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Abstract
We improve the space bound for streaming approximation of Diameter but also of Farthest Neighbor
queries, Minimum Enclosing Ball and its Coreset, in high-dimensional Euclidean spaces. In particular,
our deterministic streaming algorithms store O(ε−2 log( 1

ε
)) points. This improves by a factor of

ε−1 the previous space bound of Agarwal and Sharathkumar (SODA 2010), while retaining the
state-of-the-art approximation guarantees, such as

√
2 + ε for Diameter or Farthest Neighbor queries,

and also offering a simpler and more complete argument. Moreover, we show that storing Ω(ε−1)
points is necessary for a streaming (

√
2 + ε)-approximation of Farthest Pair and Farthest Neighbor

queries.
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1 Introduction

In the streaming model, the input data is assumed to be vast and must be processed using
limited memory in one or a few passes. Therefore, streaming algorithms “sketch” the
input, yielding a small data structure that still accurately preserves desired properties. The
research on streaming algorithms has been remarkably fruitful and we now have optimal or
near-optimal algorithms for counting distinct elements, frequency moments, quantiles and a
plethora of other problems (see [14] for a comprehensive exposition).

We focus on high-dimensional geometric streams, where the input S consists of points in Rd

for d large, a topic of recent interest, e.g., [28, 17, 26, 15, 25, 11, 10, 12, 23]. Extent measures,
such as the Diameter or the Minimum Enclosing Ball, are fundamental statistics of a set of
points, having a body of work in both streaming and non-streaming settings [2, 22, 19, 3, 8, 7].

In an influential work, Agarwal and Sharathkumar [5] gave a streaming algorithmic
framework for several high-dimensional extent problems. Their Blurred Ball Cover data
structure maintains a collection of O( 1

ε2 log( 1
ε )) balls, whose union approximately covers the

© Magnús M. Halldórsson, Nicolaos Matsakis, and Pavel Veselý;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 58; pp. 58:1–58:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmh@ru.is
https://orcid.org/0000-0002-5774-8437
mailto:nickmatsakis@gmail.com
https://orcid.org/0000-0002-0386-749X
mailto:vesely@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-1169-7934
https://doi.org/10.4230/LIPIcs.ESA.2025.58
https://arxiv.org/abs/2505.16720
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


58:2 Streaming Diameter of High-Dimensional Points

input S. It was then used to approximate a number of high-dimensional extent problems.
The claim is that each ball is represented by a coreset of O( 1

ε ) points of S, for a total space
of O( 1

ε3 log( 1
ε )) points. It appears though that a somewhat higher space bound is needed for

the claimed approximations; see Section A.
We give a modified data structure, Guarded Ball Cover, building on [5]. It allows for

both a simpler and more complete treatment, and also results in the smaller space bound of
O( 1

ε2 log( 1
ε )) points. The improved space bound extends to all four applications: approximate

Farthest Neighbor queries and for maintaining approximate Farthest Pair (providing an
estimate for Diameter), Minimum Enclosing Ball, and Coreset for Minimum Enclosing Ball.
This is feasible by storing only a single point per ball, along with its center and radius.
Correctness arguments are simplified by also storing the first point of S as a proxy for
all points deleted later from memory. We retain the approximation guarantees of all four
applications, as in [5]: 1.22 + ε for Minimum Enclosing Ball and

√
2 + ε for each of Diameter,

Farthest Neighbor Queries, and Coreset for Minimum Enclosing Ball.
We also show that Ω(ε−1) points need to be stored for a comparable (

√
2+ε)-approximation

of Farthest Neighbor queries and also for maintaining (
√

2 + ε)-approximate Farthest Pair.
This applies to a computational model where the algorithm must return an input point upon
a query and the space is determined by the number of points stored; crucially, once a point
is deleted from memory, it cannot be retrieved.

