. P reduces to Q via a PLS-reduction (f,g) for functions f and g such that f maps
an instance I from P to an instance f(I) of Q and g maps a solution s of f(I) to a solution

g(I,s) of P so that if s is a local minimum in f(I) then also g(I, s) is a local minimum in 7.

This was defined in [8] and the first natural PLS-complete problem is FLIP. There solutions
are n-bit strings, the cost is calculated by a given circuit C and the neighborhood are all
n-bit strings with a Hamming distance of 1.

The obvious greedy algorithm to find a solution for a PLS-problem is as follows: Use
the given algorithms to compute the start solution and always select the best neighbor until
there is no better solution. This solution is called the standard solution and the algorithm
the standard algorithm. For the problem FLIP, finding the standard solution for a given
start solution is PSPACE-complete[12, Lemma 4].

Reductions that preserve the PSPACE-completeness are called tight[13]. For this, we
consider the transition graph T'G(I) of an instance I of the problem P, that has a directed
edge from each feasible solution z to all of its neighbors N (x).

A PLS-reduction (f,g) from P to Q is called tight if for every instance I of P there
exists a set R of feasible solutions for f(I) such that
1. R contains all local optima of f(I)

2. For every solution s of I it is possible to construct in polynomial time a feasible solution

t € R such that g(I,t) = s
3. If the transition graph of TG(f(I)) contains a path from ¢ to ¢’ such that both ¢ and ¢’

are in R and all other intermediate nodes are not in R, let p = ¢g(I,q) and p’ = g(I,q’)

be the corresponding solutions in P. Then either p = p’ or there is an arc from p to p’ in

TG(I).

An interesting subclass of PLS is CLS that is supposed to capture continuous local
search problems. Recently, it was shown that CLS = PLS N PPADJ[5].

2.2 Permutation groups

A permutation of a set V' is a bijection 7w : V' — V. For permutations 71, ..., 7, we denote by
(71, ...,m) the subgroup of Sy generated by the ;. Checking membership 7w € (my, ..., mk)
is non-trivial but can be done in polynomial time [6, Section 1].

56:3

ESA 2025

56:4

PLS-Completeness of String Permutations

Figure 1 An example of the scenario for one permutation .

3 Related Work

Many problems are known to be PLS-complete, whose reductions mostly start from FLIP.
An influential reduction technique was used by Krentel [10] to show that finding a local
minimum of a weighted CNF-formula is PL.S-complete. The idea is to have multiple copies
of the circuit, so called test circuits that precompute the effects of a flip. This idea is pushed
further in [13] in order to show that finding a local minimum for weighted positive NAE(not
all equal) 3-SAT is PLS-complete, and this is used to show that other problems as finding a
LocALMAXCUT or finding a stable configurations of Hopfield networks are PLS-complete.

Other direct reductions from FLIP are used in [4] to show that finding a pure Nash
equilibrium in an asymmetric network congestion game is PLS-complete and in [3] to show
that maximum constraint assignment, a generalization of CNF-SAT, is PLS-complete. These
reductions are especially of interest to us as FLIP is to the best of our knowledge the only
problem in PLS with lexicographical weights and hence needed for our reduction.

Numerous optimization problems on permutation groups given via generators my,..., Tk
are studied in [2]. These include finding a © € (m1,...,7) that minimizes X;ecy c(i, 7(i))
for some cost function ¢ : V2 — R. All these problems are shown to be NP-complete via a
reduction from finding a fixed-point free permutation, which is shown to be NP-complete.

Our problem has previously been studied in [1], but there the interest was in global optima.
This was proven to be NP-hard even for abelian groups.

4 The one permutation problem

We start our investigation by studying the special case that k = 1, i.e., we have only one
generator m and our subgroup is (). In this case one can efficiently find a local optimum][9,
Section 8.2]. We show this with a different algorithm again. In contrast, we will show that
surprisingly finding a global optimum is NP-complete. To the best of our knowledge, this
has only been known for two permutations [1].

4.1 Finding a local optimum

The problem is efficiently solvable when k& = 1, i.e., we are only given a single permutation
7. We describe a different way of solving it in contrast to [9]. We can transform = into the
cycle notation and annotate each element with the bit that it is mapped to by the string
x € {0,1}™. We call a cycle interesting if x is non-constant on it. Additionally, we identify
each cycle with its smallest member.

