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—— Abstract

We propose an implementation, using the CGAL library, of an algorithm to compute e-nets on

hyperbolic surfaces proposed by Despré, Lanuel and Teillaud [17]. We describe the data structure,
detail the implemented algorithm and report experimental results on hyperbolic surfaces of genus 2.
The implementation differs from the cited algorithm on several aspects. In particular, we use a
different data structure, based on combinatorial maps, to represent a triangulation of a surface. We
explain how to generate fundamental polygons to represent our input hyperbolic surfaces and the
arithmetic issues related to the number type of the coordinates of their vertices.
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1 Introduction

Hyperbolic surfaces are well studied in mathematics since hyperbolic geometry is the natural
geometry on surfaces of genus larger than one [26]. However, there are long standing open
problems that could be experimentally investigated like finding the hyperbolic surface of
genus 3 with the longest systole (i.e., the length of the shortest non-contractible closed
geodesic) or the hyperbolic surface of genus 2 with the smallest diameter.

A few computational tools for hyperbolic surfaces have only been available recently.
Tordanov and Teillaud [28] introduced a package in CGAL [29] to construct Delaunay trian-
gulations with Bowyer’s incremental algorithm [5], only for the Bolza surface, which is the
most symmetric surface of genus two. The authors in [12] proposed an implementation of
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edge flips to transform any triangulation of a closed hyperbolic surface into the Delaunay
triangulation. Their software [13] also generates surfaces of genus 2. The algorithm does not
support insertions of new points.

An e-net (see Section 2.2) is a natural tool to approximate distances on a surface,
therefore it helps to address the aforementioned open problems. Our contribution is the
implementation® of an e-net algorithm proposed in [17] inspired from Shewchuk’s Delaunay
refinement [35]. To the best of our knowledge, it is the first implementation for this problem.

There are two candidate data structures to represent a hyperbolic surface in this context:
one focuses on a fundamental domain in the universal cover [17] and the other considers
the surface as a combinatorial map [12]. We use an enriched version of the data structure
implemented in the CGAL package 2D triangulations on hyperbolic surfaces [13] based on a
combinatorial map.

Our implementation is independent from the genus of the surface. However, the only
tractable surfaces that we can currently generate have genus two. Indeed, except for the
specific case of the Bolza surface mentioned above, which involves algebraic numbers, so
far the only surfaces that are reachable by exact computations are a dense subset of the
set of surfaces of genus two given by a domain with rational coordinates. As mentioned
in [24], even for generalized Bolza surfaces, the representation of fundamental domains with
algebraic numbers in genus higher than two is an obstacle to overcome when implementing.

The algorithm iteratively inserts in the triangulation the circumcenter of a large triangle,
which is a triangle whose circumradius is greater than €. Even though the coordinates of a
circumcenter lie in an algebraic extension of degree two with respect to the coordinates of the
vertices of the triangle, our algorithm only constructs points with exact rational coordinates
that approximate the circumcenters. Consequently, our algorithm only uses exact rational
arithmetic for the construction of the Delaunay triangulation. The final step is to check
that the vertices of this triangulation actually form an e-net in spite of the approximation of
inserted circumcenters; this is the only place where we use algebraic numbers of degree 2.
As explained in Section 7.1, it is very hard to sample the set of hyperbolic surfaces with a
satisfactory distribution in practice. We use the generator introduced by Dubois et al. [12],
which samples a dense subset of the set of surfaces of genus 2 and describes them by rational
points (Section 5). Quite noticeably, a random hyperbolic surface is likely to have a reasonably
long systole, which is actually the case in our experiments, and our final e-net check is always
successful. We observe in [16, Sec 7.3] that for a surface specifically designed to have a very
small systole, the final e-net check may fail, which means that a higher precision on the
rational approximation of the circumcenter would be needed.

The key component of the algorithm, alongside the Delaunay flip part, is the point
location. To insert a point in a triangulation of the surface, we work in the triangulation
lifted in the hyperbolic plane H?, and determine the lift of a triangle containing the point
(Section 2.1). Similar to the Euclidean plane, there are multiple strategies for traversing
the triangulation and locate a point [23]. We tested both the straight and the visibility
walks, which demonstrate comparable efficiency for our purposes. Theorem 1 ensures that
the visibility walk terminates successfully in the context of finite or periodic Delaunay
triangulations of HZ2.

The paper is organized as follows: We discuss point location strategies in triangulations in
H? in Section 3. We detail our data structure in Section 4. The generation of input surfaces
and the related arithmetic issues are introduced in Section 5. Our implemented algorithm is
presented in Section 6. Our experiments are reported in Section 7.

