On the Complexity of Knapsack Under Explorable
Uncertainty: Hardness and Algorithms

Jens Schloter &
Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

—— Abstract

In the knapsack problem under explorable uncertainty, we are given a knapsack instance with
uncertain item profits. Instead of having access to the precise profits, we are only given uncertainty
intervals that are guaranteed to contain the corresponding profits. The actual item profit can be
obtained via a query. The goal of the problem is to adaptively query item profits until the revealed
information suffices to compute an optimal (or approximate) solution to the underlying knapsack
instance. Since queries are costly, the objective is to minimize the number of queries.

In the offline variant of this problem, we assume knowledge of the precise profits and the task
is to compute a query set of minimum cardinality that a third party without access to the profits
could use to identify an optimal (or approximate) knapsack solution. We show that this offline
variant is complete for the second-level of the polynomial hierarchy, i.e., X%-complete, and cannot
be approximated within a non-trivial factor unless X5 = AL. Motivated by these strong hardness
results, we consider a “resource-augmented” variant of the problem where the requirements on the
query set computed by an algorithm are less strict than the requirements on the optimal solution
we compare against. More precisely, a query set computed by the algorithm must reveal sufficient
information to identify an approximate knapsack solution, while the optimal query set we compare
against has to reveal sufficient information to identify an optimal solution. We show that this
resource-augmented setting allows interesting non-trivial algorithmic results.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases Explorable uncertainty, knapsack, queries, approximation algorithms
Digital Object Identifier 10.4230/LIPIcs.ESA.2025.6

Related Version Full Version: https://arxiv.org/abs/2507.02657 [29]

Funding This work was partially supported by the research project Optimization for and with
Machine Learning (OPTIMAL), funded by the Dutch Research Council (NWO), grant number
OCENW.GROOT.2019.015.

Acknowledgements Parts of the work on this project have been done while the author was affiliated

with the University of Bremen. The author thanks Nicole Megow for initial discussions.

1 Introduction

The field of explorable uncertainty considers optimization problems with uncertainty in the
numeric input parameters. Initially, the precise values of the uncertain parameters are
unknown. Instead, for each uncertain parameter, we are given an uncertainty interval that
contains the precise value of that parameter. Each uncertain parameter can be queried to
reveal its precise value. The goal is to adaptively query uncertain parameters until we have
sufficient information to solve the underlying optimization problem.

In this paper, we consider knapsack under explorable uncertainty (KNAPEXP) with
uncertain item profits. That is, we are given a set of items Z and a knapsack capacity B € N.
Each item ¢ € 7 has a known weight w; € N and an uncertain profit p; € R that is initially
hidden within the known uncertainty interval I;, i.e., p; € I;. A query of an item i reveals
the profit p;. Our goal is to compute a set P C Z of items with w(P) :=), pw; < B that

© Jens Schléter;
37 licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 6; pp.6:1-6:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:Jens.Schloter@cwi.nl
https://orcid.org/0000-0003-0555-4806
https://doi.org/10.4230/LIPIcs.ESA.2025.6
https://arxiv.org/abs/2507.02657
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

6:2

On the Complexity of Knapsack Under Explorable Uncertainty

maximizes the profit p(P) := >, p pi. We refer to this problem as the underlying knapsack
problem. Since the profits are initially hidden within their uncertainty intervals, we do not
always have sufficient information to compute an optimal or even approximate solution for
the underlying knapsack problem. Instead, an algorithm for KNAPEXP can adaptively query
items to reveal their profits until the revealed information suffices to compute an optimal
solution for the underlying knapsack instance. As queries are costly, the goal is to minimize
the number of queries.

The offline version, sometimes also called verification problem, of knapsack under ex-
plorable uncertainty (OFFLINEKNAPEXP) assumes full initial access to the profits p; and asks
for a query set @ C Z of minimum cardinality such that access to the profits of the items in
@ and access to the uncertainty intervals of the items in Z \ @ suffices to compute an optimal
solution to the underlying knapsack instance, independent of what the precise profits of the
items in Z \ @ are. In this work, we mainly focus on studying the offline version of knapsack
under explorable uncertainty. Most commonly, problems under explorable uncertainy are
studied in an adversarial online setting, where the uncertain values are unknown, query
outcomes are returned in a worst-case manner, and algorithms are compared against the
optimal solution for the corresponding offline version by using competitive analysis. The
complexity of the offline version is a natural barrier for efficiently solving the online version.

So far, most problems that have been studied under explorable uncertainty have an
underlying problem that belongs to the complexity class P, i.e., can be solved in polynomial
time. The seminal work by Kahan [20] on computing the minimum in a set of uncertain values
was followed by works on computing the k-th smallest uncertain value [16,20], computing a
minimum spanning tree with uncertain edge weights [10,12, 14,24, 25, 28], sorting [13,19],
shortest path [15], finding the cheapest set in a given family of sets [11,26], simple geometric
problems [7], stable matchings [2], and other selection problems [3,13]. If we remove the
explorable uncertainty aspect, then all of these problems can be solved in polynomial time.

Even tough these underlying problems are in P, the offline versions of the corresponding
problems under explorable uncertainty are often NP-hard. For instance, the offline version
of identifying the set of maximal points under explorable uncertainty is NP-hard [8], the
offline version of the selection problem in [3,13] is NP-hard, and the offline version of the
minimum-spanning tree problem under vertex uncertainty is NP-hard [10]. The offline version
of selecting the cheapest set is NP-hard [11] and even hard to approximate within a factor of
o(log m), where m is the number of sets [26]. Similarly, the offline version of stable matching
under uncertainty is NP-hard to approximate [2]. For all of these problems, adding the layer
of explorable uncertainty increases the complexity from polynomial-time solvable to NP-hard
and leads to interesting algorithmic challenges even tough the underlying problems are easy.
However, this observation also raises the following question:

If the underlying problem is already NP-hard, does adding the layer of explorable
uncertainty still increase the complexity?

As a first main result, we answer this question in the affirmative for the offline version of
knapsack under explorable uncertainty. More precisely, we show that OFFLINEKNAPEXP is
complete for the second level of the polynomial hierarchy, i.e., 35-complete. We even show

l=<_approximation is possible for any € > 0,

that, under a certain conjecture (X5 # Ab), no n
where n is the number of items. The latter can be seen as a natural next step from the
inapproximability result given in [26]: They show that approximating the offline version of
the cheapest set problem is hard to approximate within a factor of o(logm) by exploiting

that it is equivalent to solving a covering integer linear program (ILP) with m constraints,

J. Schloter

whereas we show our inapproximability result by exploiting that offline KNAPEXP can be
represented as a covering ILP with an exponential number of constraints. Unfortunately,
these extremely strong hardness results pose further challenges:

If the hardness of the offline version prevents any non-trivial approximation, is there
any hope for interesting algorithmic results in the offline, online or stochastic version?

