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—— Abstract

A key task in multi-objective optimization is to compute the Pareto frontier (a.k.a. Pareto subset) P
of a given d-dimensional objective space F'; that is, a maximal subset P C F' such that every element
in P is non-dominated (i.e., it is better in at least one criterion, against any other point) within
F. This process, called dominance-filtering, often involves handling objective spaces derived from
either the union or the Minkowski sum of two given partial objective spaces which are Pareto sets
themselves, and constitutes a major bottleneck in several multi-objective optimization techniques. In
this work, we introduce three new data structures, NDV-trees, QNDT-trees and TNDT-trees, which
are designed for efficiently indexing non-dominated objective vectors and performing dominance-
checks. We also devise three new algorithms that efficiently filter out dominated objective vectors
from the union or the Minkowski sum of two Pareto sets. An extensive experimental evaluation on
both synthetically generated and real-world data sets reveals that our new algorithms outperform
state-of-art techniques for dominance-filtering of unions and Minkowski sums of Pareto sets, and
scale well w.r.t. the number of d > 3 criteria and the sets’ sizes.
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1 Introduction

In multiobjective combinatorial optimization (MOCO) problems, given an implicit description
(e.g., via linear constraints) of a solution space X and the corresponding objective space
F with d-dimensional (d > 2) objective-value vectors of all elements in X, the goal is to
compute the Pareto frontier, or Pareto subset: a maximal subset of F' whose elements
are non-dominated (i.e., they are better in at least one criterion, against any other point)
within F. Many algorithms for MOCO problems, especially when having to work with
instances of substantial sizes, rely heavily on the dominance-filtering subtask, aiming to
efficiently combine (the Pareto frontiers of the objective spaces for) partial solution spaces
and filtering out all the dominated objective-value vectors. In this work we focus on two
special cases of dominance-filtering, in which the merged objective space F' is created as

© Konstantinos Karathanasis, Spyros Kontogiannis, and Christos Zaroliagis;
37 licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).

Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 59; pp. 59:1-59:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:k_karathanasis@ac.upatras.gr
https://orcid.org/0009-0004-1741-3693
mailto:spyridon.kontogiannis@upatras.gr
https://orcid.org/0000-0002-8559-6418
mailto:zaro@ceid.upatras.gr
https://orcid.org/0000-0003-1425-5138
https://doi.org/10.4230/LIPIcs.ESA.2025.59
http://arxiv.org/abs/2508.20689
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

59:2

Improved Dominance Filtering for Unions and Minkowski Sums of Pareto Sets

either the union A U B, or the Minkowski sum'A @ B of two Pareto sets A, B. These
are the two most frequently used variants by solvers of various MOCO problems, e.g., of
decomposition techniques for multiobjective integer programming [18], of Pareto local search
for multiobjective set cover [15], and of dynamic programming methods for multiobjective
shortest paths (MOSP) [16, 20, 22], multi-objective knapsack [6], multi-objective vehicle
routing [19], or multi-objective network design [2, 4]. As manifested in [21], dominance-
checking constitutes a major computational burden of most state-of-the-art algorithms for
MOSP problems during the identification of new solutions. Hence, the development of efficient
data structures and algorithms to handle dominance-filtering in unions and Minkowski sums
of Pareto sets is of utmost importance in MOCO problems.

Related Work and Motivation. The literature offers a diverse collection of dominance
filtering techniques. For d = 2 objectives, some highly efficient algorithms have been
developed [9, 12]. For the more challenging case of d > 3 objectives, some general approaches
have been explored [11, 13]. In dynamic settings, where solutions are not known in advance
and are revealed gradually, the choice of an indexing data structure plays a crucial role
in efficiently updating the Pareto frontier. Several indexing data structures for dominance
checking have been proposed in the literature, such as balanced binary search trees [17],
ND-trees [10, 14], and a variant of k-d trees [1, 3]. To the best of our knowledge, the most
efficient algorithms for dominance-filtering of unions and Minkowski sums of Pareto sets for
d > 3 objectives appear in [13]. These methods utilize space-partitioning ND-trees [10, 14],
or divide-and-conquer strategies. Despite their effectiveness, these methods suffer from an
inherent inefficiency that occurs when the input data emerge from real-world scenarios that
typically contain plateaus (large collections of objective vectors with identical values in one
or more dimensions, e.g., tolls in road networks), and/or are correlated (e.g., distance and
time in road networks). In such cases, ND-trees turn out to be highly unbalanced, which
results in significant time bottlenecks for the elementary operations of removing dominated
elements from an ND-tree and of re-balancing the tree.

Our Contribution. This work focuses on dominance-filtering techniques for unions and
Minkowski sums of Pareto sets for d > 3 optimization criteria. As our first contribution, we
propose three novel data structures for indexing sets of non-dominated elements, which are
custom-tailored to overcome the critical bottlenecks of the algorithms in [13]: (1) ND*-trees,
which inherit some desirable features of k-d trees [1] and ND-trees [10, 14]. (2) QND ™ -trees,
which dynamically adapt partitioning techniques when constructing the indexing tree from a
given Pareto set, selecting the most suitable splitting method for each case. This ensures a
provably balanced tree structure, leading to faster dominance-checks while also achieving
dimensionality reduction, whenever this is possible. (3) TND™-trees which are specially
designed for scenarios where large plateaus occur that cause severe imbalances, which the
TND*-trees mitigate while also achieving dimensionality reduction, whenever this is possible.