Consider the permutation (1 2 5)(3 4)(7 8) and the string 001001 depicted in Figure 1.
We color an element green if it is mapped to zero and orange if it is mapped to one by the
string. The left cycle is the cycle of 1 and not interesting whereas the other two are which
are identified by 3 and 7.

The permutation has no effect on elements on non-interesting cycles. Due to the cost
function, lower indices are more costly than higher indices. We look for the interesting cycle
that contains the position with the least index among all interesting cycles and let I be the

D. Scheder and J. Tantow

smallest index on it. There are indices ¢ and j := 7 () on this cycle with z; = 0 and z; = 1.

Let k be such that 7%(1) = i. Then x o 7* has a 0 at position 7 but x o 7**! has a 1. In other
k is a local optimum
In example in Figure 1 we have z = 3, j =4 and d = 1. The local optimal permutation

words, X o7

is hence 7.

4.2 Finding a global optima
» Theorem 1 ([1]). 2-PERMUTATION GLOBAL ORBIT MINIMUM is NP-hard.

This follows via a reduction from Independent Set where we encode a graph as a bit string,
one bit per potential edge, and the permutations basically allow us to move the vertices of
the independent set I to the front, generating a large prefix of (lél) many 0’s.

Since 1-PERMUTATION LOCAL ORBIT MINIMUM was so clearly solvable in polynomial
time (even by the greedy algorithm), it comes as a surprise that global optimization, even
for one permutation, is NP-hard:

» Theorem 2. 1-PERMUTATION GLOBAL ORBIT MINIMUM is NP-hard.

We will define an intermediate NP-complete problem called DiSJUNCTIVE CHINESE
REMAINDER, short DCR. For two numbers ¢,m € N and a set S C N, we write

t¢S modm

to state that ¢ £ s mod m for all s € S. Now in the DCR decision problem, we are
given moduli mq,...,m; and sets of “forbidden remainders” Si,...,S5; with S; C Z,, :=
{0,1,...,m; — 1}. All numbers are given in unary and the moduli are not required to be
pairwise co-prime. DCR asks for a solution ¢ € N of the system

tZS; modm; Vi=1,...,1.

This is clearly in NP: if there is a solution x € N, then there is one with 0 < ¢t <
lem(mq,ma,...m;) and thus ¢ has polynomially many bits in binary. Verifying that this ¢ is
a solution can now be done by division with remainder.

» Lemma 3. DCR is NP-complete.

Proof. We reduce from 3-Colorability. Given a graph G = (V, E) with |V| = n, we let
3 =p1,Dp2,.-.,Pn be the first n prime numbers greater than 2. By the prime number theorem,
Pr, is polynomial in n, thus the p; can be found in polynomial time by a brute force search
using naive prime number testing.

Welet N=py-py----- prn, and define the following function from Zy to 3-colorings of
the vertices V: given a number 0 < ¢ < N — 1, the corresponding coloring ¢; : V — {r, g, b}
is defined by

r ift=0 modp;
ct(vi)=4¢g ift=1 mod p;
b else.
By the Chinese Remainder Theorem, this is a surjective function and thus every 3-coloring can

be encoded by one single number 0 < z < N —1. For an edge e = {u, v}, we write a constraint
that makes sure that u and v receive different colors. For each pair (a,b) € Z,, x Z,, with

56:5

ESA 2025

56:6

PLS-Completeness of String Permutations

(a,b) = (0,0) or (a,b) = (1,1) or a > 2,b > 2, we compute the unique number ¢ € Z, .
with ¢ =a mod p, and ¢ =b mod ¢,. Let S, be the set of all numbers ¢ thus constructed,
set me := P, - p» and write the constraint

&S, modm, . (1)

If e is the i edge of the graph, we set m; = p,p, and S; = S,. We see that x satisfies (1) if
and only if x encodes a properly colors edge e. <

» Lemma 4. DCR reduces to 1-PERMUTATION GLOBAL ORBIT MINIMUM.