Our approach for answering this question is to consider a form of resource augmentation.
More precisely, we relax the requirements on a solution) for OFFLINEKNAPEXP: Instead
of requiring that querying @ reveals sufficient information to identify an optimal solution
for the underlying knapsack problem, we only require sufficient information to identify
an a-approximate solution. Unfortunately, we can show that, unless P=NP, there is no
non-trivial approximation for this relaxed problem variant if we compare against an optimal
solution for the relaxed problem variant. However, as a second main result, we show that
non-trivial algorithmic results are possible if the requirements on the algorithm’s solution
are less strict than the requirements on the optimal solution we compare against; we make
this more precise in the next section.

1.1 Problem Definition

An instance K of KNAPEXP and OFFLINEKNAPEXP is a quintuple X = (Z, B, w, p, .A), where
Z=1{1,...,n} is a set of n items, B € N is the knapsack capacity, w is the weight vector
with w; € Ncp for all items ¢ € Z, p is the profit vector with p; € R>¢ for all 7 € Z, and
A ={I,...,I,} is the set of uncertainty intervals such that p; € I; for all i € Z. The
quadruple (Z, B, w, p) characterizes the underlying knapsack problem.

As is common in the area of explorable uncertainty, we assume that each uncertainty
interval I; is either open or trivial. That is, we either have I, = (L;,U;) for a lower limit
L; and an upper limit U;, or I; = {p;}. In the latter case, we call both the item i and the
uncertainty interval I; trivial and define U; = L; = p;. All items that are not trivial are called
non-trivial. We use Zp to refer to the set of trivial items. A query of an item 4 reveals the
profit p; and can be seen as replacing the uncertainty interval I; = (L;, U;) with I; = {p;}.

In OFrFLINEKNAPEXP, all input parameters are known to the algorithm, while in KNAP-
EXP the profits p; are initially uncertain. Both problems ask for a feasible query set Q C T
of minimum cardinality. Intuitively, a query set Q C 7 is feasible if the revealed information
suffices to identify an optimal solution to the underlying knapsack problem and to determine
the profit of such a solution. We proceed by making this definition more formal.

Packings and Feasible Query Sets. To formally define feasible query sets, we first define
packings. A subset of items P C 7 is a packing if), pw; < B. That is, packings are
feasible solutions to the underlying knapsack problem. For P C T let p(P) = . p; denote
the profit of P. We call a packing optimal if it maximizes the profit over all packings. We
usually use P* to refer to an optimal packing and p* := p(P*) to refer to the optimal profit.

For each packing P C 7 define Up := >, p Uy, i.e., the term Up describes an upper limit
on the maximum possible profit the packing could potentially have. Note that U, can be
computed even without access to the profits. By querying items in P, the upper limit Up
decreases as we gain more information and can replace the non-trivial uncertainty interval
I, = (L;,U;) with I; = {p;} after we query i and learn the profit p;. For Q C Z, we use U;(Q)
to denote the upper limit of ¢ after querying @, i.e., U;(Q) = p; if i € Q and U;(Q) = U;
otherwise. The upper limit Up(Q) of packing P after querying a set Q C Z, is

Up(Q) ¢:ZU1‘(Q): Z Ui+ Z Pi:ZUz‘* Z (Ui—pi) =Up— Z (Ui —pi)-

i€EP 1€EP\Q 1€PNQ i€EP 1€PNQ 1€PNQ

6:3

ESA 2025

6:4

On the Complexity of Knapsack Under Explorable Uncertainty

» Definition 1. A query set QQ C 7T is feasible if the following two conditions hold:
1. There is a packing P C Q UZp with p(P) = p*.
2. Up(Q) < p* holds for every packing P C T.

The first condition of Definition 1 ensures that querying @) reveals sufficient information
to verify that there exists a packing with the optimal profit p*, while the second condition
ensures that querying @ reveals sufficient information to verify that no packing can possibly
have a larger profit than p*, no matter what the profits of items ¢ € Z \ @ actually are.

Since any packing P* with p(P*) = p* can only satisfy Up«(Q) < p* if P* C Q UZy, the
second condition of the definition actually implies the first one. In particular, this means
that a query set is feasible if and only if it satisfies the constraints of the following ILP. Note
that a similar covering point of view was first observed in [26] for the cheapest set problem.

min ;T
st. Yiepti-(Ui—pi) 2Up—p* VPCI:), pw;<B (K-ILP)
x; €{0,1} Viel

The offline problem. In the offline problem OFFLINEKNAPEXP, we are given an instance
K = (Z, B,w,p, A) with full knowledge of all parameters and our goal is to compute a feasible
queryset of minimum cardinality, which is equivalent to solving (K-ILP) with full knowledge
of all coefficients. We use Q* to refer to an optimal solution of OFFLINEKNAPEXP.

The online problem. In the online problem KNAPEXP, we are also given an instance
K = (Z,B,w,p, A) but the profits p; are initially unknown. The goal is to iteratively and
adaptively query items i to reveal their profit p; until the set of queried items is a feasibile
query set. This problem can be seen as solving (K-ILP) with uncertain coefficients U; — p;
and right-hand side values Up — p*: Querying an item 4 corresponds to irrevocably setting
x; = 1, incurs a cost that cannot be reverted, and reveals the coefficient (U; — p;).

Relaxations. As OFFLINEKNAPEXP turns out to admit strong inapproximability results, we
introduce the following relaxed notion of feasible query sets. We use («, 3)-OFFLINEKNAPEXP
to refer to the offline problem of computing a («, 3)-feasible query set of minimum cardinality.