! nttps://github.com/camille-lanuel/ESA_2025_implementation_epsilon_net
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2 Background and Notation

2.1 Hyperbolic Surfaces

We refer the reader to textbooks [9, 2, 7] for more details on topology and hyperbolic
surfaces. In this paper, we use the term hyperbolic surface for a closed (connected, compact,
and without boundary) oriented hyperbolic surface. Such a surface S can be seen as the
quotient of the hyperbolic plane H? under the action of a discrete subgroup I' of the group
of orientation-preserving isometries of H?. The surface S is locally isometric to H? and thus
has constant curvature -1. Note that Hilbert’s theorem prevents to isometrically embed H?
or any hyperbolic surface in R?, thus all our illustrations will be drawn in the Poincaré disk
model. The computation of distances in H? will be detailed in Section 6.2. We denote as g
the genus of S, that is its number of handles, and ¢ its systole which is the length of the
shortest non-contractible closed geodesic.

The action of I on H? induces a projection p : H? — H?/T' = S. For x € S, an element
7 €Tlx:=p 1(x) C H? is called a lift of x. Throughout this paper, objects written with a
tilde ~ are in H? while objects on S are written without.

A fundamental domain for S is a connected subset of H? containing exactly one lift of
every point of S, except on its boundary. The Dirichlet domain Dy of a point beH?is
defined as the closed Voronoi cell of b in the Voronoi diagram of the point set Tb. It is a
fundamental polygon for S: the interiors of two copies of the domain are disjoint, I'D; = H?,
and its boundary is made of geodesic segments called sides. To each side s of Dj, there is a
unique element vs € T', called side pairing, such that v4(s) is also a side. The side pairings
generate I', so that D; and its side pairings determine the metric of the surface.

We work with the Poincaré disk model in which H? is represented by the open unit disk
of C (Figure 1). The geodesics are either diameters of the disk, or circular arcs orthogonal
to the unit circle. Hyperbolic circles are Euclidean circles but their centers do not coincide
in general.

>

J

Figure 1 Geodesics (red) and hyperbolic circles (blue) in the Poincaré disk.

For a triangulation T of S, we note T the infinite periodic triangulation of H? whose
vertices, edges and faces are all lifts of those of T. Conversely, any vertex, edge or face of T
projects on S as a vertex, edge or face of T". The triangulation 7" is a Delaunay triangulation
if T is a Delaunay triangulation of HZ2, that is, no circumcircle of a triangle of T contains a
vertex of T in its interior.
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2.2 e-Nets

Let us recall definitions [8]. Let (X,d) be a metric space and € > 0. A subset P C X is an
e-covering if d(x, P) < € for all x € X, i.e., the closed balls of radius ¢ centered at points
of P cover X. It is an e-packing if d(p,q) > ¢ for all p # q € P, that is, the open balls of
radius £/2 centered at points of P are pairwise disjoint. If P is both an e-covering and an
e-packing, then it is an e-net, also known as an (e, €)-Delone set.

When ¢ < o, we say that S is e-thick. The number of points in an e-packing of a
hyperbolic surface S is upper-bounded by 16(g — 1) (1/e% +1/0?), or 16(g — 1)/e? for an
e-thick surface [17].

2.3 Original Algorithm

Let us summarize the algorithm [17], from which our implementation derives. The algorithm
is inspired by Shewchuk’s Delaunay refinement [35]. It starts with a Delaunay triangulation of
S with a single vertex b. In a nutshell, as long as there is a large triangle in the triangulation,
its circumcenter is inserted and the triangulation is updated (see Figure 2): the triangle in
which the circumcenter lies is first split into three new triangles, then the Delaunay property
is retrieved using edge flips [30, 18]. The set of vertices of the final Delaunay triangulation is
an e-net of S, and all the intermediate sets of vertices are e-packings.

Figure 2 Insertion of a point in a Delaunay triangulation using a flip algorithm.

The algorithm also stores the Dirichlet domain Dj of a lift bofb together with its side
pairings, which can be computed from any fundamental domain for S [14]. The data structure
stores the lift in Dj of each vertex of the triangulation (or one of its lifts if it lies on the
boundary of D;), and for each triangle, the information needed to retrieve its (at most three)
lifts having at least one vertex in Dj.