Our second contribution concerns three new algorithms for dominance-filtering of unions
and/or Minkowski sums of two Pareto sets for d > 3 optimization criteria: (1) PlainNDred,
which reduces the problem’s dimensionality by lexicographically sorting the elements, and
eliminates the need for element removals from the data structure. (2) PreND, which constructs

L The Minkowski sum A @ B contains all the component-wise additions of elements in A and B. If
A={(3,5,4),(5,2,1)} and B={(2,1,3),(6,3,2)}, then Ad B ={(5,6,7),(9,8,6),(7,3,4),(11,5,3) }.
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an initial tree from a subset of the Pareto set, thereby reducing the need for frequent re-
balancing, and avoids element removals. (3) SymND, which exploits symmetry to compute
non-dominated objective vectors, also avoiding element removals. PlainNDred and PreND
are applicable to both the union and the Minkowski sum of two Pareto sets. They can
also be applied to a single objective space, as pure dominance-checks, to extract its Pareto
frontier. SymND, on the other hand, is applicable only to the union of two Pareto sets. All
three algorithms are compatible with each of the aforementioned data structures.

Our final contribution is an extensive experimental evaluation to assess the performance of
our algorithms and data structures. We consider all nine combinations of a filtering algorithm
among PlainNDred, PreND, and SymND with an indexing data structure from ND%-trees,
QND™*-trees, and TND"-trees. We compare them with the state-of-the-art algorithms in [13]
for d > 3 criteria. For our experimental evaluation, we used real-world data sets, synthetic
data sets similar to those in [13], and new synthetic data sets specifically designed to resemble
features of real-world instances. Our experimental results reveal that our algorithms are very
efficient and scale well w.r.t. both the number of criteria d and the set sizes across all data
sets. Notably, they achieve speedups up to 5.9x on real-world data sets and up to 13.2x on
synthetic data sets against the best-performing algorithms from [13].

2 Preliminaries

Let [n] = {1,2,...,n}, Vn € ZT. In the following, small letters denote scalars, boldfaced
small letters denote vectors, and capital letters denote sets. For any element or point p € R¢,
let p[i] denote the value of its i-th coordinate, for each i € [d]. We consider multi-objective
minimization problems with d > 2 objective functions:

minimize f(x) = ( £(x)[1] = fi(x), f(x)[2] = fa(x), ... , £(¥)[d] = fa(x))
s.t. xeX

X is the solution space, i.e., the set of feasible solutions for the instance at hand. F = f(X) =
{p ER:Ixec X,p= f(x)} is the corresponding objective space, with all d-dimensional
vectors that appear as objective-value vectors for at least one feasible solution from X. We
refer to these objective vectors simply as (data) points and focus on F' C R?, since all
dominance checks are conducted among the points of F. For p,p’ € R?, we say that p
dominates p’, denoted as p < p/, if p # p’ and p[i] < p'[i], Vi € [d]. For F C R?, its Pareto
frontier (subset or skyline) is the maximal subset P C F' of points which are not dominated
by any other point in F. If P = F, then F itself is also called a Pareto set. For A, B C R?,
their Minkowski sum is A® B ={a+b |a € A,b € B}. Given two Pareto sets A, B C RY,
their Pareto union is the Pareto frontier of AU B, and their Pareto sum is the Pareto frontier
of A® B. Given F C R?, the dominance-filtering problem aims at filtering out all points in
F which are dominated by other points in F', so as to construct its Pareto frontier.

3 Algorithmic Background

A generic approach for dominance-filtering is to process the points of F' = {p1,...,Pn}
sequentially, and keep updating a subset P, which will eventually be the Pareto frontier of
F, as follows. For each new point p; € F': Compare p; (sequentially) with each point p; € P
(j < i). If pj < p; then reject p; (it is dominated by some point in P) and proceed with
the next point of F. Otherwise, if p; < pj, then remove pj from P (it is dominated by p;);
if there is no other point in P to compare with, append p; to P; otherwise, proceed with
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a comparison of p; with the next point in P. The efficiency of the data structure used to
maintain the current subset P and perform the previously mentioned dominance-checks is
critical for the performance of this incremental approach. A well-suited data structure for
this task is the ND-tree [10], which we discuss subsequently.

3.1 ND-trees

An ND-tree is a typical rooted c-ary tree T, in which a distinct node r = root(T'), of degree at
most ¢, is the root node, all nodes of degree 1 (except possibly for the root) are its leaf nodes,
and the remaining nodes of degree from 2 up to ¢+ 1 are its internal nodes. The ND-trees
are leaf-oriented, meaning that all data points are stored exclusively in leaf nodes. Each leaf
node can store up to m points. The parameters ¢ and m must satisfy the condition ¢ < m+1
[14]. Each node v stores a lower-bounding vector by and an upper-bounding vector ub,, for
all the data points stored in leaves of the subtree T, of T rooted at v. Specifically, for each
point p stored in T, it holds that Vi € [d],1by[i] < p[i] < uby[i]. An example of an ND-tree
can be found in Figure 1.

b=(3,21)
ub =(9,9,4)

b=(3,31)
ub =(5,9,4)

b=(6,21)
ub=(9,9,2)

(3,9,1),(3,8,2) (9,8,2),(9,9,1)
b=(4,3,2) b=(3,8,1) b =(5,4,4) bb=(6,21) b=(9,8,1)
ub =(4,3,2) ub =(3,9,2) ub = (5,4, 4) ub =(6,2,1) ub =(9,9,2)

Figure 1 ND-tree containing 3-dimensional points.

The lower and upper-bounding vectors are typically used to determine, as early as possible,
if a new data point p is dominated by any data point already in the tree. For instance, if
Ji € [d] : p[i] < lby[i], then p is not dominated by any data point stored in 75, and we do
not have to explicitly verify this with all of them (of course, it might still be the case that
p dominates some of these data points). If p < b, then p dominates all the data points
stored in T),. Finally, if p > uby, then all the data points stored in leaves of T, dominate p.
An ND-tree T supports the following operations.

NonDomPrune(p, T'): This operation effectively utilizes the bounding vectors to perform

two tasks, a dominance-check for a point p to decide whether it is dominated by any

data point in 7', and a pruning of T to remove all its data points that are dominated
by p. If p is not dominated by any point in 7', NonDomPrune returns True; otherwise, it
returns False.