» Definition 2 ((«, 8)-feasibility). Let a, 8 > 1. We say that a query set Q C T is («, 5)-
feasible if the following two conditions hold:

1. There is a packing P such that P C Q UZr and p(P) > é - p*.

2. Up(Q) < B-p* for every packing P.

The first condition of the definition ensures that we can find an a-approximation for the
underlying knapsack instance by using only queried and trivial items. The second condition
ensures that, after querying @, no feasible packing can have profit greater than 5-p*, no matter
what the profits of the items in Z \ @ are. Thus, querying @ reveals sufficient information to
verify that the set P of the first condition is a %—approximation for the underlying knapsack
instance. We use @)}, 5 to refer to a minimum-cardinality («, B)-feasible query set. Note that
Q" = Q7 ,1, Q" is (a, B)-feasible for every o, f > 1 and |Q*| = maxa>1,5>1|QF 4l

In contrast to Definition 1, the second condition of Definition 2 does not imply the first
one. As a consequence, each («, 8)-feasible query set is a feasible solution for a variant
of (K-ILP) in which we replace p* with § - p*, but the inverse is not necessarily true.

J. Schloter

1.2 Our Results and Outline

In Section 2, we give several hardness results for OFFLINEKNAPEXP. First, we show
that deciding whether @ = @ is an («, 8)-feasible query set is weakly NP-hard for any
a,f > 1, which immediately implies that it is weakly NP-hard to approximate (a, §)-
OFFLINEKNAPEXP within any bounded multiplicative factor. This hardness result mainly
exploits that the optimal solution p* to the weakly NP-hard [21] underlying knapsack
problem appears on the right-hand sides of (K-ILP). Then, we move on to show that
OFFLINEKNAPEXP is ¥5-complete, which intuitively means that the problem remains hard
even if we are given an oracle for deciding problems in NP. Since such an oracle allows us to
compute p*, the reason for the 35-hardness is not the appearance of p* in the right-hand sides
but the exponential number of constraints in (K-ILP). In fact, we prove this hardness result
via reduction from succinct set cover [31,32], which is a set cover variant where the elements
and sets are only given implicitly, i.e., the number of set cover constraints is exponential in
the encoding size of the problem. Exploiting a result by [30], our reduction also shows that
there is no n{~“-approximation for any ¢ > 0 unless 5 = A}, where ng := |Z \ Zr|.

In Section 3, we design algorithms for («, 3)-OFFLINEKNAPEXP for different values of «
and (. Since the hardness results prevent any non-trivial results when comparing against
|Q7, 5|, we analyze our algorithms by comparing their solutions to |Q*| instead. This can be
seen as a form of resource augmentation as the requirements on the algorithms’s solution are
less strict than the requirements on the optimal solution we compare against. To achieve our
algorithmic results, we treat the two conditions for («, 8)-feasible query sets (cf. Definition 2)
as separate subproblems: (i) Compute a query set (1 such that there exists a packing
P C Q1 UZr with p(P) > ép*, and (ii) Compute a query set @2 such that Up(Q2) < Sp*
holds for all packings P. First, we show how to solve subproblem (i) in polynomial-time for
o= %_6 with a set @1 such that |Q;| < |Q*|. Our algorithm for this subproblem exploits
existing results for the two-dimensional knapsack problem. For (ii), we first show how to
solve the problem in pseudopolynomial time for § = 2 4 € with the guarantee |Q2| < |Q*|.
The algorithm is based on solving an OFFLINEKNAPEXP variant that only considers packings
that correspond to certain greedy solutions. We justify the pseudopolynomial running-time
by showing weak NP-hardness for this OFFLINEKNAPEXP variant. By considering a relaxed
version of that problem, we manage to solve problem (ii) for § = 4 4 € with |Q2] < |Q*]| in
polynomial time. Combining the results for both subproblems yields a pseudopolynomial
algorithm that computes a (i, 2+ 2¢)-feasible query set @ and a polynomial time algorithm
that computes a (11,4 + 4¢)-feasible query set Q. In both cases, |Q| < 2-|Q*|.

1.3 Further Related Work

Meifiner [27] gives an adversarial lower bound of n for KNAPEXP that holds even if the instance
only has two different weights, preventing any non-trivial adversarial results. However, Megow
and Schléter [26] show that this lower bound does not hold in a stochastic setting where the
profits p; are drawn from their intervals I; according to an unknown distribution that satisfies
Pr[p; < %] < 7 for a threshold parameter 7. However, their result only breaks that
particular lower bound instance and does not imply general stochastic results for KNAPEXP.

Goerigk et al. [18] consider a knapsack problem under uncertainty in a different query
setting. In their problem, the profits are known and the weights are uncertain. Furthermore,
there is a budget on the queries that an algorithm is allowed to make. These differences lead
to a problem fundamentally different from KNAPEXP.

6:5

ESA 2025

6:6

On the Complexity of Knapsack Under Explorable Uncertainty

Maehara and Yamaguchi [23] consider packing ILPs with uncertainty in the cost coeffi-
cients. The cost coefficients can be queried. The key difference to the setting of explorable
uncertainty is that they are interested in bounding the absolute number of queries instead
of comparing against the optimal feasible query set. We remark that this is an important
distinction between explorable uncertainty and many other query models. For example, the
same distinction applies to a line of research that studies queries that reveal the existence of
entities instead of numeric values, e.g., the existence of edges in a graph, c.f. [4-6,9,17,33].
For instance, Behnezhad et al. [4] considered vertex cover in a stochastic setting and showed
that it can be approximated within a factor of (24 €) with only a constant number of queried
edges per vertex.

2 Hardness of Approximation

We start by showing our hardness results for («,)-OFFLINEKNAPExP. Not surpris-
ingly, the appearance of p* in the right-hand sides of (K-ILP) suffices to render (a, §)-
OFFLINEKNAPEXP weakly NP-hard. The following proposition shows that even deciding
whether a given set @ is («, 8)-feasible is already weakly NP-hard (cf. the full version [29]
for a formal proof).

» Proposition 3. Deciding if Q = 0 is (a, 8)-feasible is weakly NP-hard for any o, 8 > 1.

This means that distinguishing between instances that can be solved without any query
and instances that need at least one query is weakly NP-hard, which implies the following:

» Corollary 4. It is weakly NP-hard to approzimate (c, 8)-OFFLINEKNAPEXP within any
bounded multiplicative factor.

Proposition 3 is also an indicator that (o, 8)-OFFLINEKNAPEXP might not be in NP,
as verifying whether a query set is («, 8)-feasible is already NP-hard. For «,8 = 1, we
make this observation more formal by proving that OFFLINEKNAPEXP is complete for the
second level of the polynomial hierarchy, i.e., X5-complete. Intuitively, the class 35 contains
problems that, given an oracle for deciding problems in NP, can be solved in non-deterministic
polynomial time. Similarly, the class Af contains problems that, given the same type of
oracle, can be solved in deterministic polynomial time. Hardness and completeness for the
class X are defined in the same way as for the class NP. For a more formal introduction,
we refer to [1]. Under the conjecture that Y 5 # NP, the > 5-completeness implies that
OFFLINEKNAPEXP is not in NP, and under the conjecture Y 5 # AL it cannot be solved
optimally in polynomial time even when given an oracle for deciding problems in NP.