Proof. Given an instance of DCR we set M = mj1 +mg+-- -+ m; and define a permutation
7 on [M] that has I disjoint cycles, one of length m; for each i. We label the elements of the
i*h cycle consecutively with the numbers 0, ..., m; — 1. We define a bit string x € {0,1}™
that has exactly one 1 in each cycle, placed on the element that has label 0. The orbit
element x o 7t still has exactly one 1 in cycle 4, but now at the vertex labeled ¢t mod m;.
For each cycle i, let F; be the elements on it whose labels are in the set S; of forbidden
remainders and let F := F}; U---U F;. We order the elements of [M] such that the elements
of F' come first. There exists a solution ¢ € N to the DCR instance if and only if the string
x o7t has no 1 in any position in F. <

5 PLS-Hardness

We now state and prove our main result:
» Theorem 5. k-PERMUTATION LOCAL ORBIT MINIMUM is PLS-complete.

In order to view it as a PLS-problem we have an instance I consisting of the permutations
71, .., T, and the string s € {0, 1}". Solutions are permutations from (71, ...7;) as we can
efficiently recognize whether permutations are in the group generated by 7y, .., 5. The start
solution is the identity. Neighbors of 7 are permutations o 7; for ¢ € {1,...k}. The cost
of a permutation 7 is Zf\;l s(m(i))2V =%, where s(7(i)) is the digit of the position that i is
mapped to by m. All these can be computed in polynomial time, hence the problem is in
PLS.

A solution 7 is cheaper than a solution o for a string s if there is an integer ¢ such that
for all j < ¢ we have that s(c(j)) = s(m(j)) and s(7(i)) < s(o()) as the cost is a geometric
sum.

We can turn the minimization problem into a maximization problem by inverting the
string.

5.1 High-level idea

We reduce from the PLS-complete problem FLIP. This problem is especially suitable since
it uses a lexicographic cost function, too. Formally FLIP is defined as follows:

» Definition 6. An instance of FLIP consists of a circuit C with n inputs and m outputs.
Feasible solutions are all input assignments, i.e., the set {0,1}"™. The cost of a solution x is
the output of C(x) € {0,1}™. Two solutions are neighbors if they differ in a single bit. The
cost function is defined by reading the output as a number in binary; in other words, by the
lezicographic order on {0,1}™. We are asked to find a solution whose cost is minimal among
all its neighbors.

D. Scheder and J. Tantow

We use an idea by Krentel[10] and have n + 1 copies Cy, C1,...,C, of the circuit C,

where Cy is fed as an input x and C; is fed as an input x @ e;, i.e., x with the i-th bit flipped.

The setup is depicted in Figure 2.

The permutation group consists of two types of permutations. The first kind wf simulates
flipping the output of gate 4 in circuit j; we allow for gates and hence circuits to be temporarily
evaluated incorrectly. The input and output of a gate are not saved anywhere but syntactically
built into the permutations and string. An exception is the input and output of the circuit,
which we save for later usage. We use some positions as very important control bits to ensure
that the correct evaluation is always possible.

The second type of permutation o; swaps the circuit 0 with the circuit j and flips the
j-th input bit for all other circuits. This simulates a step in the FLIP-problem.

=fpe
. {_D &ﬁo
=]

[0]
— Co Gi | |Gi+k
1
1
01 —
1 0
- Cy I
1 0
1
a1 o] ‘ 1]
| ; |
0 1
1
01 CT o T
| 5 |
1 0
0

Figure 2 A high level overview of the reduction.

5.2 Definition of the reduction

We assume without loss of generality that the circuit C consists only of NAND-gates.
Additionally, we assume that no input is directly passed to an output, i.e. on every path
from an input to an output, there is at least one gate.

We will now describe the set V' of positions, the permutations in Sy, and how strings in
{0,1}V, called assignments, correspond to the circuits Cy, ..., C, computing their values on
an input x and its neighbors x & e;. We face two main challenges:

1. We need an operation of the form “flip bit ¢”, but permutations can only permute positions,
not flip bits. We solve this by replacing position ¢ by two positions ig,7; and encoding
lyi = 0] by [yi, = 0,45, = 1] and [y; = 1] by [y;, = 1,4;, = 0]. Flipping bit ¢ then
corresponds to the permutation that swaps ig and i1, i.e., the transposition (ig,i;). We
call the one-position-per-bit view the condensed view and the two-positions-per-bit view
the expanded view. We will give details in the full version due to space restrictions. For
now, we phrase things in the condensed view.