Insert(p,v): This operation inserts a new point p into a leaf of T, as follows. If v is a

non-leaf node, then a child node w of v is selected with minimum distance from p. The

distance of p from any node u is the Euclidean distance between p and w (the
center of the bounding box containing all data points stored T,,). Consequently, p is
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recursively requested to be inserted in T,,. For a leaf node v, if it stores less than m data
points, then p is simply appended to its list of stored points; otherwise, v is converted
into an internal node with ¢ children, and the pending m + 1 data points are distributed
evenly among them. Throughout the insertion process, the bounds of all affected nodes
are updated accordingly.

SPNDBuild(P): This operation, introduced in [14], aims to handle situations in which

repeated insertions into an ND-tree might eventually lead to an unbalanced tree structure.

It takes as input a Pareto set P (e.g., with all the data points stored in an unbalanced
ND-tree) and builds from scratch a perfectly balanced ND-tree from it, as no pruning is
ever required, in which the bounding areas defined by the upper and lower bounds also
are non-overlapping.

3.2 ND-Tree based Algorithms for Dominance Filtering

The following dominance-filtering algorithms, proposed in [13], are all based on ND-trees

and are, to our knowledge, the state-of-the-art techniques for d > 3 criteria.
PlainND: This algorithm employs NonDomPrune and Insert to compute either the Pareto
union or the Pareto sum of two Pareto sets A and B. It begins with an empty ND-tree
T, and processes sequentially the points in F' (either AU B, or A ® B). For each point
p € F, it calls NonDomPrune(p,T’). If False is returned, p is discarded. Otherwise, it
executes Insert(p,T’) to store p in T. After having processed all points in F', the points
eventually stored in the leaves of T' constitute the Pareto frontier of F'.
P1ainSPND: This algorithm is similar to P1ainND, but it periodically takes the Pareto set
P of data items in the current ND-tree, it then destroys the tree, and consequently calls
SPNDBuild(P) to create a new, balanced ND-tree. This periodic tree reconstruction can
significantly improve the efficiency of intermediate calls to the NonDomPrune and Insert
operations, due to limitations in the imbalance of the evolving ND-tree, while the tree
reconstruction cost is amortized among consecutive insertion and pruning operations.
PruneSPND: This algorithm is custom-tailored for computing the Pareto union of two
Pareto sets A and B. It exploits the fact that points in A may only be dominated by
points in B, and vice versa. Therefore, for the larger of the two sets (say, A) it calls
SPNDBuild(A) to build a balanced ND-tree 7. Subsequently, for each point p in the
smaller set (say, B), it calls NonDomPrune(p,T') to check if p is dominated and to remove
from T all points dominated by p. If p is dominated, it is removed from B. After having
processed all points in B, T' contains all points of A which are not dominated by any
point in B, and (eventually) B has only retained those points which are not dominated
by any point in A. Their union constitutes the Pareto union.

4 New Data Structures for Dominance-Filtering

We present here our new data structures, ND+-trees, QND*-trees and TND*-trees, designed
to boost the efficiency of dominance-filtering. Detailed description of their operations,
pseudocode, and the proofs of theorems can be found in the full version of the paper.

4.1 Overview of ND"-trees

An ND*-tree T is a leaf-oriented binary tree, with each leaf node storing up to m data
points. As in k-d trees [1], every node v is associated with a level-dependent dimension
v.dim = 1+ (v.level mod d), a subset S, of data points (to be stored in the leaves of T,,) and
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the median value v.q among the coordinates of all the points of S, in dimension v.dim. Each
node v also maintains a lower-bounding vector lby, (i.e., the coordinate-wise minimum) of all
points in S, similarly to ND-trees [10]. However, we avoid storing also the upper-bounding
vectors, since our experimental evaluation showed that maintaining them is not beneficial for
the operations on NDT-trees. Moreover, if v is internal node, then S, is partitioned in two
distinct subsets, one per child of v: the left child gets all points in S, with p[v.dim] < v.q
and the right child gets all the remaining points of S,,. An example of an NDT-tree is shown
in Figure 2. For each NDT-tree T', the following elementary operations are supported:

b= (5,3,1)

(1,5,6), (4,4,8) (1,10,4), (2,9,3), (3,8,7) W (7,3,8),(8,6,4) W (5,8,4), (6,7,5),(9,10,1)

lb=(1,4,6) b=(1,8,3) b = (7,3,4) b =(57,1)

Figure 2 Example of an ND"-tree containing 3-dimensional points with m = 3.

= BuildNDT (P, ¢, d) constructs an ND*-(sub)tree at level £ (an entire tree, when £ = 0)
containing all the data points of a Pareto set P.

= ComputeBoundsND™ (r) computes the lower-bounding vectors for all nodes of 7.

= WidenBoundsND* (v, p) updates the lower-bounding vector of node v, if necessary, due to
a (previous) addition of a new point p in T,.

= InsertNDT(v,/, p) inserts a new point p into the subtree T}, rooted at the level-¢ node v.

= DominatedND™ (v, ¢, p) decides whether a new point p is dominated by any other point in
the subtree T, rooted at the level-¢ node v.

In the remaining part of this section we provide some theoretical guarantees on the
complexities of these elementary operations, when each leaf of the tree stores at most m
d-dimensional points, for arbitrary constants m,d € O(1).

» Theorem 1. Given a Pareto set of n points, BuildND" constructs an NDT-tree, with
N = O(n) nodes in O(nlogn) time when all splits of a point set produce constant fractions
for both parts, and in O(n?) time otherwise.

» Theorem 2. Given an ND'-tree with N nodes, n points and height h, the following bounds
hold for its elementary operations: (i) ComputeBoundsND" takes O(nmd) = O(n) time; (ii)
InsertND' takes O(hd +m) = O(h) time; (iii) DominatedND" takes O(dn) = O(n) time.