» Theorem 5. OFFLINEKNAPEXP is X5 -complete.

Proof. We show ¥5-membership in the full version [29] and focus here on proving >5-hardness.
Our proof is via reduction from succinct set cover, which is known to be Y 5-complete [31,32].
In the same way as for NP-hardness proofs, we need to give a polynomial time reduction to
the decision problem variant of OFFLINEKNAPEXP such that the constructed instance is a
YES-instance if and only if the given succinct set cover instance is a YES-instance.

Succinct set cover. We are given n decision variables x1, ..., z,, m propositional logic
formulas ¢, ..., ¢, over these variables and an integer parameter k. Each formula ¢; is
in 3-DNF form! and we use S; to denote the set of 0-1-vectors (variable assignments) that

L Disjunctive normal form (DNF) refers to a disjunction of conjunctions, i.e., ¢; =CijaV...VCjg,,
where each clause C} , is a conjunction of literals. In 3-DNF, each Cj ; contains exactly three literals. A
formula in DNF is satisfied by a variable assignment if at least one clause is satisfied by the assignment.

J. Schloter

satisfy ¢;. The formulas ¢; have to satisfy Uje{l,...,m} S; = {0,1}", i.e., each variable
assignment satisfies at least one formula ¢;. The goal is to find a subset S C {1,...,m}
such that (J;c5 5; = {0,1}" and |S| < k. We assume that each variable occurs as a literal in
at least one formula. If not, we can just remove the variable and obtain a smaller instance.
Succinct set cover can be interpreted as a set cover variant where the elements and sets are
only given implicitly and not as an explicit part of the input.

Main reduction idea. Before we give the technical details of the reduction, we first sketch
the basic idea. In particular, we describe the properties that we want the constructed instance
to have. In the technical part, we then describe how to actually achieve these properties. At
its core, the reduction will use the knapsack weights to encode structural information of the
input instance into the constructed instance. The idea to use numerical weights to encode
constraints is quite natural in hardness proofs for weakly NP-hard problems, see e.g. the
NP-hardness proof for the subset sum problem given in [22]. The usage of the knapsack
weights in our reduction is on some level inspired by such classical reductions, but requires
several new ideas to handle the implicit representation of the input problem and the covering
nature of OFFLINEKNAPEXP.

First, we introduce a single trivial item ¢* with w;« = p;» = B. This item alone fills up the
complete knapsack capacity B, which we define later, and the instance will be constructed in
such a way that p* = p;» = B is the maximum profit of any packing. Thus, only packings P
with Up > p* induce non-trivial constraints in (K-ILP). We design the instance such that
Up > p* only holds for packings that use the full capacity.

» Property 1. A packing P of the constructed instance satisfies Up > p* only if w(P) = B.

Next, we want each packing P with w(P) = B and Up > p* to represent a distinct
variable assignment in {0, 1}™. To this end, we introduce a set X of 2n items, two items v;
and v; for each variable z; with ¢ € {1,...,n}. Intuitively, v; represents the positive literal x;
and v; represents the negative literal —x;. We say that a subset X’ C X represents a variable
assignment if | X’ N {v;,0;}| =1 for all i € {1,...,n}. We design our instance such that the
packings P with w(P) = B and Up > p* exactly correspond to the variable assignments in
{0,1}™. Note that this excludes the packing P = {i*} as this packing has w(P) = B and
p(P) =p".

» Property 2. If w(P) = B and Up > p*, then P N X represents a variable assignment.
Each variable assignment is represented by at least one P with w(P) = B and Up > p*.

If the first two properties hold, then all non-trivial constraints in the ILP (K-ILP) for
the constructed instance correspond to a packing P with w(P) = B and Up > p* and, thus,
to a variable assignment of the given succinct set cover instance. Furthermore, each variable
assignment is represented by at least one active constraint. With the next property, we want
to ensure that each possible query, i.e., each non-trivial item, corresponds to a succinct set
cover formula ¢;. To this end, we introduce the set of items Y = {y1,...,ym}. These items
will be the only non-trivial items in the constructed instance, so each possible query is to
an element of Y. Next, we want to achieve that querying an item y; suffices to satisfy all
constraints of (K-ILP) for packings P with w(P) = B and Up > p* that represent a variable
assignment which satisfies formula ¢;, and does not impact any other constraints. Formally,
we would like to design our instance such that the following property holds.

» Property 3. For each packing P with Up > p* and each y; € Y: y; € P if and only if

X N P represents a variable assignment that satisfies ¢;. If y; € P, then Up —p* < U, —py,.

6:7

ESA 2025

6:8

On the Complexity of Knapsack Under Explorable Uncertainty

If we manage to define our reduction in such a way that the three properties are satisfied, it
is not hard to show correctness (see the full version [29] for the second direction):

First Direction. If there is an index set S with |S| < k that is a feasible solution to the
succinct set cover instance, then each possible variable assignment must satisfy at least
one formula ¢; with j € S. We claim that Q@ = {y; | j € S} is a feasible query set for
the constructed OFFLINEKNAPEXP instance. To this end, consider an arbitrary packing
P with Up > p*, which are the only packings that induce non-trivial constraints in the
corresponding (K-ILP). By Property 1, we have w(P) = B. Property 2 implies that X N P
represents some variable assignment ¢ and Property 3 implies that y; € P for all ¢; that
are satisfied by . By assumption that S is a feasible succinct set cover solution, we get
QNP # (. Property 3 implies Up(Q) < Up({y;}) < p* for each y; € @ N P. Thus, Q
satisfies the constraint of P in the (K-ILP) for the constructed instance. As this holds for
all P with Up > p*, the set @ is a feasible solution for the constructed OFFLINEKNAPEXP
instance.

Technical reduction. It remains to show how to actually construct an OFFLINEKNAPEXP
instance that satisfies the three properties. Given an instance of succinct set cover, we
construct an instance of OFFLINEKNAPEXP consisting of four sets X, ®, A and L of items
such that Z = X U® U AU L. The set X is defined exactly as sketched above, the set ®
contains the set Y = {y;,...,ym} as introduced above, and L := {i*} for the item ¢* with
w;+ = pi= = B. All further items will be used to ensure the three properties.