2 Preliminaries

Let S be a multiset of points in Rd that arrive sequentially in a stream. Upon arrival, each
point p ∈ S is either stored in memory (and, possibly, deleted later) or irrevocably discarded.
We assume one-pass streaming algorithms in the insertion-only setting. By ε ∈ (0, 1] we
denote an error parameter and by α > 1 an approximation guarantee.

An extent measure of a set of points computes certain statistics of either this set or a
geometric shape enclosing it [2]. Let ∥pq∥ denote the Euclidean distance between points
p ∈ Rd and q ∈ Rd. The Diameter is the maximum Euclidean distance between any pair of
points in S and the Farthest Pair FP(S) is a pair of points of S having Euclidean distance
equal to the Diameter. The Farthest Neighbor of a point q is a point p of the largest Euclidean
distance from q. An α-farthest-neighbor α-FN(q) of a query point q ∈ Rd is a point x ∈ S

such that for every p ∈ S it is ∥qp∥ ≤ α · ∥xq∥.
By B(c(B), r(B)) we denote a ball centered at point c(B) with radius r(B). The

(1 + ε)-expansion of B(c, r) is defined as B(c, (1 + ε)r). The Minimum Enclosing Ball
MEB(S) is the ball of minimum radius containing all points of S. A ball B is α-MEB(S) if
r(B) ≤ αr(MEB(S)) and each point of S is within Euclidean distance r(B) from c(B).

For a set of points S, a coreset is a set S′ ⊆ S preserving a geometric property of S [21].
A set S′ ⊆ S is α-coreset(S) for MEB if each point of S is contained in the α-expansion of
MEB(S′).

We focus on computing (
√

2 + ε)-FN(q) for any query q ∈ Rd and maintaining (1.22 + ε)-
MEB(S), (

√
2 + ε)-coreset(S) and (

√
2 + ε)-FP(S); these ratios are the same as in [5].

2.1 Related Work
The streaming algorithm of Gonzalez [20] computes a 2-MEB by storing the first point p1
of S and its farthest neighbor q; the enclosing ball is simply B(p1, ∥p1q∥). Zarrabi-Zadeh
and Chan [29] improved the guarantee of α-MEB to α = 1.5 by giving a one-pass streaming
algorithm that stores one ball. They also gave a lower bound of

√
2+1
2 ≈ 1.207 for the

guarantee of any deterministic algorithm for α-MEB that stores only one ball.
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Badŏiu et al. [8] showed that the number of coreset points approximating (1 + ε)-MEB(S′)
for a set S′ in Rd does not depend on d. Improved algorithms were given in [24, 6, 7]; however,
these algorithms do not work in a streaming fashion.

Preceding the work of Agarwal and Sharathkumar [4], a simple (1/
√

3)-approximate
two-pass algorithm for the Diameter was given by Egecioglu and Kalantari [16], working in
space O(d).

Following the conference result of [4] that maintains a ( 1+
√

3
2 + ε)-MEB(S), Chan and

Pathak [9] improved this guarantee to α = 1.22 + ε by employing a detailed analysis to this
algorithm. Subsequently, Agarwal and Sharathkumar in their journal paper [5] observed
that the guarantee of their algorithm is slightly greater than

√
2+1
2 ≈ 1.207 by presenting an

input for d = 3.
On the negative side, any randomized streaming algorithm that maintains α-FP(S),

α-MEB(S) or α-coreset(S) with probability at least 2/3 requires Ω(min{n, exp(d1/3)}) space
for certain values of α. These values are α <

√
2(1− 2/d1/3) for α-FP(S) and α-coreset(S)

and a < (1 +
√

2)(1/2− 1/d1/3) for α-MEB(S), as shown by Agarwal and Sharathkumar [5].
For low d, such as d = O(1) or d = O(log log n), the lower bounds do not apply as it is

possible to maintain (1 + ε)-FP(S) or answer (1 + ε)-FN(x) queries in a poly-logarithmic
space, using an optimized version of the sampling approach of [18]; this applies also to
dynamic streams where points may be deleted. For high-dimensional dynamic streams, the
best streaming algorithm follows from asymmetric embedding techniques of Indyk [22] but
provides O(1)-approximation only at the cost of using space polynomial in n.