4.2 OQverview of QND'-trees

For a Pareto set P with its points having distinct values per dimension, BuildND™' constructs
a balanced NDV-tree in quasilinear time (cf. Theorem 1). However, objective spaces F
emerging from real-world scenarios (and their Pareto subsets) rarely adhere to such a strong
property. Instead, it is common for large subsets of objective vectors to possess identical
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values in certain dimensions, e.g., for tolls in road networks. When a subset of S,, constitutes
a large plateau around v.q (i.e., those data points have the same value v.q in v.dim) for
some internal node v, the resulting partition of S, may be (possibly heavily) uneven. If this
pattern occurs frequently at intermediate nodes, then the resulting ND*-tree will be heavily
unbalanced, leading to quadratic construction time and also linear (instead of logarithmic)
time for insertion of new points. This may happen even if initially a balanced tree is
constructed, due to subsequent insertions of points that constitute a plateau in F.

To tackle these worst-case performances of the ND*-trees, we introduce in this section
an alternative data structure, the QND¥-trees (Quartile NDT-trees). In a nutshell, the
QND™-trees are almost identical to the ND¥-trees, the only difference being that they

perform a more careful bipartition of the data set S, associated with an internal node v.

Specifically, if there is a large plateau (more than one fourth) in dimension v.dim around the
splitting value v.q, then this plateau is entirely assigned to v’s right child, with the remaining

points being assigned (irrespectively of their values in dimension v.dim) to its left child.

Moreover, when checking for dominance-checks in the subtree rooted at v’s right child, it is
no longer necessary to consider v.dim, achieving dimensionality reduction. If no such plateau
is discovered in S,, then the split is done as in an NDT-tree.

We consider the following partitioning strategies: Median Partitioning (MP), also used
in NDT-trees, assigns points of S, with values in v.dim less than v.q to v’s left child, and the
remaining points of S, to v’s right child; Quartile Partitioning (QP) assigns points of

S, with value v.q in dimension v.dim to v’s right child, and all other points to v’s left child.

The following elementary operations are supported for QNDT-trees:

BuildQNDT (P, ¢, d) constructs a QND¥-tree with the points of Pareto set P, in an
analogous manner with BuildND" (P, ¢, d). The only difference is that, before splitting
the point set .S, associated to an internal node v, it first computes the quartiles of S, in
dimension v.dim and then applies QP when @1 = Q2 (this implies that the size of the
plateau is at least |.S,|/4), and MP otherwise. After completing the tree construction, it
calls ComputeBoundsND™ to compute all the lower bounding vectors.

InsertQND™ (v, £, p) inserts a new point p in 7T}, similarly to the corresponding operation
on ND™-trees. It first updates Ib, using WidenBoundsND™ and then recursively calls itself
for the appropriate child of v (if this is an internal node), depending on the existence
(or not) of a plateau in v.dim, or else (for a leaf node) it either stores p in v’s data list,
otherwise (when there is no free space in v’s list) it changes v into an internal node and
redistributes evenly all the pending data points among its two children, executing also
ComputeBoundsND™ to update their lower bounding vectors.

DominatedQND* (v,#,p,D), an adaptation of DominatedNDt on QND™-trees, checks
whether a new point p is dominated by any other point in T;,, taking also into account
if there are any dimensions to ignore (due to existence of plateaus) during its recursive
calls.

» Theorem 3. Given a Pareto set of n points, BuildQND" constructs a QND™-tree with
N = O(n) nodes and height O(logn + d) = O(logn) in O(n(logn + d)) = O(nlogn) time.

» Theorem 4. Given a QND*-tree with N nodes and height h, containing n points, then the
following time bounds hold for its elementary operations: (i) Insert@ND' takes O(hd) = O(h)
time; (ii) DominatedQND' takes O(dn) = O(n) time.
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4.3 Overview of TND™*-trees

TND " -trees (Ternary NDT -trees) are designed to exploit both tree balance and dimensionality
reduction due to the existence of plateaus. Contrary to the other trees, TNDT-trees are not
strictly binary. In particular, whenever a large plateau is discovered within S, in dimension
v.dim of an internal node v, three children are created: The left child is associated with
points p € S, with p[v.dim] < v.q, the right child with points p € S, with p[v.dim] > v.q,
and the middle child with all the points which constitute the plateau (i.e., p[v.dim] = v.q).
Again, for the middle child we also exploit the resulting dimensionality reduction. We will
refer to this plateau-based partitioning strategy as a TriPartitioning (TP). If no plateau is
detected, then the standard Median Partitioning (MP) strategy is applied. The following
elementary operations are supported for TNDT-trees:
BuildTND™ (P, ¢, d) constructs a TNDT-tree for the points of a Pareto set in a fashion
analogous to that of BuildQND™, applying (TP) whenever Q1 = Q2 or Q2 = Q3 for the
quartiles of S, in dimension v.dim, ensuring that at least 25% of S, are assigned to
the middle child where we also benefit from dimensionality reduction. After completing
the tree construction, ComputeBoundsTND™ is executed, a slightly modified version of
ComputeBoundsND™ that also takes into consideration the middle child, to compute the
lower-bounding vectors of each node in the tree.
InsertTND™ (v, /, p) inserts p to the TNDT-(sub)tree T, resembling InsertQND™. It
first updates v’s lower-bounding vector using WidenBoundsND™'. If v is an internal node,
then a recursive call of the method is executed to insert p to the appropriate child of v,
taking also into account whether v possesses a middle child. If v is a leaf node that stores
less than m points, then it simply stores p at v’s list of points, otherwise v is converted
into an internal node and the m + 1 now pending points (including p) are redistributed
among its (either two or three, depending on the presence of a plateau) children, using
BuildTNDT. Upon completion, ComputeBoundsTND™ is executed to compute the lower
bounds of the newly created children.
DominatedTND* (v, £, p, D) determines whether p is dominated by any other point in the
TND™-(sub)tree T,.