Conceptionally, we construct several partial weights for each item i that will later be
combined into a single weight. For each item i, we construct two weights w; 4, and w; ,, for
each formula ¢;, and a single weight w; . Similarly, we break down the knapsack capacity
into multiple partial knapsack capacities B, and By, B,, for each ¢;. Intuitively, the full
weight w; of an item ¢ will be the concatenation of the decimal representations of the partial
weights, i.e., w; = W; zW; p,, Wi p, Wig,, ** Wi,e,, and B will be the concatenation of the
partial capacities. We make this more precise in the full version [29] after defining all partial
weights in such a way that the following property holds.

» Property 4. For each packing P with P # {i*}, it holds), pw; = B if and only if
Y iepWie = Byyand), pwi g, = By, and). pw;,, = B,, forall j € {1,...,m}.

For now, we operate under the assumption that Property 4 holds and focus on the partial
weights and capacities, and proceed by defining the remaining parts of the construction.

Definition of the w,-weights. As formulated in Property 2, we would like each packing
P with w(P) = B and Up > p* to represent a variable assignment. To this end, we need
such a packing to contain exactly one item of {v;,v;} for each i € {1,...,n}. To enforce
this, we use the partial w,-weights and the partial capacity B,. In particular, we define
Wy, @ = W, » = 10" for each i € {1,...,n}, and B, = ., 10°. For all items j € T\ X, we
define w; , = 0, which immediately implies the following property:

» Property 5. P satisfies Zie p Wiz = By iff PN X represents a variable assignment.

Definition of the set A and the wgy;-weights. Define A = J;c(y, .,y Ay, for sets Ay,
to be defined below. For formula ¢;, let k; denote the number of clauses in ¢; and let
Cj1,---,Cjk; denote these clauses. For each C k., we add four items a; k.0, a5 x,1,aj k2, @5 k3
to set Ag,. The idea is to define the partial wy -weights and the partial By, capacity in such
a way that the following property holds.

J. Schloter

» Property 6. For cach ¢;, a packing P satisfies), pwi g, = By, and >, p w; » = B, iff
a; k0 € P for each clause Cj, that is satisfied by the assignment represented by X N P.

To achieve the property, we first define the partial wg,-weights for the items X. For a
literal x;, let Cy, ; := {k | 2; occurs in C; 1} and define C;, ; in the same way. We define
the weights w,, ¢, and wg, ¢, as Zkecmm 10k %=1 and Zkecﬂm 10551 respectively.
Intuitively, digit k; + k of the sum ZheXﬁP wh,e, of a packing P with ZieP Wiy = By
indicates whether the assignment represented by X N P satisfies clause C; ; or not: If the
clause is satisfied, then X N P contains the items that represent the three literals of C; ; and
the digit has value 3. Otherwise, X N P contains at most two of the items that represent the
literals of C; and the digit has value at most 2.

Finally, for each for i € {0,1,2,3}, we define the wgy -weight of item a; 1 ; as wg, a;,, =
i-10% k=11 1051, For all remaining items i € Z\ (X UAy,), we define the partial wg,-weight
to be zero. Furthermore, we define the partial capacity By, = 227;01 10% + Eikzj,;l 3-10".
We claim that these definitions enforce Property 6.

Intuitively, the fact that the k; decimal digits of lowest magnitude in By, have value 1
forces a packing P with), p w; ¢, = By, to contain exactly one item of {a; r0,...,a;k3}
for each k € {1,...,k;} as each such item increases the corresponding digit £ — 1 by one.
Similarly, the value of each digit k; +k — 1 in By, is three. Since the elements of X that
occur in clause Cj . increase the value of digit k; + k — 1 in wg, (P) by one and item a; ;
increases the digit by 4, a packing P with value three in digit k; +k — 1 of wg, (P) can contain
item a; o if and only if X N P contains the three items that correspond to the literals in
C; k. This implies Property 6. We give a more formal argumentation in the full version [29].

Definition of set @ and the w,;-weight. Define ® = {J;.(; ,,; ®; such that ®; =
{yj,uj, f0,- -5 fik,—1}. Note that y; is the item that has already been introduced for Prop-
erty 3. As a step toward enforcing this property, we define the w, -weights such that:

» Property 7. For each ¢;, a packing P with), pw; ,, = B,, has y; € P if and only if
ajk0 € P for some clause Cj 1, in ¢;.

To enforce this property, we define the following partial capacity B,, = k; + 1075 4+ 1075+,
Next, we define the w, ,-weight of the elements a;xo0, k¥ € {1,...,k;}, as wa,, 4p, = 1.
Furthermore, we define w,, ,, = 104+ + 105 + kj, w,, ,. = 104+ and wy, , ,, = 10" + k,
for all k£ € {0,...,k; — 1}. For all other items, define the w, -weight to be zero. We show in
the full version [29] that these definitions imply Property 7.

Definition of the uncertainty intervals and precise profits. To finish the reduction, we
define the profits and uncertainty intervals of all introduced items:

For the items y;, j € {1,...,m}, we define the uncertainty interval I, = (wy, —2, w,, +¢)
for a fixed 0 < € < % We define the profits as p,, = w,, — 1.
For all items i € Z\ {y; | j € {1,...,m}}, we use trivial uncertainty intervals I; = {w;}.

Proof of the three main properties. With the full construction in place, we are ready to

prove the three main properties from the beginning of the proof:

1. Property 1: By definition of the profits, we have p(P) < w(P) for each packing P,
which implies that the maximum profit is p* < B. Since the packing P = L = {i*} has a
profit of exactly B, we get p* = B. On the other hand, the upper limit Up of a packing
Pisw(P)+ePN{y,; | j€{1,...,m}}| as only the items in {y; | j € {1,...,m}} have

6:9

ESA 2025

6:10

On the Complexity of Knapsack Under Explorable Uncertainty

a non-trivial uncertainty interval with upper limits of w,, + €. By choice of ¢, this gives
Up=w(P)+elPN{y; |je{l,...,m}}| <w(P)+ 1. Since all weights are integer, this
implies that Up > p* = B only holds if w(P) = B.

2. Property 2: The property, in particular the first part, is essentially implied by Property 4
and Property 5. We give the formal argumentation in the full version [29].