56:7

ESA 2025

56:8

PLS-Completeness of String Permutations

2. Usually, when we flip an input x; to a circuit C, we imagine the change propagating
instantaneously through the circuit C, potentially changing its output. Here, we need
to allow for a way for this change to proceed gradually; therefore, we allow gates to be
temporarily in an incorrect state.

When we have a position i € V and an assignment y € {0,1}" and y; = b, we sometimes
say i is assigned value b and sometimes the label of i is b.

State of a gate. The state of a gale is a triple (x,y, b) where x,y are the two input bits and
b is the output bit. If b = —(z A y) we call (z,y,b) correct, because b is what it is supposed
to be: the NAND of x and y; otherwise, we call it incorrect. A gate g is represented by a
gadget of four positions gog, go1, 910, 911, ordered as a 2 X 2 square, as shown in Figure 3. A
state (z,y,b) is encoded as follows: position g, is labeled b, the three remaining ones are
labeled with —b. Note that not all labelings of the gadget correspond to a gate state, only
those where the number of positions labeled 1s is one or three.

» Observation 7. The triple (x,y,b) is correct if and only if the position g1 in its repres-
entation is labeled 0.

This is the core reason why we use this representation: we can determine correctness of a
gate by reading just one bit. This will be important later when defining a cost function:
having a 1 at those control positions is bad.

Input and output variables. Let a:gj) be the i-th input variable to the j-th circuit (so
1<i<nand0<j<n). We introduce one position for each argj). Similarly, let c,(cj) be the
k-th output value of the j-th circuit; we introduce one position for each c,(j).

A central definition is that of a well-behaved assignment. Basically, it formalizes when an

assignment encodes the partial evaluation of the inputs by the n + 1 circuits.

» Definition 8. An assignment y € {0,1}V is called well-behaved if the following hold:
For each gate g, the four positions goo, go1, 910,911 are the encoding of a gate state
(lll, a9, b) S {0, 1}3
If the output of a gate g is the l-th input of some gate h, then the corresponding input
and output values agree, i.e., if the state of h is (a},a,b") then b= aj.

If the [-th input of g is an input variable xgj), then xgj) is asstgned the value ay.

If g is the k-th output gate of circuit j, then its output value b is the same as the label of
.

The labels of the input values J:Ej) equal xz(o) if i # j, and are unequal if i = j; in words,
if the labels of the input positions of Cy form a vector x € {0,1}", then those of C; form
the vector x @ e;.

Next, we describe the permutations on the positions. They come in two types: (1) flipping
a gate and (2) swapping two circuits.

Flipping a gate. If g is in state (a1, a9,b), then flipping g means replacing b by —b, and
for each gate h (in state (af,a5,b’)) into which g feeds as I-th input, flipping aj. Since
our permutations do not work on the state of a gate but on its representation in the four-
position gadget (Figure 3), we work as follows: we flip the labels in all positions of g, i.e.,
900, 901, 910, 911; if g is the first input of h, we swap positions of h horizontally: swap hgg
with hyg and hg; with hqp; if g is the second input of h, we perform a vertical swap: hgg

D. Scheder and J. Tantow

with hg; and h1g with h1;. This operation changes the state of g from incorrect to correct
(or vice versa) and may also change correctness of h. If g happens to be the k-th output bit
of circuit j, then this operation also flips position cg). See Figure 4 for an example of two
consecutive gates being flipped. We call this permutation 7,. If g is the i-th gate in circuit
7, we may also call it 71'? . Note that if y is a well-behaved then y o 7, is well-behaved, too.

Swapping two circuits. We want a permutation that simulates flipping the i-th input bit
to C, the circuit in the instance of FLIP. We achieve this by swapping Cy with C; — that is,
swapping every position (input values, values in gate gadgets, output values) in Cy with its
corresponding position in C;, and simultaneously flipping the ¢-th input bit xgj) for every
circuit C; with j € {1,...,n}\ {¢}; naturally, if this xl(j) is the first input to a gate g in Cj,
we have to perform the “horizontal swap” at g outlined above, and if it is the second input
to g, a “vertical swap” at g. We call this permutation ;. Again, if y is well-behaved then
y o o; is well-behaved, too.

The starting string ysart € {0,1}Y. This is the assignment where Cj has input 0 € {0,1}"
and C; has input e; € {0,1}" and all gates have output 0 (whether correctly or incorrectly).
This is certainly well-behaved (or rather, can be made well-behaved by making sure that
input to gate h matches output of gate g should they be connected).