» Theorem 5. Given a Pareto set of n points, BuildTNDT constructs an TNDT -tree with
N = O(n) nodes and height O(logn + d) = O(logn) in O(n(logn + d)) = O(nlogn) time.

» Theorem 6. Given a TNDT-tree with n nodes and height h, then the following time
bounds hold for its elementary operations: (i) InsertTND' takes O(hd) = O(h) time; (ii)
DominatedTNDT takes O(dn) = O(n) time.

4.4 Comparison of the New Data Structures

To illustrate the differences between the three data structures, and to demonstrate how
QND*- and TND™-trees produce more balanced structures than ND*-trees in the presence
of plateaus, consider building ND*-, QNDT-, and TND™-trees from the point set S =
{(1,10,2), (2,9,6), (2,8,7), (2,12,0), (2,7,8), (2,11,1), (4,7,4), (5,7,3), (6,7,2), (7,6,1),
(8,6,0)}. Assume that each leaf node can store up to m = 4 points.

NDT-tree: Median Partitioning (MP) is first applied in the first dimension, yielding
the median value 2. This assigns (1,10, 2) to the left subtree and all remaining points to
the right, giving L = {(1,10,2)} and R = {(7,6,1), (8,6,0), (2,7,8), (4,7,4), (5,7,3),
(6,7,2), (2,8,7), (2,9,6), (2,11,1), (2,12,0)}. MP is then applied to R in the second
dimension, with median 7, producing RL = {(7,6,1), (8,6,0)} and RR = {(2,12,0),
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(2,11,1), (6,7,2), (5,7,3), (4,7,4), (2,9,6), (2,8,7), (2,7,8)}. Since RR exceeds the
leaf size m, it is split once more using MP in the third dimension, where the median is
4, giving RRL = {(2,12,0), (2,11,1), (6,7,2), (5,7,3)} and RRR = {(4,7,4), (2,9,6),
(2,8,7), (2,7,8)}. All resulting subtrees contain at most m points, completing the tree
(see Figure 3).

(1,10,2)

(7,6,1), (8,6,0)

(2,12,0), (2,11,1), (6,7,2), (5,7,3) (4,7,4), (2,9,6), (2,8,7), (2,7,8)

Figure 3 ND"-tree containing 3-dimensional points with m = 4.

= QNDT-tree: Since Q; = Q2 = 2 in the first dimension, Quartile Partitioning (QP)
is used, yielding L = {(7,6,1), (8,6,0), (4,7,4), (5,7,3), (6,7,2), (1,10,2)} and R =
{(2,7,8), (2,8,7), (2,9,6), (2,11,1), (2,12,0)}. In L, Q; = 6 # 7 = Qs in the
second dimension, so MP is applied, splitting it into LL = {(7,6,1), (8,6,0)} and
LR ={(4,7,4), (5,7,3), (6,7,2), (1,10,2)}, both of which satisfy the leaf size constraint.
In R, Q1 = 8 # 9 = (2 in the second dimension, so MP is again applied, giving
RL ={(2,8,7), (2,7,8)} and RR = {(2,9,6), (2,11,1), (2,12,0)}, each also within the
allowed limit. The tree is thus complete (see Figure 4).

(7,6,1), (8,6,0) (4,7,4), (5,7,3), (6,7,2), (1,10,2) (2,8,7), (2,7,8) (2,9,6), (2,11,1), (2,12,0)

Figure 4 QND ™" -tree containing 3-dimensional points with m = 4.

= TNDT-tree: Q; = Q2 = 2 in the first dimension, so TriPartitioning (TP) is applied,
producing L = {(1,10,2)}, M = {(2,7,8), (2,8,7), (2,9,6), (2,11,1), (2,12,0)}, and
R=1{(7,6,1), (8,6,0), (4,7,4), (5,7,3), (6,7,2)}. L needs no further processing. In M,
no plateau is present in the second dimension, so MP is used with median 9, resulting
in ML ={(2,7,8), (2,8,7)} and MR = {(2,9,6), (2,11,1), (2,12,0)}. In R, a plateau
is found: Q2 =7 = Q3, so TP is applied again, yielding RL = {(7,6,1), (8,6,0)} and
RM ={(4,7,4), (5,7,3), (6,7,2)}. All resulting subtrees respect the leaf size constraint,
completing the tree (see Figure 5).
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(2,7,8), (2,8,7) (2,9,6), (2,11,1), (2,12,0) (7,6,1), (8,6,0) (4,7,4), (5,7,3), (6,7,2)

Figure 5 TND™-tree containing 3-dimensional points with m = 4.

5 Overview of New Algorithms for Pareto Unions and Sums

We now present our new algorithms for computing Pareto unions or Pareto sums of Pareto
sets. These algorithms are designed to work with any of the three data structures of Section 4.
For simplicity, all algorithms are presented w.r.t. ND¥-trees — details and missing proofs can
be found in the full version. In our experimental evaluation (cf. Section 6) we consider all
possible combinations of algorithms and data structures.

5.1 PlainNDred

As noted in [13], the main computational burden in P1ainND, P1ainSPND and PruneSPND is
the execution of NonDomPrune operations (cf. Section 3). The most demanding task is the
removal of all dominated points from the tree, as new points are inserted to it. The main
idea behind the reduced PlainND algorithm (PlainNDred in short) is to avoid this costly
pruning task of the evolving tree, by ensuring that any point that is inserted to the tree is
actually a member of the required Pareto frontier of F'. To achieve this, PlainNDred first
lexicographically sorts F, in quasilinear time. Then, to efficiently manage dominance-checks,
it processes the data points in that order and uses one of the new indexing structures
(ND*-trees in PlainNDred, QND¥-trees in PlainQNDred, and TND™-trees in PlainTNDred)
to store only the non-dominated ones of F' so far. In particular, for each point p in the
lexicographic order, the algorithm must only check if it is dominated by any point in the
tree, since p cannot dominate any of the preceding points in that order, as shown next.