3. Property 3: By Property 1 and definition of the uncertainty intervals, a packing P
has Up > p* if and only if w(P) = B and P # {i*}. By Property 4, the latter holds if
and only if w,(P) = By, wy,(P) = By, and w),,(P) = B,, for all j € {1,...,m}. Fix a
packing P with y; € P for some j € {1,...,m}. By Property 7, y; € P holds if and only
if a; 0 € P for some clause Cj in ¢;. By Property 6, a; o € P if and only if C; . is
satisfied by the assignment represented by X N P. This gives the first part of Property 3.
For the final part, observe that U,, — p,;, > 1. On the other hand, U, — p* < 1. Hence,
the second part of Property 3 holds.

To finish the proof of the reduction, it remains to argue about the running time and
space complexity of the reduction. We do so in the full version [29]. The main argument is
that, while the numerical values of the constructed weights are exponential, the number of
digits in their decimal representations (and, thus, their encoding size) is polynomial. |

The previous theorem proves Y 5-hardness for OFFLINEKNAPEXP. Exploiting the inap-
proximability result on the succinct set cover problem given in [30, Theorem 7.2], we can
show the following stronger statement by using the same reduction (cf. the full version [29]
for a formal proof).

» Theorem 6. Unless X5 = AL, there exists no néfe-appro:m'mation (given access to an
oracle for problems in NP) for OFFLINEKNAPEXP for any € > 0, where ng := |Z \ Zr|.

» Remark 7. We remark that all results given in this section require large numerical input
parameters. Hence, they do not prohibit the existence of pseudopolynomial algorithms.

3 Algorithmic Results

In this section, we give algorithms for (o, 8)-OFFLINEKNAPEXP for different values of o and
B. Motivated by the hardness results of the previous section, we show bounds on the size of
the computed query sets in comparison to |Q*| instead of |Q}, 5|. All our algorithms treat the
two conditions on (a, 8)-feasible query sets (cf. Definition 2) as two separate subproblems:
1. Compute a query set)1 such that there exists a packing P C Q)1 UZp with p(P) > ép*.
2. Compute a query set Q2 such that Up(Q2) < - p* for all packings P.

In the following, we show how to solve these two problems and give bounds on |Q1 U Q2|
in terms of |Q*|.

3.1 The First Subproblem

The following lemma solves the first subproblem for o = %_6 by computing a packing P with
p(P)>(1—¢)-p* and |P\Zr| < |Q*|. The set Q1 = P\ Zr satisfies the requirement of the
subproblem and has |Q1| < |@*|. In the full version [29], we prove the lemma by exploiting
existing algorithms for two-dimensional knapsack.

» Lemma 8. Fiz ane > 0. Given an instance of OFFLINEKNAPEXP, there exists a polynomial
time algorithm that computes a packing P with p(P) > (1 —€) - p* and |P\ Ir| < |Q*|.

J. Schloter

3.2 The Second Subprobem: Prefix Problems

For the second subproblem, we consider special packings that correspond to greedy solutions

for the underlying knapsack problem. For an item 4 € Z, define the density d; = £~ and the

i

optimistic density d; = % For a query set @ C Z, define the optimistic density of an item
i after querying Q as d;(Q) = d; if i ¢ Q and d;(Q) = d; if i € Q. We use <@ to denote
the optimistic density order after querying @, that is, for i, 5 € Z we use i<¢gj to denote
that d;(Q) > d;(Q). We assume an arbitrary but fixed tiebreaking rule between the items to
treat < as a total order. This allows us to define optimistic prefizes and the prefiz problem.

» Definition 9 (Optimistic prefixes). For a set Q CZ and a parameter 0 < C < B, define
the optimistic prefix Fo(Q) to be the mazimal prefix S of order <q such that w(S) < C. To
shorten the notation, we define F(Q) := Fp(Q)

From the analysis of the knapsack greedy algorithm, it is well-known that the following
holds for all packings P:

Up(Q) < Up)(Q) + max Ui(Q). (1)

If we compute a set @, such that Urg) < B'p* and max;ez U;(Q) < 8’ - p*, then Q solves
the second subproblem for 8 = 2 - 3’, which motivates the following problem.

» Definition 10 (Prefix problem). Given an instance of OFFLINEKNAPEXP and a threshold
parameter D > p*, where p* is the optimal profit of the underlying knapsack instance, the
prefix problem asks for the set Q C T of minimum cardinality such that UF(Q)(Q) <D.

Unfortunately, the prefix problem preserves the hardness of knapsack, even if the given
threshold is larger than p* by a constant factor. We show this in the full version [29].

» Theorem 11. The prefiz problem is weakly NP-hard for every D = c-p* with ¢ > 1.

On the positive side, the problem can be solved to optimality in pseudopolynomial time.

» Theorem 12. The prefiz problem can be solved in pseudopolynomial time.

We give the full proof of Theorem 12 in the full version [29], but highlight the main ideas
here. In the following, we use ()} to refer to an optimal solution for the prefix problem.

Assume for now, that the algorithm knows the last item i; in the prefix F(Q%) and the
first item 4o outside of F(Q%) in the order =@ (Figure 1 (a)) and, for the sake of simplicity,
assume that 41,2 ¢ Q%. We design our algorithm to reconstruct the optimal solution F(Q%)
(or a similar solution) using just the knowledge of i; and is.

If we look at the same two items 1,45 in the initial optimistic density order <y, then
there can be a subset of items S before i1, a subset of items A between i1 and i and a subset
of items R after iz (Figure 1 (b)). Based on i1 and iz being next to each other in order <q- ,
we can immediately deduce that A C Q% as items in A\ Q% would still be between i1 and iy
in QQ}. Thus, the algorithm can safely add A to its soluti_on as the optimal solution does the
same. Similarly, from iy being the first item outside of F(Q%), it is clear that RN Q% =0
as the items in R stay outside the prefix F' (Q%) whether they are queried or not. Hence, the
algorithm can safely ignore such items.