We now have a set V of positions, an assignment yiare € {0,1}", and a set of permutations-
gate-flippers m, for each gate g and circuit-swappers o, for each ¢ € [n]. They generate a
subgroup G of Sy. It is clear that the orbit of ysi.r¢ under G is the set of well-behaved
assignments.

5.3 The cost function

We have promised to use a lexicographic ordering as a cost function. That is, if y,y’ € {0,1}V
are two assignments, then y is better than y’ (meaning lower cost) if y <jex y’'- Thus, to
define the cost function it suffices to specify an ordering on the positions in V.
Positions in Cy come before positions in C; and so on.
Within a circuit, most important are the control positions gi; of the gates, followed by
the output gates, followed by all remaining positions.
Within control positions in the same circuit, the order follows the topological ordering of
the circuit, i.e., if g feeds into h, then g’s control position comes before h’s.

5.4 Proof of Correctness

In this section we now prove the correctness and tightness of our reduction. In order to show
the correctness we have to show that if 7 € GG is a local optimum of the k-PERMUTATION
LocAL OrBIT MINIMUM instance, i.e., if the assignment y := ygtayt © 7 cannot be further
improved by applying a w4 or a o, then the input to Cy encoded in y corresponds to a local
optimum of FLIP.

Well-behaved permutations for a string s and a circuit C' are interesting, because they
realize the evaluation of the circuit somehow. The only problem is that the gate does not
have the correct output in the current permutation with the string s compared to C.

» Lemma 9. Lety be a well-behaved assignment and suppose that y(g11) = 0 for every gate
— every control position is labeled 0. Then all output positions are mapped to correct results
according to C. That is, if x € {0,1}" is the vector to which the positions of circuit Cy are
mapped under'y, then

56:9

ESA 2025

56:10

PLS-Completeness of String Permutations

z=0 r=1
y=0 goo : 0 go1: 1
y=1 gio: 1 gi1: 1

Figure 3 An example gate configuration with the input x = 0 and y = 0 and the output 0. This
is incorrect for a NAND-gate as indicated by the control bit. In light grey we denote the expanded
encoding of the positions.

Zlﬁ_ g2 Input

L, 9 & bl 9 92

=] 0
}Y{ & b 1|1 0|0| Output
0 0 1]o

(a) Step 1: Initial state. Gate g1 is evaluated incorrectly, g2 correctly. Still, we call this a well-behaved
state.

7z 1ﬁ 92 Input
1 91 & 307 91 92

27(— ¢ 0 111 111 Output
0 0 0 0]

(b) Step 2: Application of the permutation 7y, which leads to g2 being now incorrect as well. This is not
a local improvement step. While it minimizes the output, the more expensive control bit of g2 is now
active. Still the relationship between the gate state and the string under the current permutation holds,
so this is well-behaved as well.

’ 1 g2 Input
L o H ¢ b0 91 g2
—] 1
3’(& b 0 1]1| Output
0 1]0 0 [0]

(c) Step 3: Application of the permutation mg,. Due to the inversion, g1 is now correct and the change
of its output is reflected in g2 which is now also correct since the one was swapped out of the control
position. This is now a local optima.

Figure 4 Step-by-step evaluation of the circuit and reduction process. Each step shows the circuit
state (left) and the reduction state (right). Currently incorrect gates are marked red and the output
of a gate is identifiable via italics.

1. the input positions of C; are mapped to x @ e; (this actually holds for every well-behaved
y, control positions being 0 or 1),

2. the output positions of Cy are mapped to C(x);

3. the output positions of C; are mapped to C(x @ e;)

Proof. This follows from Observation 7 and induction over the sequence of gates. <

D. Scheder and J. Tantow

The previous lemma tells us that all control positions should be mapped to zero in any
local optimum so that all output positions are mapped to the correct output of C' given the
input. We show that we can always apply a permutation to achieve this.

» Lemma 10. Let m be a permutation from G. We consider a gate g; in the circuit j. The
control position of g; is mapped to position of the form g, by ™

Proof. This can be proven by induction on the structure of 7 in the permutation group.