The most crucial step of the algorithm is the location of the circumcenter ca of a triangle
A in a triangulation of S. To this aim, a lift of ca is located in the lifted triangulation in
H?, as follows. First, the circumcenter ¢ of a lift A of A with at least one vertex in Dj is
computed. The point ca is a lift of ca that does not necessarily lie in Dj;. To locate ¢a, the
algorithm first walks in the tiling I'Dj to find the element v, € I" such that ¢a € 7.Dj;. The
lift ¢, = v.1¢a of ca lying in Dj; can then be computed. Second, the triangle in Dj in which
¢p lies is identified by checking, for each triangle, its (at most three) lifts having at least one
vertex in Dj. It can be shown that the walk in the tiling I'D; traverses a bounded number of
Dirichlet domains. The complexity of the algorithm is bounded by O (N?), where N is the
number of points in the e-net.
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3 Preliminary Result: Walking in a Triangulation in H?

As mentioned above, a crucial step of the algorithm relies on finding a triangle containing
a given point in a triangulation of H? (there is only one such triangle, except for collinear
points). There are two classical algorithms in the Euclidean plane: the straight walk and the
visibility walk [23], which can be adapted to the hyperbolic plane. Both methods find the
triangle containing a query point ¢ in a triangulation starting from a vertex p of a triangle A.
The straight walk visits all triangles along the geodesic segment pg. The algorithm starts by
rotating around p to find a triangle incident to p that has an edge intersecting the geodesic
segment pqg. The visibility walk consists, for each visited triangle not containing ¢, of moving
to a neighbor through an edge € if ¢ and the third vertex of the visited triangle are on
different sides of the geodesic line supporting €.

In the Euclidean case, the visibility walk terminates in a Delaunay triangulation [25] but
it can loop forever in a non-Delaunay triangulation [11]. The following theorem takes care of
the hyperbolic case.

» Theorem 1. The visibility walk terminates in a finite or periodic hyperbolic Delaunay
triangulation.

The proof follows the same logic as in the Euclidean case [22] but it requires a new
definition of the power of a point with respect to a circle, adapted to the hyperbolic case,
which requires to rewrite the details. Due to lack of space, the proof is given in the full
version of this article [16, Sec 3].

4 Data Structure

We enrich the data structure of the CGAL package 2D triangulations on hyperbolic surfaces [13]
based on a combinatorial map. A combinatorial map is an edge-centered data structure
based on darts, which are equivalent to half-edges in our setting [31, 10]. A dart can be seen
as an oriented edge. In dimension 2, each dart has a pointer 5y to access the dart of the next
edge in the same face, and a pointer B3 to access the dart of the same edge in the adjacent
face, as illustrated in Figure 3. Following 81 pointers, we obtain all the darts of a given face.
Following (1 o B2 combinations of pointers, we obtain all the darts of a given vertex.

Figure 3 A dart (bold blue) in a 2D combinatorial map, and its pointers.

In the CGAL package 2D triangulations on hyperbolic surfaces [13], the geometric inform-
ation of a triangulation T is given as a cross-ratio for each edge, which is associated with
darts. The cross-ratio of four pairwise distinct points z1, 29, 23, 24 in the Poincaré disk is

(24 = 25) (25 = 21) € C. Let € = (p,7) be a lift of an edge e and
(74 — 21)(23 — 22)

defined as [z1, 22, 23, 24] =
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q, S be the remaining vertices of the lifted triangles incident to €, such that p,q,r,s are
oriented counter-clockwise. The cross-ratio of e in T is Rr(e) = [p,q,7, 3]. It is invariant
under orientation-preserving isometries, so, the cross-ratio of an edge e can be defined from
any of its lifts. The imaginary part of Rr(e) is positive if and only if § lies in the circumdisk
of the triangle (p, q,7), i.e., if and only if the edge e is Delaunay flippable.

In addition to cross-ratios, the data structure of [13] contains one anchor, which represents
a lift of one triangle in the Poincaré disk. The anchor is composed of a dart representing the
triangle in the combinatorial map, and of the coordinates of the three vertices p, ¢, of a
lift of the triangle. The dart corresponds to the edge (p,q). Knowing a lift of a triangle, its
neighbors can be retrieved using the cross-ratios of its edges: if (p,q,7) and (p,7,s) are two
triangles in H? sharing the edge (p,7), the coordinates of § can be deduced from p, ¢, 7 and
Ry ((p,7)). The anchor can therefore be used to compute a part of T one step at a time, for
example to draw a lift of each triangle of T

Our algorithm (see Section 6) performs computations with lifts of triangles at each step,
in particular to compute a lift of the circumcenter of a triangle and locate it. To have
constant time access to a lift of any triangle, we actually store an anchor for each face of the
triangulation. The three darts of each triangular face are associated with its anchor.