In the order <4, i.e., in the order after adding A to the solution, the items 4; and i, must
already be next to each other. However, we still can have i; & F(A), that is, i; might not yet
be part of the prefix (Figure 1 (¢)). To fix this, the algorithms needs to query items from the

6:11

ESA 2025

6:12 On the Complexity of Knapsack Under Explorable Uncertainty

7
(@) F@)\ (i) I\ (FQp) U fia})
:
(b) 5 i i1 A R
:
(©) 3 i i RUA
’
(@) S\ 51 i1 i RUAUS,

Figure 1 Illustration of the algorithmic ideas used to prove Theorem 12.

set S1 C S, which contains items that are before ¢; in the order <4 but would move behind
1o if they are added to the solution. To reconstruct the optimal solution, the algorithm has
to query these items in such a way that ¢; enters the prefix but is does not. On the one hand,
the algorithm should select items i € S; with high U; as the items will leave the prefix and
the goal of the prefix problem is to decrease the upper limit of the prefix below the threshold
D. On the other hand, the algorithm needs to make sure not to query too many items in
S1, so the cardinality of the solution does not grow too large. If K is the minimum amount
of weight that needs to be queried for i; to enter the prefix, D is the maximum amount of
weight that can be queried before i enters the prefix, and n; is the number of queries that
the algorithm can afford, then the algorithm should select its queries from S according to
the following ILP, which we show to be solvable in pseudopolynomial time:

max) g T Ui
s.t. Ziesl T w; > K

2ies, Tiwi < H (Ps,)
1€S51 Ly =N
€ {0,1} Vie S

After adding the solution S} of (Ps,) to the solution, the prefix F(AUS}) of the algorithm
has reached roughly the same configuration as F (Q%): i1 is last in the prefix and iy is first
outside the prefix (Figure 1 (d)). However, we still might have Up4y,5:)(AUS]) > D. To
fix this, the algorithm has to query items of S\ S7 that stay in front of 4; in the optimistic
density order even after being queried. Since these items are part of the prefix F(AU S})
and will stay part of the prefix even after being queried, the algorithm should greedily query
such items ¢ with large U; — p; = Upaus:) (AU S1) = Upausiugap (AU ST U {i}) until the
solution becomes feasible for the prefix problem instance. Our algorithm for Theorem 12 is
based on exactly this approach. We show in the full version [29] how to formalize this and
get rid of all assumptions that were used in the description above.

To achieve polynomial running time, we use the same approach but instead of (Ps,) we
solve a certain LP-relaxation with the property that an optimal basic feasible solution has at
most two fractional variables. Omitting the fractional items leads to the following corollary.

J. Schloter

» Corollary 13. Given an instance of the prefix problem with threshold parameter D, let Q%
denote an optimal solution to the instance. There exists a polynomial time algorithm that
computes a set Q with |Q| < |QF| such that Up)(Q) < D + 2 - max;ez U;.

3.3 Combining the Subproblems

By combining Lemma 8 and Theorem 12, we can show the following theorem. The idea is to
use Lemma 8 to compute a packing P with p(P) > (1 — €')p* for a carefully chosen ¢’ > 0
and then use Theorem 12 with threshold D = f(_Pe?) to compute a solution Q' to the prefix

problem. Exploiting (1), we return the solution Q@ = (P\Zr)U Q' U{i € Z|U; > D} and
observe that () satisfies the theorem. A formal proof is given in the full version [29].

» Theorem 14. Fiz e > 0. There exists a pseudopolynomial algorithm that given an instance
of OFFLINEKNAPEXP computes a (1, (1 + €) - 2)-feasible query set Q with |Q| < 2|Q*|.

Replacing the usage of Theorem 12 with Corollary 13 in the approach above yields:

» Theorem 15. Fix ¢ > 0. There exists a polynomial time algorithm that given an instance
of OFFLINEKNAPEXP computes a (1, (1 + €) - 4)-feasible query set Q with |Q| < 2|Q*|.

4 Conclusion

We hope that our results on OFFLINEKNAPEXP improve the understanding of NP-hard
problems under explorable uncertainty. In particular, our algorithmic insights on the resource
augmentation setting give hope for tackling such problems even if the corresponding offline
versions have strong impossibility results. For knapsack specifically, studying a stochastic
version of the prefix problem of Section 3, for example in the stochastic setting of [26],
seems like a logical next step towards algorithmic results for the non-offline KNAPEXP.
For OFFLINEKNAPEXP, our results of Section 3 show that non-trivial algorithmic results
with theoretical guarantees are possible, opening the door for more research on finding the
best-possible guarantees.

—— References

1 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

2 Evripidis Bampis, Konstantinos Dogeas, Thomas Erlebach, Nicole Megow, Jens Schléter,
and Amitabh Trehan. Competitive query minimization for stable matching with one-sided
uncertainty. In APPROX/RANDOM, volume 317 of LIPIcs, pages 17:1-17:21. Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPIcs.APPROX/RANDOM.2024.17.

3 Evripidis Bampis, Christoph Diirr, Thomas Erlebach, Murilo Santos de Lima, Nicole Megow,
and Jens Schléter. Orienting (hyper)graphs under explorable stochastic uncertainty. In ESA,
volume 204 of LIPIcs, pages 10:1-10:18, 2021. doi:10.4230/LIPIcs.ESA.2021.10.

4 Soheil Behnezhad, Avrim Blum, and Mahsa Derakhshan. Stochastic vertex cover with few
queries. In SODA, pages 1808-1846. STAM, 2022. doi:10.1137/1.9781611977073.73.

5 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Stochastic matching
with few queries: (1-¢) approximation. In STOC, pages 1111-1124. ACM, 2020. doi:10.1145/
3357713.3384340.

6 Avrim Blum, John P. Dickerson, Nika Haghtalab, Ariel D. Procaccia, Tuomas Sandholm, and

Ankit Sharma. Ignorance is almost bliss: Near-optimal stochastic matching with few queries.

Oper. Res., 68(1):16-34, 2020. doi:10.1287/opre.2019.1856.

6:13

ESA 2025

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.17
https://doi.org/10.4230/LIPIcs.ESA.2021.10
https://doi.org/10.1137/1.9781611977073.73
https://doi.org/10.1145/3357713.3384340
https://doi.org/10.1145/3357713.3384340
https://doi.org/10.1287/opre.2019.1856

6:14

On the Complexity of Knapsack Under Explorable Uncertainty

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for geometric
computing with uncertainty. Theory of Computing Systems, 38(4):411-423, 2005. doi:
10.1007/s00224-004-1180-4.

George Charalambous and Michael Hoffmann. Verification problem of maximal points under
uncertainty. In IWOCA 20183, volume 8288 of Lecture Notes in Computer Science, pages
94-105. Springer, 2013. doi:10.1007/978-3-642-45278-9_9.

Shaddin Dughmi, Yusuf Hakan Kalayci, and Neel Patel. On sparsification of stochastic
packing problems. In ICALP, volume 261 of LIPIcs, pages 51:1-51:17. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.51.