Any generator preserves this property as it either does not affect this position at all wf,l for
i1 #14 or j# j. If both i/ and j’ are equal to 7 and 7, then the position is simply inverted
which preserves this property. Additionally, any permutation o; either maps a gate to itself
or swaps the gate, so that the claim holds here as well. |

» Lemma 11. Ify is well-behaved and some control position gi1 is 1 undery, then'y is not
a local optimum.

Proof. Among all control positions assigned 1, let g11 be the highest-ranking (i.e., of smallest
index). Now apply g, i.e., flip gate g, which inverts the bit by the previous lemma. Under
y o g, the control position gi; is now correct; successor gates h in the same circuit might
now become incorrect, but their control positions have lower rank by our ordering; gates in
other circuits are not affected. Thus, y o 7y <iex ¥, and y is not a local optimum. |

» Corollary 12. In any local optimum all sub circuits are correctly evaluated.
The previous lemmas suffice to show the main result.

» Lemma 13. Lety = ygae o™ € {0,1}V be a local optimum an instance of
K-PERMUTATION LOCAL ORBIT MINIMUM. Suppose the input variables of Cy are mapped
to some x € {0,1}"™. Then x is a local optimum of the FLIP instance.

Proof. Since y is well-behaved, the input variables of C; are mapped to x ® e;. Since y is a
local minimum, by the corollary, the output values of C; are in fact mapped to the correct
output C'(x & e;).

Suppose now that the mapped input is not a local optimum for the FLIP instance.

Then there must be neighbor with a better output, i.e., C(x @ e;) <jex C(x). Now consider
y' =y oo;. Under y’, the control positions of Cy are all mapped to 0 (because those of C}

were under y); the output of Cy under y’ is better than under y because C(x @ €;) <iex C(%).

Control positions in C; with ¢ > 1 might now be 1, but their priority is less than that of Cy’s
output. Thus, y’ is better than y, and y is not a local optimum. <

This concludes the proof of Theorem 5. Every permutation used in the reduction has an
order of two, so it is an involution. Still, these permutations do not form a commutative
group due to the o; permutations. This is to be expected as even finding a global optimum
for the lexicographical leader of a string under an abelian permutation group where every
element has an order of two is polynomial time solvable[1, Section 3.1].

We additionally note that the reduction is tight and hence finding a local optimal bitstring
under permutations via the standard algorithm is PSPACE-complete.

» Theorem 14. The given reduction is tight.

Proof. Let I be an instance of FLIP and (f, g) the previously defined reduction. We use as
R simply the set of all permutations in the group of the generators which necessarily contains
all local optima. We can find for any solution s of I in polynomial time a solution 7 with

56:11

ESA 2025

56:12

PLS-Completeness of String Permutations

g(I,m) = s in R by applying the o; permutations to construct the needed input string. This
requires applying at most n permutations which can be done in polynomial time. Finally, we
see that any path where only the endpoints are in R must be an edge. If the edge is due to
an 773 permutation the input does not change and hence both endpoints are mapped to the
same solution. If the edge is alternatively due to a o; permutation this changes the input in
one variable and is hence an edge in TG(I) as it corresponds directly to a flip there. |

6 Realizing the permutations in propositional formula

In the problem LOCALLY MINIMAL SOLUTION we are given a CNF formula F' over some
variables V| a satisfying assignment « : V' — {0, 1}, and a list of permutations 7y, ..., 7 on
V such that F is invariant under 7; (that is, when applying 7; to each variable occurrence in
F, the resulting formula F’ is equal to F' up to a re-ordering of the clauses and the literals
therein). The task now is to find a satisfying assignment § of F' that such that 5o m; =ex B
This is clearly in PLS: whether F' is invariant under the 7; and whether 3 satisfies F' are both
easy to check. Note that it is not required that 8 be in the orbit of « under (7, ..., 7).

» Theorem 15. LOCALLY MINIMAL SOLUTION is PLS-complete.