» Lemma 7. Let S = (p1,P2,...,Pn) be a lexicographic order of a set F C RY of n points.
Then the following non-dominance property holds: V1 <i < j < n, pj cannot dominate p;.

If p is not dominated by any point already in the tree, the algorithm inserts it. Moreover,
dominance-checks can safely ignore dimension 1, since p[1] > q[1] for any point preceding p
in the lexicographic order. Therefore, PlainNDred needs only to check the remaining d — 1
dimensions. As a result, the algorithm builds a tree considering only the last d — 1 dimensions
of the points in F'. We denote as preq the projection of p on the last d — 1 dimensions. The
following statement demonstrates time complexity of PlainNDred.

» Theorem 8. For an n-point set F that is either the Minkowski sum or the union of two
Pareto sets, the time complexity of PlainNDred algorithm is O(n?(d — 1)) = O(n?).

Proof. The points of F' are first lexicographically sorted, in time O(nlogn). Then, for each
point, we perform a dominance-check against the previously processed points that belong
to the tree. Each pairwise dominance-check takes time O(d — 1) since only the last d — 1
dimensions matter. Even if all points in F' are non-dominated and no pruning occurs, each
point is compared to all previously processed points. Therefore, the algorithm makes at most

(d— 1)% € O((d — 1)n?) comparisons, for all dominance-checks. <
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5.2 PreND

The consecutive insertions into the tree by PlainNDred are likely to gradually unbalance it,
thereby diminishing the efficiency of subsequent dominance-checks and insertions. To address
this challenge, one option would be to periodically rebuild the tree, as is done by P1ainSPND
in [13]. However, building the entire tree from scratch is not a trivial task. To avoid that,
we could leverage once more the lexicographic order of the point set F' = (p1,...,pPn) to0
compute first an initial subset P of the Pareto frontier, which is then used to construct
a balanced NDV-tree that will be large enough so that the subsequent insertions of the
remaining non-dominated points, again examined in lexicographic order, will not be able to
unbalance it severely. This is exactly the main idea of the presorted ND algorithm (PreND
in short).

To compute this subset of the Pareto frontier, we deploy the ParetoSubset algorithm.

It starts with the initialization of a vector y of length d, corresponding to the number of
dimensions, with each dimension assigned the value co, and then makes a single pass over
the data points, in lexicographic order, using y to keep track of the smallest values seen
in each dimension, up to the current point p;. For the next point in order, pit1, if there
exists a dimension j € [d] such that piy1[j] < y[j], then pj+1 is not dominated by any
preceding point. Moreover, due to the lexicographic order, p;+1 cannot be dominated by any
subsequent point py : k > i+ 2 (cf. Lemma 7). Therefore, p;;1 is certainly a non-dominated
point in F' and is appended to P, and y is updated to always keep the smallest value seen
so far, per dimension. Otherwise, when y < pji1, pi+1 is appended to another subset @,
for further examination, during the second processing phase. Note that, since all points are
processed in lexicographic order, @) remains lexicographically sorted. Observe also that, for
d = 2, ParetoSubset already computes the entire Pareto frontier of F.

The PreND algorithm initially calls ParetoSubset to get the sets P and . It then calls
BuildND™ to construct an initial NDT-tree with the points of P. Subsequently, for each

point q € @Q, it calls DominatedND™ to determine if q is dominated by any point of the tree.

If it is dominated, then it is discarded. Otherwise, it is appended to P and inserted to the
ND*-tree by calling InsertND'. After having processed all points in @, P is the required
Pareto frontier of F'. Note that PreND can be used for constructing the Pareto union or the
Pareto sum of two Pareto sets, but also for identifying the Pareto frontier of a single set.

» Theorem 9. For an n-point set F' that is either the Minkowski sum or the union of two
Pareto sets, the time complexity of PreND is O(n?).

Proof. ParetoSubset first lexicographically sorts the set of points, in O(nlogn) time. Then,
it iterates through all n points and for each point determines in O(d) time whether it belongs
to P or ). Thus, ParetoSubset runs in O(nlogn + nd) = O(nlogn) time. Next, an
ND™-tree is constructed from the points in P. In the worst case, this step takes O(n?) time
(O(nlogn) for QNDT and TND*-trees). After constructing the tree, for each point in @, we
perform a dominance-check against the points already in the tree. In the worst case, where no
pruning occurs and every point is non-dominated, each dominance-check involves comparing

the point with all previously processed points. Since the pairwise dominance-checks are
n(n—1)
2
time complexity for the dominance-checks is O(dn?). Hence, the overall time complexity of
the PreND algorithm is O(dn?) = O(n?). <

executed in time O(d), and we perform this check for at most pairs of points, the total
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5.3 SymND

Especially for the union of two Pareto sets A, B, recall that points of one set may be
dominated only by points of the other set. Thus, applying some sort of symmetric dominance-
filtering could be extremely efficient. This is exactly what the symmetric ND algorithm
(SymND in short) does. It constructs first an NDT-tree using the points of A and then executes
DominatedND™ for each point in B, to remove from B all those points which are dominated
by a point in A. Then, it constructs another ND-tree, using only the remaining points
in B, and executes DominatedND" for each point in A, to remove those points which are
dominated by a point in B. In the end, both surviving subsets of A and B contain only
non-dominated points, and their union constitutes the Pareto union of A and B.

» Theorem 10. Given two Pareto sets A and B, the time complexity of SymND to compute
their Pareto union is O(|A]| - |B|).