3 The Guarded Ball Cover

The Guarded Ball Cover is a collection B of balls that approximately cover all points of S.
We represent each ball of B by a triplet B = (c, r, q), where c is the center of B (possibly
c /∈ S), r is its radius, and q is a point of S inside B. The point q is referred to as the guard
of B. Our algorithm maintains a coreset Q that consists of the guard points. We treat the
first point p1 ∈ S specially by always having p1 ∈ Q.

Let (1 + ε)B = {(c, (1 + ε)r, q) : (c, r, q) ∈ B} be the collection of the (1 + ε)-expansions of
the balls in B. If the arriving point p ∈ S belongs to (1 + ε)B, then it is discarded. Otherwise,
a new ball is added to B. Finally, all balls of too small radius are removed from B.

As the space bound is our primary measure, we assume an exact MEB algorithm, but a
good approximation also suffices, specifically within a factor of 1+ε2/16 (using the algorithm
of [6] as a subroutine).

Algorithm 1 Algorithm for processing a new point p ∈ S (excluding the first point p1).

1: if p ̸∈ (1 + ε)B then ▷ If p is outside of the expansions of all guarded balls
2: (c, r)← MEB(Q ∪ {p}) ▷ Compute new MEB
3: B ← {(c, r, p)} ∪ {(c′, r′, p′) ∈ B : r′ ≥ ε2r/80} ▷ Add new ball, delete small balls
4: Q← {p1} ∪

⋃
(c′′,r′′,q)∈B{q} ▷ Update coreset

The following lemma holds for every MEB computed in line 2 of Algorithm 1:

▶ Lemma 1 (Lemma 2.2 in [8]). If B = B(c, r) is the MEB of a set X of points, then any
closed half-space containing c also contains a point of X on the boundary of B.

To analyze the algorithm, we first observe that deleted balls are “guarded” by p1.

ESA 2025
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Figure 1 Left: Case ∥cici+1∥ ≤ 5εri/6, Right: Case ∥cici+1∥ > 5εri/6 of Lemma 3. The ball
with dashed boundaries is the MEB of all points, assuming that q′ is deleted before Bi+1 is created.

▶ Lemma 2. Suppose ball B is deleted when a ball of radius r is added to B. Then, B is
contained in a ball of radius ε2r/40 centered at p1. Consequently, for any guard point q′ that
has been deleted up to the current time, it holds that ∥q′p1∥ ≤ ε2r/40.

Proof. B contains p1 and when deleted in line 3, it has radius at most ε2r/80. Since the
guard of B (which is also evicted from memory) is inside B, it is within distance at most
ε2r/40 from p1. ◀

The main technical part is to show that the radii of new balls increase exponentially:

▶ Lemma 3. If Bi+1 = (ci+1, ri+1, p) is added to B following Bi = (ci, ri, pi), then it holds
that ri+1 ≥ (1 + ε2/8) · ri.

Proof. The proof is similar to that of Lemma 2 in [5] and Claim 2.4 in [8]. We first assume
that the exact MEB is computed in line 2 of Algorithm 1. Let Q, Q̂D be the point sets
such that Bi+1 = MEB(Q ∪ {p}) and Bi = MEB(Q ∪ Q̂D), i.e., Q is the coreset just before
computing Bi+1. Consider two cases:

If ∥cici+1∥ ≤ 5εri/6 then ri+1 ≥ ∥ci+1p∥ ≥ ∥cip∥ − ∥cici+1∥ ≥ (1 + ε)ri − 5εri/6 ≥
(1 + ε2/6)ri (Figure 1, left), using the triangle inequality and that p ̸∈ (1 + ε)Bi (by line 1).