Proof. We will define a formula F' whose satisfying assignments correspond exactly the
well-behaved assignments to the positions, as defined in Definition 8. We first describe
how to encode one circuit of the total n + 1 circuits. We have input variables x1, ..., z, to
the circuit; we introduce one gate output variable go,t for each gate; and four gate control
variables goo, go1, 910, g11 for the four positions in the square-representation of that gate, as
in Figure 3. For each such variable u we introduce its twin @ and add (u ¢ —@). In other
words, the (positive) literal @ simulates the negative literal u. Take a gate g, let u,v be its
inputs and w its output. The following formula F; ensures that the gate control variables
gap are set correctly as required for a well-behaved assignment:

(wAvAw) = (Goo A Gor A Gio A g11)
(uAvAW) = (goo A go1 A g1o A G11)
(u A Aw) = (Goo A Gor A gro A G11)
(uADAD) = (goo A o1 A G1o A gi1)
(@ AvAw) = (oo A gor A Gio A Gi1)
(@A vAD) = (goo A o1 A gio A gi1)
(@A D Aw) = (goo A Gor A Gro A G11)
(@A D AD) = (Joo A gor A gro A gi1)

F, can easily be written as a CNF formula. The permutation 7, amounts to flipping the
output of gate g and flipping the corresponding inputs at those gates h that g’s output feeds
into. Thus, 74 is

(ww)(googoo)(901901)(91010)(911g11) © (stuff at successor gates) (2)

F, is invariant under m, (even when we write it as a CNF). Next, there is a permutation o
that flips the input u of g. This swaps the two rows of the square representation of g:

(stuff at predecessor gates) o (u@)(go0g10)(Joog10)(go1910)(Go1911) (3)

D. Scheder and J. Tantow

If u is the output of some gate h, then o is 7, and “stuff at predecessor gate” is what we
describe in (2); otherwise u is an input variable z; and “stuff at predecessor gate” does
nothing — for now.

This formula describes well-behaved assignments in one of the n + 1 circuits Cy, ..., C,.
We now create n + 1 copies of this formula, introducing a fresh version of each variable, so
the j'" input variable z; becomes x;l) in C;, and goo becomes gég) and so on. We create a

formula H to ensure that xy) and x§0) differ if and only if i = j:

(1) (i2) ~(i1) ~(i2) T s
n (le & szz) A (‘rjz N ‘TjZ2) if j ¢ {ZlaZZ}

{iria}e(10ym)) 3=1 (x“” o gz(”)) A (izyl) & x;"Q)) if j € {i1,in} .

J J

The permutation o; flipping circuit C; and Cy and inverting a;z(-i) for all other i’ can be

written as
(ug-i)ug»o)) (af)ﬂ;(’)) (for each input and gate output and control variable)
o (mgi’)jjl(-i/)) o (do (3) at gates having sr:l(-i/) as input> (for all ¢/ € {1,...,n}\ {i})

This forms the final formula F' = HA /\?=O A gate g L g(i). Its satisfying assignments correspond
exactly to the well-behaved assignments described above and that each 7, and each o; is
indeed a symmetry of F'. The order of the variables is as in the previous proof: of highest
priority are the control variables gi?) (following the topological order of the gates in the
circuit); then the output variables of Cp; then to the control variables of the other circuits;
then all the rest. It is easy to provide an “initial” satisfying assignment o € SAT(F’). Finally,
if B is some satisfying assignment of F' that is locally minimal, i.e., cannot be improved by
applying any 7, or o;, then 3 represents a configuration in which all circuits Cy, ..., C), are
correctly evaluated and no C; outputs something better than Cp; in other words, a local
optimum of FLIP. This shows that LOCALLY MINIMAL SOLUTION is PLS-complete. <

7 Conclusion and open questions

We have shown that the problem is PLS-hard in general and hence a polynomial time
algorithm is unlikely unless P=PLS. In the theory of PLS-complete problems we thereby
demonstrated another example of a hard problem with lexicographic weights. The used
permutations are realistic in the sense that they can occur in an actual CNF formula.

Our above reduction requires polynomially many permutations. There is an efficient
algorithm for the case of one permutation. What about when we are given a constant number
of permutations?

What about if the given permutations form an Abelian group? Is it still PLS-hard to
find a local minimum?

The neighborhood of a solution 7 is in our work defined as 7 o ; for some generator ;.

An alternative neighborhood would be 7; o 7, which would place the generator between the
string and the current permutation. While the results of the one permutation case trivially
hold again, the hardness proof does not transform to this formulation.

56:13

ESA 2025

56:14

PLS-Completeness of String Permutations

—— References

1

10

11

12

13

14
15

Léaszl6 Babai and Eugene M. Luks. Canonical labeling of graphs. In David S. Johnson, Ronald
Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H.
Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel 1. Seiferas, editors, Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 171-183. ACM, 1983. doi:10.1145/800061.808746.