Proof. Let |A| = ny < |B| = na. Assume also that the size of their Pareto union (to be
computed) is k. First, an ND*-tree is constructed using the points of the smaller set A,
which takes time O(dn?) in the worst case for ND*-trees, and O(n; logn;) for QNDT and
TND™-trees. Then, for each point in set B, the DominatedND' method is applied. Since
there are ny points in set B, and each DominatedND™ operation takes time O(dn;) in the
worst case (when each point of B is compared to all points in the tree), the total complexity
of this step is O(dnins).

Consequently, we construct a second ND*-tree using the remaining (at most fy =
min{k, n2}) points from set B. This tree construction requires in worst case time O(dn3)
time for NDT-trees and O(fglogfs) for QNDT and TND*-trees. Next, the DominatedND™
method is applied for each point in set A, removing any dominated points from A. As there
are ny points in set A, the total complexity of this second phase is O(dn172). Therefore, the
overall time complexity of the SymND algorithm is O(dn? +dning+dn3+dnifz) = O(dny(na+
min{k, ny})) with ND*-trees and O(dnqlogny + dnins + digloghs + dning) = O(dning)
with QND™T-trees and TNDT-trees. <

6 Experimental Evaluation

In our experimental evaluation, we implemented all nine combinations of our proposed
indexing data structures and dominance-filtering algorithms. We distinguish each combination
with an appropriate naming as follows: For each algorithm, its short name is used to indicate
an implementation with ND*-trees, and variants with QND¥-trees and TND%-trees are
indicated by the appearance in the short name of the substrings “QND” and “TND”,
respectively. For example, PlainNDred indicates the implementation of reduced PlainND
with ND*-trees, PreQND indicates the implementation of presorted ND with QND*-trees,
and SymTND indicates the implementation of symmetric ND with TND*-trees.

In addition, we implemented nine algorithms of [13], which constitute, to the best of
our knowledge, the state-of-the-art dominance-filtering algorithms for MOCO problems
with d > 3 dimensions. Apart from the algorithms P1ainSPND and PruneSPND which were
discussed in Section 3, several more algorithms were provided in [13]: NonDomDC explores
divide-and-conquer strategies that partition the initial set of solutions into smaller subsets
to reduce unnecessary comparisons; FilterX2 and FilterSym are bidirectional filters that
are also based on divide-and-conquer techniques; BatchedSPND that utilizes SPND-trees;
LimMem provides a memory-efficient alternative for scenarios where memory availability is
limited; finally, Doubling(Filter) and Doubling(Tree) are adaptations of FilterSym and
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PruneSPND, respectively, which are custom-tailored for Minkowski sums. All implemented
algorithms are listed in Table 1, where their applicability on the specific dominance-filtering

variant (union and/or Minkowski sum) is also mentioned.

Table 1 Algorithms that were implemented and tested in our experimental evaluation.

Reference: [13] Reference: this work
Algorithm Usage Algorithm Usage
FilterX2 Union SymND Union
FilterSym Union SymQND Union
BatchedSPND Minkowski sum SymTND Union
Doubling(Filter) Minkowski sum PreND | Union & Minkowski sum
Doubling(Tree) Minkowski sum PreQND | Union & Minkowski sum
LimMem Minkowski sum PreTND | Union & Minkowski sum
NonDomDC | Union & Minkowski sum PlainNDred | Union & Minkowski sum
PlainSPND | Union & Minkowski sum | PlainQNDred | Union & Minkowski sum
PruneSPND Union PlainTNDred | Union & Minkowski sum

6.1 Data Sets

To evaluate the performance of our algorithms, we used both real-world and synthetic data
sets. Note that real-world data sets with three or more objectives (d > 3) are very rare. Since
our main goal is to test scalability with dimensionality, we have also used two families of
synthetic data sets with up to d = 10 objectives: the randomly constructed data sets of [13],
and some new, carefully generated synthetic data sets that resemble some crucial features of
real-world instances for MOCO problems. Below, we provide a brief overview of all these data
sets; more details can be found in the full version of the paper. The RW sets are based on
the New York City road network [5], and are equipped with two cost metrics: travel time and
distance. We extend them to higher dimensions according to well established augmentation
techniques: for d = 3, we adopted [17] and introduced a third objective which is related
to hazardous material transportation [7]. For d = 5, we adopted [8] and added a fourth
objective which is a random integer from 1 to 100, and a fifth objective which is a random
integer from 1 up to the number of graph edges. The URS sets were synthetically generated
according to the procedure described in [13] (sampling points uniformly in d-dimensional

space and then projecting them into the unit sphere to ensure that these are Pareto sets).

Apart from these “baseline” RW and URS data sets, we also considered a few extensions
towards incorporating some typical features of real-world instances. The RWP and URSP
sets try to model realistic instances with repeated or flat objective values (e.g., tolls for road

networks), by introducing plateaus in some objectives of the RW and URS sets, respectively.

The RWC and URSC sets simulate interdependencies between objectives (also encountered

quite often in real-world instances), by introducing correlations between some objectives.

Finally, the URSPC set combines both correlation and plateau features in a single Pareto
set. The size of data sets given as input to all algorithms varies from 10K to 1M points,
while the number of objectives (dimensions) d varies from 3 to 10 (3, 5 for RW, 5 for RWP
and RWC, 4, 6, 8, 10 for URS, URSP, URSC and 5, 6, 8, 10 for URSPC).

6.2 Overview of Experimental Results

We provide here an overview of our experimental results. All details can be found in the full
version of the paper.
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Comparison with the state-of-the-art. Tables 2 and 3 compare our algorithms with the
best-performing algorithms from [13] for the Pareto sum and the Pareto union of two Pareto
sets, respectively. We compute the speedup factor per (algorithm, data set) pair, as follows:
for each (dimensionality, input size) pair, we identify the fastest algorithm of [13]. We then
compute the ratio of its runtime to that of our own algorithm. In the tables we report the
minimum and maximum speedups observed across all (dimensionality, input size) pairs.

Table 2 Min and Max speedups for each algorithm for the Pareto Sum operation.