Note that the set of anchors of all faces of T' is not necessarily connected.

Updating the Data Structure

In the e-net algorithm, the data structure is modified by two operations: splitting a triangle
into three new triangles, and flipping an edge.

When splitting a triangle A, we know the lift A= (p,q,T) given by its anchor and the
point s to be inserted in A. The darts of A are kept and three pairs of darts are created
(Figure 4). The pointers 31 and 2 of all these darts are set or updated to create the three
new triangles in the combinatorial map. We create three new anchors corresponding to the
new triangles (p, q,s), (¢,7,S) and (7,p, $) and associate them to the darts of their respective
triangles. The cross-ratios of the three new edges are computed from the coordinates of
D,q,7, and 5. The cross-ratios of the edges (p,q), (¢,7), and (r,p) must be updated. For
the edge (p, q), for instance, we use its non-updated cross-ratio and the vertices p, ¢ and 7
to compute the coordinates of a lift of the third vertex of its neighboring incident triangle.
This step is mandatory because the anchor associated with the adjacent triangle in the
combinatorial map may store a non-adjacent lift in H?. The new value of the cross-ratio can
then be computed.

Figure 4 Splitting a triangular face in three in the combinatorial map, new darts are in blue.

To flip an edge, we use the CGAL package [13], which modifies the ;1 pointers and updates
the cross-ratios [12]. We still need to update the anchors. To do so, we get the coordinates
of the points stored in the anchor of a dart § of the edge being flipped. We call them p, q, T,
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in such a way that the edge (7,p) is represented by J in the combinatorial map. Using the
cross-ratio of that edge, we compute the coordinates of 5, the third vertex of the other lifted
triangle sharing the edge (7,p) (Figure 5). We then create two new anchors corresponding to
the lifts of the triangles obtained after the flip, (¢, s, p) and (g, 3,7) and we associate them to
the darts of their respective triangles.

S

Figure 5 A flip. No darts are added or removed, only adjacencies are modified.

Note that, though these operations remove triangles and create new ones, darts are added
but never removed in the data structure.

5 Generation of Input Surfaces

The input of our algorithm is a Delaunay triangulation of a surface with a single vertex. It is
constructed from a fundamental domain with all its vertices in H? projecting to the same
point on the surface. We now explain how to generate such fundamental domains and the
arithmetic issues related to the number type of the coordinates of its vertices.

The Teichmiiller space 7y, the space of all hyperbolic surfaces of genus g, can be para-
meterized for instance from a pants decomposition (Fenchel-Nielsen coordinates) [7, § 1.7],
its group of isometries (Fricke coordinates) [27, § 2.5, or by a fundamental polygon in H? [7,
§ 6]. Since we aim at computing a triangulation in H?, starting from a fundamental polygon
is the right choice to avoid the use of hyperbolic trigonometric functions. Our algorithm
relies on computations of cross-ratios and points in H?. There is no point in computing with
float or double number types, as this is notoriously unstable.? Previous work showed that
Delaunay triangulations can be computed on the Bolza surface, represented by a fundamental
polygon with very specific algebraic numbers [28, 29]. Even when computing the Delaunay
triangulation of points with rational coordinates, the group of the surface leads to algebraic
numbers. In practice, algebraic numbers are handled with the CORE library [20] but this
approach was shown to fail for generalized Bolza surfaces, already for genus 3 [24].

We now detail a way to generate and compute with generic surfaces of genus 2. Any
genus 2 surface has a fundamental domain that is a symmetric octagon centered at the
origin [1]. More precisely, three points are first chosen in the upper half of the Poincaré disk.
Then a fourth point is computed so that the octagon formed by these four points and the
four symmetric points with respect to the origin is a fundamental domain. The Teichmiiller
space 75 is thus parameterized by three complex numbers. Restricting to complex numbers
with rational real and imaginary parts gives a dense subset of the Teichmiiller space T3 [12].
This means that for any genus 2 surface, we can work on an arbitrary close surface given

2 https://www.cgal.org/exact.html
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by a fundamental domain whose vertices have rational coordinates. This allows us to only
use exact rational computations for constructing an e-net (see Section 6.2) and algebraic
extensions of degree 2 to check its correctness (see Section 6.4).