Otherwise ∥cici+1∥ > 5εri/6. Then let h be the hyperplane passing through ci with
direction cici+1 as its normal and let h+ be the halfspace bounded by h that does not contain
ci+1. There is a point q′ ∈ (Q ∪ Q̂D)

⋂
h+ at Euclidean distance ri from ci, by Lemma 1.

Then, ∥q′ci+1∥ ≥ (∥cici+1∥2 + ∥q′ci∥2)1/2 ≥ ((5εri/6)2 + r2
i )1/2 ≥ (1 + ε2/4)ri (Figure 1,

right), where the first inequality follows from the cosine law. By Lemma 2, there is a point
q ∈ Q such that ∥qq′∥ ≤ (ε2/40)ri (if q′ ∈ Q then q = q′, and q = p1 otherwise). Hence,
ri+1 ≥ ∥qci+1∥ ≥ ∥q′ci+1∥ − ∥qq′∥ ≥ (1 + ε2/5)ri.

Finally, if we use a (1 + ε2/16)-approximate MEB, then we still have that ri+1 ≥
(1 + ε2/5)ri/(1 + ε2/16) ≥ (1 + ε2/8)ri. ◀

Finally, we show that at any time, the (1 + ε)-expansion of any deleted ball is contained
in the (1 + ε)-expansion of each ball created after the deletion of the former ball.

▶ Lemma 4. If ball B̂ was deleted then (1 + ε)B̂ ⊂ (1 + ε)Bi, for each Bi ∈ B created after
the deletion of B̂.

Proof. Let Bi ∈ B. By Lemmas 2 and 3, it is B̂ ⊂ B(p1, ε2r(Bi)/40); therefore, we
have (1 + ε)B̂ ⊂ B(p1, εr(Bi)/20) as ε ≤ 1. Since p1 is in B, it follows that (1 + ε)B̂ ⊂
(1 + ε/20)Bi. ◀
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Our main result follows from the preceding lemmas:

▶ Theorem 5. B contains O((1/ε2) log(1/ε)) balls and S ⊂ (1 + ε)B.

Proof. The first claim follows from Lemma 3 and line 3 of Algorithm 1. For the second
claim, let p ∈ S. By construction, p is in the (1 + ε)-expansion of a ball B that entered B.
By Lemma 4, (1 + ε)B ⊂ ∪B′∈B(1 + ε)B′, whether B was deleted or not. ◀

Differences to the Blurred Ball Cover

The Blurred Ball Cover [5], similarly to the Guarded Ball Cover, initiates the computation
of a new ball when an arriving point is not contained in any (1 + ϵ)-expansion of a stored
ball. The key difference is that in the Blurred Ball Cover, the coreset on the boundary of the
new ball, which is returned by the MEB computation and comprises up to ⌈1/ϵ⌉ points, is
explicitly stored in memory for each ball. (In fact, Ω(1/ϵ2) points may need to be stored
for each ball in the Blurred Ball Cover as we discuss in Appendix A.) Coresets belonging
to sufficiently small balls are also deleted from the Blurred Ball Cover, though the radius
threshold for this deletion is ≈ εr instead of ≈ ε2r in our algorithm. Finally, the first point
p1 ∈ S is never deleted by the Guarded Ball Cover, contrary to the Blurred Ball Cover which
treats p1 as any other point of S.

Update time

The worst-case update time of our algorithm is O(d · poly(1/ε)) when an approximate MEB
computation is used [7], which is comparable to that of [5]; the precise update times primarily
depend on the MEB computation. (Note that the update times of [5] are also affected by
the possible issue mentioned in Appendix A.) We remark that the Blurred Ball Cover of [5]
allows for better amortized update time as it is possible to perform batched updates, i.e.,
storing incoming points in a buffer and only running the update procedure when the buffer
gets full (see also the second paragraph in Appendix A). This is not possible in our case
as we require storing one guard per ball; that is, if we run an update on our sketch with a
batch of size C, we may need to store up to C guard points for Bi+1 if they all end up in
the coreset of Bi+1 (and thus on its boundary).