T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncertainty. In
D. Kratsch and I. Todinca, editors, WG 2014: International Workshop on Graph-Theoretic
Concepts in Computer Science, volume 8747 of Lecture Notes in Computer Science, pages
164-175. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-319-12340-0_14.

T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for cheapest set
problems under uncertainty. Theoretical Computer Science, 613:51-64, 2016. doi:10.1016/j.
tcs.2015.11.025.

T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihal’ak, and R. Raman. Computing minimum
spanning trees with uncertainty. In STACS’08: 25th International Symposium on Theoretical
Aspects of Computer Science, pages 277—288, 2008. doi:10.48550/arXiv.0802.2855.
Thomas Erlebach, Murilo S. de Lima, Nicole Megow, and Jens Schléter. Sorting and hypergraph
orientation under uncertainty with predictions. In IJCAI, pages 5577-5585. ijcai.org, 2023.
doi:10.24963/ijcai.2023/619.

Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schléter. Learning-
augmented query policies for minimum spanning tree with uncertainty. In ESA, volume
244 of LIPIcs, pages 49:1-49:18. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022.
doi:10.4230/LIPIcs.ESA.2022.49.

T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing shortest
paths with uncertainty. Journal of Algorithms, 62(1):1-18, 2007. doi:10.1016/j.jalgor.
2004.07.005.

T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the me-
dian with uncertainty. SIAM Journal on Computing, 32(2):538-547, 2003. doi:10.1137/
S0097539701395668.

Michel X. Goemans and Jan Vondrak. Covering minimum spanning trees of random subgraphs.
Random Struct. Algorithms, 29(3):257-276, 2006. doi:10.1002/rsa.20115.

Marc Goerigk, Manoj Gupta, Jonas Ide, Anita Schébel, and Sandeep Sen. The robust knapsack
problem with queries. Comput. Oper. Res., 55:12-22, 2015. doi:10.1016/j.cor.2014.09.010.
M. M. Halldérsson and M. S. de Lima. Query-competitive sorting with uncertainty. In MFCS,
volume 138 of LIPIcs, pages 7:1-7:15, 2019. doi:10.4230/LIPIcs.MFCS.2019.7.

S. Kahan. A model for data in motion. In STOC’91: 23rd Annual ACM Symposium on Theory
of Computing, pages 265-277, 1991. doi:10.1145/103418.103449.

Richard M. Karp. Reducibility among combinatorial problems. In Complezity of Computer
Computations, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York,
1972. d0i:10.1007/978-1-4684-2001-2_9.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co.,
Inc., USA, 2005.

Takanori Maehara and Yutaro Yamaguchi. Stochastic packing integer programs
with few queries. Mathematical Programming, 182(1):141-174, 2020. doi:10.1007/
s10107-019-01388-x.

Corinna Mathwieser and Eranda Cela. Special cases of the minimum spanning tree problem
under explorable edge and vertex uncertainty. Networks, 83(3):587-604, 2024. doi:10.1002/
net.22204.

https://doi.org/10.1007/s00224-004-1180-4
https://doi.org/10.1007/s00224-004-1180-4
https://doi.org/10.1007/978-3-642-45278-9_9
https://doi.org/10.4230/LIPIcs.ICALP.2023.51
https://doi.org/10.1007/978-3-319-12340-0_14
https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.48550/arXiv.0802.2855
https://doi.org/10.24963/ijcai.2023/619
https://doi.org/10.4230/LIPIcs.ESA.2022.49
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1002/rsa.20115
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://doi.org/10.1145/103418.103449
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s10107-019-01388-x
https://doi.org/10.1007/s10107-019-01388-x
https://doi.org/10.1002/net.22204
https://doi.org/10.1002/net.22204

J. Schloter

25

26

27

28

29

30

31

32

33

N. Megow, J. Meifiner, and M. Skutella. Randomization helps computing a minimum spanning
tree under uncertainty. SIAM Journal on Computing, 46(4):1217-1240, 2017. doi:10.1137/
16M1088375.

Nicole Megow and Jens Schloter. Set selection under explorable stochastic uncertainty via
covering techniques. In IPCO, volume 13904 of Lecture Notes in Computer Science, pages
319-333. Springer, 2023. doi:10.1007/978-3-031-32726-1_23.

J. Meifiner. Uncertainty FExploration: Algorithms, Competitive Analysis, and Computa-
tional Fxperiments. PhD thesis, Technischen Universitdt Berlin, 2018. doi:10.14279/
depositonce-7327.

Arturo Merino and José A. Soto. The minimum cost query problem on matroids with
uncertainty areas. In ICALP, volume 132 of LIPIcs, pages 83:1-83:14. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.83.

Jens Schloter. On the complexity of knapsack under explorable uncertainty: Hardness and
algorithms, 2025. doi:10.48550/arXiv.2507.02657.

Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-less condensers, unbalanced
expanders, and extractors. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 143—-152, 2001. doi:10.1145/380752.380790.

Christopher Umans. Hardness of approximating sigmazp minimization problems. In FOCS,
pages 465-474. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814619.
Christopher Umans. The minimum equivalent dnf problem and shortest implicants. Journal
of Computer and System Sciences, 63(4):597-611, 2001. doi:10.1006/jcss.2001.1775.

Jan Vondrak. Shortest-path metric approximation for random subgraphs. Random Struct.
Algorithms, 30(1-2):95-104, 2007. doi:10.1002/rsa.20150.

6:15

ESA 2025

https://doi.org/10.1137/16M1088375
https://doi.org/10.1137/16M1088375
https://doi.org/10.1007/978-3-031-32726-1_23
https://doi.org/10.14279/depositonce-7327
https://doi.org/10.14279/depositonce-7327
https://doi.org/10.4230/LIPIcs.ICALP.2019.83
https://doi.org/10.48550/arXiv.2507.02657
https://doi.org/10.1145/380752.380790
https://doi.org/10.1109/SFFCS.1999.814619
https://doi.org/10.1006/jcss.2001.1775
https://doi.org/10.1002/rsa.20150

	1 Introduction
	1.1 Problem Definition
	1.2 Our Results and Outline
	1.3 Further Related Work

	2 Hardness of Approximation
	3 Algorithmic Results
	3.1 The First Subproblem
	3.2 The Second Subprobem: Prefix Problems
	3.3 Combining the Subproblems

	4 Conclusion