A Delaunay triangulation of this octagon is computed as in the CGAL package [13, 12]: the
eight vertices of the domain actually project on a same point on the surface, which we denote
as b. Triangulating this convex octagon in an arbitrary way gives a triangulation of the
surface with one vertex. The next step is to compute the cross-ratios of all edges. Then the
Delaunay triangulation is computed using flips. The data structure of the CGAL package [13]
is a combinatorial map with a cross-ratio on each edge, and one anchor. To generate the
input for our e-net algorithm, we only have to add an anchor for each face of the triangulation.
Since the initial triangulation has only one vertex and six faces, the remaining anchors are
computed (and associated with the darts of their respective faces) using cross-ratios, by
successively computing lifts of adjacent triangles, as detailed in Section 4.

For higher genus surfaces, a construction of fundamental polygons is described in [36,
§ 6.11], but unfortunately it is not clearly leading to tractable numbers. We are investigating
how polygons with rational coordinates could be generated since in such a case our algorithm
will have the same robustness properties as those we illustrate in genus 2.

6 The Implemented Algorithm

The data structure is implemented in Anchored_hyperbolic_surface_triangulation_2,
a class inherited from the CGAL class Triangulation_on_hyperbolic_surface_2 [13]. The
algorithm to compute an e-net is implemented in the epsilon_net (epsilon) method. It
maintains a Delaunay triangulation and iteratively inserts circumcenters of large triangles.
We first detail our processing of large triangles aiming at minimizing the number of compu-
tations of circumcenters (Section 6.1). We then detail the largeness test, the representation
of coordinates of points in H? by exact rational numbers and the possible issues of the
approximation of circumcenters (Section 6.2). The point location is detailed in Section 6.3.
Finally, we explain how to certify that the set of vertices of the output triangulation is an
e-net using exact computation in degree two algebraic extensions (Section 6.4).

6.1 Additional Data Structure

At each step of the algorithm, a large triangle is considered. In the original algorithm, all
triangles of the current triangulation are checked until a large one is found. Consequently, all
triangles that are not affected by an insertion will be checked again for the next insertion. This
choice has no effect on the theoretical complexity of the algorithm, but it is time-consuming
in practice. Instead, we maintain a list of triangles to be processed by the algorithm. We
ran experiments to guide our choice towards an effective way of maintaining this list. The
details of these experiments can be found in [16, App A]. The results show that any attempt
to maintain the list using criteria involving circumradii, like storing only large triangles or
ordering them according to their circumradius, is highly inefficient.

More precisely, we maintain a list £ of darts representing the triangles to be processed.
The only operations on the list are: pop the front dart, and push new darts to the back.
Each dart has a mark represented by a Boolean and we maintain the property that each
triangle represented in £ has exactly one marked dart; A triangle can have several darts
in £, but only one is marked. The computation of a circumradius is only performed when
a marked dart is popped from the front. The list is initialized with one marked dart for
each triangle of the input triangulation. Remark that for a reasonable choice of ¢, all these
triangles are large.
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When a dart is popped out from L, if it is marked, we unmark it and the circumradius
of the triangle it represents is computed. If the triangle is large, its circumcenter splits the
triangle containing it as detailed in Section 4, and one dart is marked and pushed to the
back of L for each of the three new triangles. Darts are added to £ without checking the size
of the circumradius of the corresponding triangle and without checking if it is a Delaunay
triangle. The Delaunay property is restored using the flip algorithm described in [12] and
implemented in [13]. After a flip, in each of the two new triangles, we maintain the property
that only one dart is marked. Indeed, such a new triangle may have 0, 1 or 2 marked darts
(Figure 6). If it has none, then we mark one and push it to the back of £; if it has two, then
we leave them in £ and unmark one; otherwise there is nothing to do.

~— A

Figure 6 Case when triangles created by a flip have one or two marked darts.

When a non-marked dart is popped out from £, then nothing is done: it means that the
triangle it belongs to is represented by another marked dart in L.

The algorithm proceeds with the new front dart until £ is empty. Note that in practice,
since darts representing new triangles are always pushed at the end of £, large triangles tend
to be close to the front and are processed before triangles with smaller circumradii.

Remark that no element of £ is ever removed from the list, except at the front. As
explained in Section 4, when a triangle disappears from the triangulation, its darts stay in
the data structure, but their 8; pointers are modified. So, it can be the case that a dart
represented a large triangle when it was inserted in £, but it represents a triangle whose
circumradius is not greater than £ when it comes to the front of L.