4 Applications

Farthest Neighbor Queries and Diameter

We largely follow the analysis of [5]. For a query point x ∈ Rd, the algorithm computes and
returns the farthest point in Q: q′ = arg maxq∈Q∥qx∥. We show that ∥p′x∥ ≤ (

√
2+2ε)∥q′x∥,

where p′ = arg maxp∈S∥px∥ is one of the (optimal) farthest points from x.
Let Bi = (ci, ri) be the ball in B of greatest radius that contains p′ in its (1+ε)-expansion,

which exists by Theorem 5. Applying the triangle inequality, followed by the inequality
x + y ≤

√
2(x2 + y2), we have that

∥xp′∥ ≤ ∥xci∥+ ∥cip
′∥ ≤ ∥xci∥+ (1 + ε)ri ≤

√
2(∥xci∥2 + r2

i )1/2 + εri . (1)

By Lemma 1 (for half-space with direction cix as normal, ci on the boundary, and not
containing x), when Bi was created, there was a guard z such that: i) ∥zci∥ = ri, ii)
∥xz∥ ≥ ri, and iii) ∠zcix ≥ 90◦. By i), iii), and the cosine law, we have

∥xz∥ ≥ (∥xci∥2 + r2
i )1/2 . (2)

ESA 2025
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Combining (1) and (2) and using ii), we get that

∥xp′∥ ≤
√

2∥xz∥+ εri ≤ (
√

2 + ε)∥xz∥ . (3)

Note that ∥q′x∥ ≥ rm/2, where rm is the radius of the largest ball in B, as otherwise there is
a ball containing Q of radius less than rm. Also, by Lemma 2, there is a point w ∈ Q (z
or p1) of distance at most ε2rm/80 ≤ ε2∥q′x∥/40 from z. By definition of q′, ∥wx∥ ≤ ∥q′x∥.
Thus, ∥xz∥ ≤ ∥wx∥+ ∥wz∥ ≤ (1 + ε2/40)∥q′x∥. Combining this with (3) gives that q′ is a
(
√

2 + ε′)-FN(x), for ε′ = 2ε.
Finally, for the closely related problem of Diameter (Farthest Pair), we return FN(p) for

each point p ∈ S. If p̄ = FN(p) and ∥pp̄∥ exceeds the stored value for Diameter, then we
replace the old Farthest Pair with the new pair (p, p̄).

▶ Corollary 6. For a stream S of points in Rd, the Guarded Ball Cover of O((1/ε)2 log(1/ε))
stored points answers (

√
2 + ε)-FN(x) for any query x ∈ Rd, and maintains (

√
2 + ε)-FP(S).

Minimum Enclosing Ball

The following theorem was shown by Chan and Pathak [9] and improved the guarantee of
the approximate MEB algorithm of Agarwal and Sharathkumar to 1.22 + ε (see [5], p. 91):

▶ Theorem 7 (Theorem 1 in [9], Theorem 1 in [27]). Let K1, ..., Ku be subsets of a point set
S in Rd, with Bi = MEB(Ki) such that: i) r(Bi) is increasing over i, and ii) Ki ⊂ (1 + ε)Bj ,
for each i < j. Then, r(B) ≤ (1.22 + ε) · r(MEB(S)), where B = MEB(

⋃u
i=1 Bi).

In our case, Ki is the coreset on the boundary of the MEB computed in line 2 of
Algorithm 1. Therefore, the first requirement of Theorem 7 holds by Lemma 3. The second
requirement follows immediately for points in Q and by Lemma 4 for points deleted from Q.

▶ Corollary 8. For a stream S of points in Rd, the Guarded Ball Cover of O((1/ε2) log(1/ε))
stored points maintains (1.22 + ε)-MEB(S).