Algorithm RW RWP RWC URS URSP URSC | URSPC
Min Max | Min Max | Min Max | Min Max | Min Max | Min Max | Min Max
PreND| 1.1 38 |29 44 |14 26 |18 52|18 49 |17 4729 7.7
PreQND | 1.0 3.7 |28 43|14 25|17 56 |18 53|17 52|29 82
PreTND| 1.0 3.7 |28 42 |14 25|17 55|18 52|17 50|29 7.8
PlainNDred | 1.1 3.7 | 26 45 |14 25 |29 108|24 7.0 |17 6.2 |29 122
PlainQNDred | 1.1 3.6 | 26 43 |14 26 |29 11.8|24 92|17 75 |30 132
PlainTNDred | 1.1 3.6 |25 44 |14 26 (3.0 86|24 88 |17 72|29 127

Table 3 Min and Max speedups for each algorithm for the Pareto Union operation.

Algorithm RW RWP RWC URS URSP URSC | URSPC
Min Max | Min Max | Min Max | Min Max | Min Max | Min Max | Min Max
PreND| 19 55 |20 42|17 41|15 52|17 36|04 26|05 1.5
PreQND | 2.1 59 |20 49 |17 45|16 58 |18 40|05 29|05 17
PreTND| 2.0 57 |17 46 |16 43|16 57|18 39|05 28 |05 1.6
SymND |14 30|14 30|11 29|17 48|13 37|14 36|10 3.5
SymQND | 1.5 32 |14 34|11 31|17 54|14 44|16 39|10 3.7
SymTND| 14 31|13 31|11 29|16 52|13 39|14 35|10 34
PlainNDred | 2.1 53 | 1.7 26 |17 31 |17 63|18 38 |05 22|05 1.6
PlainQNDred | 22 58 |23 3.0 |20 36 |19 68|19 43|06 24|05 1.6
PlainTNDred | 2.2 56 |20 27 |20 33 |18 6.7|18 41|06 23|05 17

For Pareto sums (Table 2), PreND, PlainNDred and their variants exhibit nearly identical
performance, consistently outperforming all other algorithms on RW/RWC/RWP, with
speedups reaching up to 4.5x. For the synthetic data sets, all our algorithms significantly
outperform the algorithms of [13], with PlainNDred and its variants achieving the largest
speedups, up to 11.8x for URS, 9.2x for URSP, 7.5x for URSC, and 13.2x for URSPC.

For Pareto unions (Table 3), the variants of PreND achieve the greatest speedup on
RW/RWP/RWC. On URS/URSP, all our algorithms show similar speedup ranges. On
URSC/URSPC, the variants of SymND emerge as the top performers. Note that, although the
variants of PreND and PlainNDred seem to occasionally be slower than PruneSPND on URSC
and URSPC, they are faster or identical in average in most cases. SymND and it variants
outperform PruneSPND for all data sets, with speedups of up to 3.9x.

Regarding the three data structures, for the Pareto union of two Pareto sets, QND™-trees
and TNDT-trees outperform NDT-trees across almost all data sets. However, for the Pareto
sum, NDT-trees generally perform better than QND'-trees and TNDT-trees on the real-world
data sets. In contrast, for the synthetic data sets, QNDT-trees are typically the most efficient,
followed by TND-trees, with NDT-trees trailing behind.

Exploring the impact of tree height on algorithmic performances. The balance of a tree
is crucial for the performance of our algorithms. When the tree is well-balanced, pruning
mechanisms at each level can reduce more efficiently the search space and limit the number
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of candidate points that may dominate a new one. To evaluate this in practice, we conducted
an experiment using a URSP set A consisting of n = 100,000 points, with a plateau of size
n/2 around the median in a random dimension. We constructed an ND*, a QND™ and a
TND™ tree using their Build methods on A. For each tree, we computed the average height,
the balance indicator BI = max(height) — min(height), and the number of dominance-checks
required per point from a second set B when queried against the respective trees.

Table 4 Comparison of the novel data structures, w.r.t. average tree height, balance indicator
(BI), and number of dominance-checks, for 100K points.

Tree| 4 Dimensions 6 Dimensions 8 Dimensions 10 Dimensions
Height BI Checks | Height BI Checks | Height BI Checks | Height BI Checks

NDT 16 10 56 15 7 243 14 4 511 14 2 537

QND™T 13 0 68 13 0 230 13 0 431 13 0 423

TND™T 13 1 38 13 1 137 13 1 371 13 1 428

The results, summarized in Table 4, show that QND* and TND™ trees are consistently
more balanced than NDT trees and also exhibit shorter heights. Although ND7 trees are
only slightly taller on average, their significantly higher balance indicator values reveal a
more skewed structure. Consequently, except in the case of 4 dimensions, the NDT trees
required more dominance-checks than the other two variants. It is important to note that,
as highlighted in our complexity analysis (in the full version of the paper), the worst-case
scenario may require a point to be compared against all nodes in the tree. However, the
experimental results indicate that in practice, the number of dominance-checks is substantially
lower. This highlights the practical efficiency of our tree structures and the effectiveness of
their lower-bounding mechanisms.

7 Conclusions and Future Work

We introduced three new data structures and three efficient algorithms for computing the
Pareto unions and Pareto sums of Pareto sets, for which we provided a theoretical analysis
for their worst-case performances and conducted a thorough experimental evaluation against
state-of-art techniques (for d > 3) from [13], on several real-world and synthetically generated
data sets. In all instances and dominance-filtering scenarios all of our algorithms consistently
outperformed each algorithm in [13] (except for the case of Pareto unions on URSC and
URSPC data sets, in which only SymND and its variants outperformed the best algorithm
in [13]). Future work will focus on enhancing the performance of PreND by developing
an alternative method to ParetoSubset, so as to precompute larger subsets of the Pareto
frontier without significantly increasing computational costs.
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