6.2 Circumcenters and Circumradii

When a marked dart is popped out from L, the circumcenter of a lift of the triangle represented
by the dart is first constructed in order to compute its circumradius. The lifted triangle is
the one stored in the anchor associated to the dart. The coordinates of a circumcenter of
three vertices with rational coordinates are algebraic numbers of degree two [4]. When it is
inserted in the triangulation, a circumcenter becomes a vertex. Handling exact circumcenters
would thus lead to cascading the algebraic degrees of coordinates, which would result in
computations that are known to be impossible to handle in practice.

The coordinates of the circumcenter ca of a triangle A are represented by the type
CGAL: :Sqrt_extension, which handles algebraic numbers of degree two. We do not insert
the point ¢a but a rational approximation denoted ¢. We round each coordinate of ca to a
double precision number using the to_double () method of CGAL and convert it to an exact
rational type. More specifically, coordinates of all vertices of our triangulation are represented
by the CGAL: :Exact_rational number type, which is a wrapper for the arbitrary-precision
rational type mpq_t provided by GMP [21]. All the computations on our data structure are

61:9
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performed using this CGAL: :Exact_rational number type for points and cross-ratios. Note
that the bitsize of the rationals encoding an inserted point is bounded whereas the bitsize of
the rationals encoding a cross-ratio grows when it is updated during a flip.

Let us detail the computation of the largeness test for triangles that we use to avoid
as much as possible the use of hyperbolic trigonometric functions. In the Poincaré disk,
the distance between two points @ and v is dy2 (@, v) = arcosh(1 + A(w,v)), where A(u,v) =

2|u — o]
(1 —[[al[*)(X — [[v][*)
between the approximate circumcenter ¢ and the three vertices of the anchor. If it is greater
than a certified upper bound of cosh(e) — 1, then we consider the triangle large and insert
¢ in the triangulation. The certified upper bound on cosh(e) is computed with the Boost
interval library [19]. Due to approximations for the computation of ¢, this process may miss
a large triangle and thus does not enforce the e-covering property. Similarly, even if the
point ¢ that is inserted into the triangulation is at distance at most £ from the vertices of its

and || - || is the Euclidean distance. We compute the minimum A

triangle, it may be at distance smaller than € from another vertex of the triangulation. We
will check these properties in the final step of the algorithm (Section 6.4).

6.3 Point Location

— |

>

D\

~

Pa

Figure 7 A fundamental domain of the surface is given by the anchors of the triangles (thick black
lines). The blue triangles are the lifts constructed by the visibility walk to reach the approximate
circumcenter ¢ of A. Triangles A} and A) are the lifts of A; and Az in the domain.

Our implementation maintains a Delaunay triangulation of S using the data structure
presented in Section 4. Each point to be inserted is located in this triangulation by locating a
lift in the lifted triangulation. We do not store a Dirichlet domain as in the original algorithm
(Section 2.3), but instead directly walk in the current triangulation itself.

We tested two walk algorithms: the straight walk and the visibility walk (Figure 7)
mentioned in Section 3. In our case, the query point ¢ is the approximate circumcenter of
the lifted triangle A given by the anchor of the triangle A being processed by the algorithm.
The walk starts from a vertex p of the triangle A. Lifts of triangles must be constructed
along the walk to find the lifted triangle containing ¢.

Both walks are based on orientation tests in H? with vertices of lifted triangles. The
combinatorial map encoding the triangulation provides a direct access to the neighbor A/
of the triangle A adjacent through one of its edges. However, the lift A’ of this triangle
given by its anchor may not be adjacent to the lift A. The lift of A" that is adjacent to A is
computed from the vertices of A and the cross-ratio of the common edge as explained in
Section 4.
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Running the epsilon_net method with both walks shows that they perform equivalently
(see [16, App BJ): the running time of the method remains the same, and they compute a
similar number of lifts. The visibility walk does not have to handle the degenerate cases of
the straight walk, which may go through a vertex or along an edge; we therefore choose the
visibility walk. The bound on the length of the straight walk for the original algorithm, using
Dirichlet domains, does not apply to the visibility walk. However we observe in Section 7.2
that the walk has constant length in practice.

6.4 e-Covering and e-Packing Checks

As explained in Section 6.2, our algorithm is robust in the sense that the output triangulation
is the Delaunay triangulation of a set of points with rational coordinates. On the other hand,

the vertices of this triangulation may not be an e-net, due to approximations of circumcenters.