Coreset for Minimum Enclosing Ball

We mostly follow the analysis of [5]. Let B = (c, rm) be the most recently created ball added
to B and let Q be the coreset at the time of computing B, thus B = MEB(Q). Note that
MEB(S) has radius at least rm, since B is an MEB of a subset of S. We claim that (

√
2+ε)B

contains all points in S, which implies that Q forms a (
√

2 + ε)-coreset(S). Namely, we show
that each point y ∈ S has ∥yc∥ ≤ (

√
2 + ε′)rm, for ε′ = 2ε.

Consider a point y ∈ S that is farthest from c. Let Bi = (ci, ri) be a guarded ball that has
not been deleted and whose (1 + ε)-expansion contains y (Bi is well-defined by Theorem 5).
By the triangle inequality and the definition of Bi, ∥yc∥ ≤ ∥cci∥+ ∥yci∥ ≤ ∥cci∥+ (1 + ε)ri.
Let h be the hyperplane passing through ci with direction cci as normal and let h+ be the
halfspace bounded by h that does not contain c. By Lemma 1 there is a guard g in h+ with
∥gci∥ = ri, and by the cosine law it is ∥gc∥ ≥

√
∥cci∥2 + r2

i . Then (using the inequality
a + b ≤

√
2(a2 + b2)),

∥yc∥
∥gc∥

≤ ∥cci∥+ (1 + ε)ri√
∥cci∥2 + r2

i

≤
√

2(∥cci∥2 + r2
i ) + ε · ri√

∥cci∥2 + r2
i

≤
√

2 + ε .

By Lemma 2, there is a guard q ∈ Q with ∥qg∥ ≤ ε2rm/40, so by the triangle inequality,
∥gc∥ ≤ ∥qc∥+ ∥gq∥ ≤ (1 + ε2/40)rm. Hence, ∥yc∥ ≤ (

√
2 + ε)(1 + ε2/40)rm ≤ (

√
2 + 2ε)rm.

▶ Corollary 9. For a stream S of points in Rd, the Guarded Ball Cover of O((1/ε)2 log(1/ε))
stored points maintains (

√
2 + ε)-coreset(S).
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5 Lower Bound for Farthest Pair and Farthest Neighbor Queries

We show that computing a
√

2-approximation (with ε = 0) of Farthest Neighbor queries or
Farthest Pair is impossible in the streaming model without returning points outside of S.

This applies to the computational model of “coreset-based algorithms” in which the space
bound is counted in the number of input points stored and the algorithm must return an
input point upon a query (or two input points for the Farthest Pair); crucially, once a point is
deleted from memory, it cannot be retrieved. This model is akin to comparison-based model
in sorting or selection, as used in [13] for streaming lower bounds for quantile estimation.

▶ Theorem 10. For any ε > 0 and d = Ω(1/ε), any coreset-based randomized streaming
algorithm answering approximate Farthest Neighbor queries or maintaining the approximate
Farthest Pair in Rd with multiplicative error ≤

√
2 + ε, has to store Ω(1/ε) points.

Proof. We use the easy direction of Yao’s minimax principle and design a distribution
over instances (points and Farthest Neighbor queries) so that any deterministic streaming
algorithm using space o(1/ε) will, with high constant probability, answer a FN(q) query
incorrectly, i.e., the point returned on the query q will be more than (

√
2 + ε)-factor closer

to q than the farthest point. The same argument applies to Farthest Pair.
Suppose without loss of generality that 2/ε ∈ Z. We insert k := 1/(2ε) + 1 points of the

standard basis, i.e., ei = (0, 0, . . . , 1, 0, . . . , 0), where the i-th coordinate is 1, for i = 0, . . . , k−1
(the order of insertions does not matter). The random part of the construction is to choose
j ∈ {0, . . . , k − 1} uniformly at random and make a Farthest Neighbor query for point
qj = (2ε, 2ε, . . . ,−1, 2ε, . . . , 2ε, 0, . . . , 0), where the coordinate j is −1 and only the first k

coordinates are not 0. Clearly, the farthest point from qj is ej and their Euclidean distance
is

√
4 + (k − 1) · 4ε2 =

√
4 + 2ε, using the choice of k.