Christoph Buchheim and Michael Jinger. Linear optimization over permutation groups.
Discret. Optim., 2(4):308-319, 2005. doi:10.1016/J.DISOPT.2005.08.005.

Dominic Dumrauf and Burkhard Monien. On the PLS-complexity of maximum constraint
assignment. Theor. Comput. Sci., 469:24-52, 2013. doi:10.1016/J.TCS.2012.10.044.

Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The complexity of pure
nash equilibria. In Laszl6 Babai, editor, Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 604—612. ACM, 2004.
doi:10.1145/1007352.1007445.

John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The complexity of
gradient descent: CLS = PPAD N PLS. In Samir Khuller and Virginia Vassilevska Williams,
editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 46-59. ACM, 2021. doi:10.1145/3406325.3451052.
Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algorithms
for permutation groups. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 36—41. IEEE Computer Society, 1980.
doi:10.1109/SFCS.1980.34.

Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Expressing symmetry breaking
in DRAT proofs. In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction —
CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany, August
1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer Science, pages 591-606.
Springer, 2015. doi:10.1007/978-3-319-21401-6_40.

David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? J. Comput. Syst. Sci., 37(1):79-100, 1988. doi:10.1016/0022-0000(88)90046-3.
Leszek Aleksander Kolodziejczyk and Neil Thapen. The strength of the dominance rule. In
Supratik Chakraborty and Jie-Hong Roland Jiang, editors, 27th International Conference on
Theory and Applications of Satisfiability Testing, SAT 2024, August 21-24, 2024, Pune, India,
volume 305 of LIPIcs, pages 20:1-20:22. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik,
2024. doi:10.4230/LIPICS.SAT.2024.20.

Mark W. Krentel. On finding locally optimal solutions. In Proceedings: Fourth Annual Structure
in Complexity Theory Conference, University of Oregon, Eugene, Oregon, USA, June 19-22,
1989, pages 132-137. IEEE Computer Society, 1989. doi:10.1109/SCT.1989.41819.
Christos H. Papadimitriou. On graph-theoretic lemmata and complexity classes (extended
abstract). In 81st Annual Symposium on Foundations of Computer Science, St. Louis, Missourt,
USA, October 22-24, 1990, Volume II, pages 794-801. IEEE Computer Society, 1990. doi:
10.1109/FSCS.1990.89602.

Christos H. Papadimitriou, Alejandro A. Schaffer, and Mihalis Yannakakis. On the complexity
of local search (extended abstract). In Harriet Ortiz, editor, Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA,
pages 438-445. ACM, 1990. doi:10.1145/100216.100274.

Alejandro A. Schiffer and Mihalis Yannakakis. Simple local search problems that are hard to
solve. SIAM J. Comput., 20(1):56-87, 1991. doi:10.1137/0220004.

Neil Thapen. personal communication.

Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. Drat-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory
and Applications of Satisfiability Testing — SAT 2014 — 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422-429. Springer,
2014. doi:10.1007/978-3-319-09284-3_31.

https://doi.org/10.1145/800061.808746
https://doi.org/10.1016/J.DISOPT.2005.08.005
https://doi.org/10.1016/J.TCS.2012.10.044
https://doi.org/10.1145/1007352.1007445
https://doi.org/10.1145/3406325.3451052
https://doi.org/10.1109/SFCS.1980.34
https://doi.org/10.1007/978-3-319-21401-6_40
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.4230/LIPICS.SAT.2024.20
https://doi.org/10.1109/SCT.1989.41819
https://doi.org/10.1109/FSCS.1990.89602
https://doi.org/10.1109/FSCS.1990.89602
https://doi.org/10.1145/100216.100274
https://doi.org/10.1137/0220004
https://doi.org/10.1007/978-3-319-09284-3_31

	1 Introduction
	1.1 SAT Solving and Symmetry Breaking

	2 Preliminaries
	2.1 Total search problems and PLS
	2.2 Permutation groups

	3 Related Work
	4 The one permutation problem
	4.1 Finding a local optimum
	4.2 Finding a global optima

	5 PLS-Hardness
	5.1 High-level idea
	5.2 Definition of the reduction
	5.3 The cost function
	5.4 Proof of Correctness

	6 Realizing the permutations in propositional formula
	7 Conclusion and open questions