To check the e-covering property, it is sufficient to check that there is no large triangle. For
every triangle A, we compute the exact circumcenter ca of its anchor, which has coordinates
in a degree two algebraic extension, using the number type CGAL: :Sqrt_extension. We
then compute A(ca,¥) with the same type (see Section 6.2) for a vertex v of the triangle,
and check that it is less than a certified lower bound on cosh(g) — 1. To check the e-packing
property, it is sufficient to check that all Delaunay edges are longer than €. Since all vertices
have rational coordinates, the value A(v;,v;) for two vertices of an edge is rational and it is
checked to be larger than the upper bound on cosh(g) — 1 computed with the Boost interval
library [19]. When these tests succeed, the vertices of the output triangulation are then
certified to be an e-net of the surface. Otherwise, the failure of these tests means that the
double precision used for the approximation of circumcenters was not enough.

Our experiments presented in Section 7 show that for surfaces with a long systole, which
is the most common case (see Section 7.1), our algorithm is successful. Using a double
precision to set the rational coordinates of approximate circumcenters and to compute the
bounds on cosh(g) — 1 actually constructs valid e-nets. On the other hand, we also observe
in the full version of this article [16, Sec 7.3] that higher precision would be needed to handle
a surface with a very small systole.

Our future work will focus on certifying the largeness test for triangles and check the
e-packing property after each insertion. If the e-packing check fails, this means that the
inserted point was not a good enough approximation of the circumcenter and iteratively
refining it (which is possible via the cGAL Algebraic Kernel [3]) would eventually recover
the e-packing property. Note that iterative refinement of the rational bounds on cosh(e) — 1
must also be computed (which is possible via the Boost library).

7 Experiments

All the experiments of Section 7.2 are performed on 180 random surfaces of genus 2 generated
as explained in Section 5 by uniformly choosing, for the Euclidean distance, three points in
the upper half of the Poincaré disk. As explained in Section 7.1, these surfaces are expected
to have a long systole. Experiments show that 173 of these surfaces have a systole greater
than 0.5, while the 7 others have a systole greater than 0.21. See the full version [16, Sec
7.2] for details. Section 7.3 displays and analyzes visualizations of the output.

The source code and complete data of the experiments are available on GitHub 3.

3 https://github.com/camille-lanuel/ESA_2025_implementation_epsilon_net
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7.1 Distribution of Input Surfaces

To experiment with an algorithm in practice, it is important to sample the space of possible
input with some distribution. We discuss this issue below and explain why our random
generator of surfaces is likely to produce surfaces with long systole.

Well-Distributed Surfaces?

The situation was nicely described by Mirzakhani [32] (though there are more recent res-
ults [33]). We just give a flavor here. The moduli space M, is the set of all hyperbolic
surfaces of genus g. It can be equipped by two natural metrics: the Teichmiiller distance
and the Weil-Petersson one. Roughly speaking, they measure the deformation between two
hyperbolic metrics: the first one considers the supremum and the second the average. Ideally,
we would like to obtain a uniform sampling of Mg, for any of the two metrics. However,
today’s mathematical literature does not answer this question. The first problem is that
there is no known parameterization of My, so, we can only work with a parameterization
of its universal cover, the Teichmiiller space 7, i.e., the set of so-called marked hyperbolic
surfaces. Indeed, in 7y, as opposed to in My, applying a non-identity homeomorphism to a
hyperbolic surface gives a different element in 7,: the moduli space M, is the quotient of 7,
by the mapping class group Mod,, which is the group of homeomorphisms of the topological
surface of genus g. Unfortunately, the known parameterizations of 7, are not invariant under
the action of Mod,, which is the main reason why sampling M, is so intricate. It is not
clear how to describe a fundamental domain of M, in 7, in any parameterization of 7,. As
of today, the best that can be done is to sample a parameterization of 7, being aware that
this does not lead to a good distribution on M,.

For completeness, we mention that there are other ways of constructing random surfaces
in theory, by randomly gluing hyperbolic ideal triangles together [6, 34]. However, these
methods rely on a compactification of the obtained cusped surfaces, which, roughly speaking,
boils down to a conformal uniformization of the metric. This process is obviously very far
from yielding a practical construction. Additionally, those approaches lead to surfaces with
huge genus (typically, several thousands), which cannot be manipulated in practice.

Systole of random surfaces

Remark that M, is not a compact set, as a surface can have an arbitrarily small systole:
Indeed, in any compact subset of M, the systole function sys(-) is bounded. Mirzakhani
showed that small systoles are somewhat rare in M,: the probability to obtain a surface
with a systole smaller than some oy > 0 using a uniform distribution (for the Weil-Petersson
point of view) is of the order of o2. This means that the typical case is a surface with a
reasonably long systole. It is the case for the random surfaces that we generated, as explained
in Section 5. For completeness, we also specifically design a surface with a small systole and
experimentally observe the impact in the full version of this article [16, Sec 7.3].