However, with some constant probability, point ej is not stored as the algorithm stores
o(1/ε) = o(d) points. Conditioning on the event that ej is not stored, the algorithm needs to
answer the query with a point ei for i ̸= j. However, the distance between qj and ei with i ≠ j

is
√

(1− 2ε)2 + 1 + (k − 2) · 4ε2 =
√

2− 4ε + (k − 1) · 4ε2 =
√

2− 2ε, using the choice of k.
Thus, the approximation ratio of the algorithm is at least

√
(4 + 2ε)/(2− 2ε) >

√
2 + ε. ◀

6 Conclusions and Open Problems

We have designed streaming algorithms storing O((1/ε2) log(1/ε)) points from Rd that can
estimate several extent statistics of the input. All error guarantees are almost optimal,
with the only exception of the Minimum Enclosing Ball application, where there exists a
small gap between the approximation guarantee of 1.22 + ε and the lower bound converging
to (
√

2 + 1)/2 ≈ 1.207 for d → ∞. This is achieved by simplifying (and also fixing) the
Blurred Ball Cover from [5] into a “Guarded Ball Cover”, where we store Θ(1) points per
ball, compared to poly(1/ε) points per ball for the Blurred Ball Cover.

We believe that the space bound can be improved, at least by shaving off the log(1/ε)
factor. One possible direction for improvement is the use of randomization as both our
algorithms and those of [5] are deterministic, while the simple lower bound of Ω(1/ε) for
“coreset-based” algorithms holds even when randomization is used.

While our algorithms are more space-efficient than that of [5], the amortized update times
are somewhat worse, as discussed in Section 3. Thus, we ask if it is possible to optimize
the poly(d · ε−1) amortized update time while retaining the near-quadratic space bound.
More importantly, it would be interesting to develop a “fast” streaming algorithm for extent
problems, that is, with amortized update time O(d · poly(log ε−1)).

ESA 2025
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Beyond the streaming setting, an important property of data sketches is mergeability [1],
which enables to summarize the input in a parallel or distributed way and then merge the
resulting sketches into one summary of the whole dataset. It is open how to design a merge
operation for Guarded (or Blurred) Ball covers while retaining the space and approximation
guarantees.
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A A Note on Lemma 2 in [5]

We report on a possible issue in the proof of Lemma 2 in [5] (a similar issue appears in the
conference version [4]). Lemma 2 in [5] states that for any i, r(Bi+1) ≥ (1 + ε2/8) · r(Bi),
where Bi and Bi+1 are two consecutive balls of the Blurred Ball Cover. The property that
the radii of balls increase geometrically is crucially needed to bound the space requirements.

The proof of Lemma 2 goes as follows: Ball Bi+1 = APPROX-MEB(
⋃

j≤i Kj ∪A), ε/3) is
created (Kj is the coreset of Bj and APPROX-MEB is the subroutine of [7] that computes
it) because one of the points in a buffer A is not contained in any (1 + ε)-expansion of a
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ball Bj for j ≤ i. Define ball B′ as the MEB of
⋃

j≤i Kj ∪A. It is subsequently claimed that
r(Bi+1) ≥ r(B′), without a proof. However, B′ is the MEB of

⋃
j≤i Kj ∪ A, while Bi+1 is

an approximate MEB for
⋃

j≤i Kj ∪A, namely the (1 + ε/3)-expansion of Bi+1 contains all
these points but a smaller expansion of Bi+1 may not contain them all.

We observe that this is fixable by computing a tighter MEB approximation Bi+1 =
APPROX-MEB(

⋃
j≤i Kj ∪ A), ε2/16). That, however, may result in a coreset Ki+1 of size

Θ(ε−2), which (unlike our approach) increases the space bound in [5] from O(ε−3 log(1/ε))
to O(ε−4 log(1/ε)). We are unaware of a fix that does not affect the space bound or error
guarantees.
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