7.2 Main Results

For each of the 180 random surfaces, an input for the e-net algorithm is computed as a single
vertex Delaunay triangulation of the surface, as explained in Section 5. The epsilon_net
method is run with 50 values of € on every input, decreasing from 0.5 to 0.01 with a step of
0.01. Table 1 presents an overview of the results.
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We first observe that the number of vertices in the computed e-nets is close to the
theoretical upper bound for an e-thick surface, which is 16(g — 1)/e? = 16/ (g = 2 for
all surfaces of the experiments). In proportion, the number of vertices is 54% of the upper
bound on average, with a standard deviation of 2%. The minimum is 47% and the maximum
is 63% over all tested surfaces and values of ¢.

Table 1 Average number of vertices of the e-nets.

€| 050 0.40 0.30 0.20 0.10 0.05 0.01
Avg. # of vertices 34 54 96 216 865 3,454 86,314
16/¢? 64 100 178 400 1,600 6,400 160,000

Even though, as in the Euclidean case [23], we have no complexity analysis of the visibility
walk for the point location, we observe that the walk traverses a (small) constant number of
triangles. The walk locates the approximate circumcenter of a triangle in H?, starting from
this triangle. The average number of computed lifted triangles during each walk tends to
decrease when ¢ becomes smaller, while the average proportion of approximate circumcenters
located in their own triangle tends to increase, as shown in Figure 8. On average, 68% of the
approximate circumcenters lie in their triangle. Over all surfaces and all tested values of ¢,
the farthest located points were 4 triangles away from the starting triangle of the walk.

035 69

0.34
68

Computed lifts per insertion

% of points in the starting triangle

0.33
67
0.32
! ! ! ! ] 66
0 0.1 0.2 0.3 0.4 0.5

3

Figure 8 Average number of computed lifted triangles in the walk at each locate query (left,
solid), and average percentage of points lying in the initial lifted triangle of the walk (right, dashed).

We counted the number of flips done to restore the Delaunay property of the triangulation
after each split. On average, it decreases when € becomes smaller, going from 3.41 for € = 0.5
to 2.41 for e = 0.01, as shown in Figure 9. This shows that the number of flips at each
insertion is a small constant in practice. The total number of flips is thus, in practice, linear
in the number of points, which is in contrast with the theoretical quadratic bound (see
Section 2.3).

In the full version of this article [16, App C], we show an order of magnitude for the
running times to give an idea of the practical complexity of our implementation. It appears
to be slightly faster than quadratic in 1/e.
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Number of flips per insertion

| | | |
0 0.1 0.2 0.3 0.4 0.5
9

Figure 9 Average number of flips done to recover the Delaunay property after each insertion.

7.3 Visualization of the Output

To visualize an e-net, we draw a fundamental domain of the surface in the Poincaré disk
using its Delaunay triangulation. To do so, it suffices to draw a lift of each triangle in a
connected way. We cannot just use the anchors since they would generally not lead to a
connected domain. So, we access the anchor of a chosen triangle and build lifts of the other
triangles starting from this initial anchor as explained in Section 4. As objects appear smaller
near the boundary of the Poincaré disk, we center the drawing at the origin to be able to
observe the details. To achieve this, we translate the vertices of the initial anchor such that
one of them is 0 before computing the rest of the drawing. If we want similar drawings when
running the e-net algorithm with different values of € on a given surface, we always use an
anchor having a fixed lift b of b, the unique vertex of the input triangulation (Section 5), as
the initial anchor; we then apply the translation that translates b to 0.

In Figures 10 and 11, the drawings are computed by the lift method of the CGAL package
2D triangulations on hyperbolic surfaces [13], which uses a weight on edges to order the lifts
of triangles of the triangulation T of S. The weight of an edge (Z,9) is defined as |z|? + |g|?
(| - | being the complex modulus). The drawing is then iteratively computed: given T” the set
of triangles that have been lifted, the next triangle to be lifted is the one in 7'\ T that is
incident to the edge of least weight in T”.

Figure 10 shows the obtained Delaunay triangulation of the surface with a small systole
studied in the full version of this article [16, Sec 7.3]. Since the systole is very small, there is
a very long collar around the shortest non-contractible closed curve.

The drawings of triangulations shown in Figure 11 naturally look like Dirichlet domains
since the weights on the edges ensure that the lifts of triangles entirely contained in Dj,
the Dirichlet domain of Z, are drawn. This becomes clear when b is translated to the origin
(Figure 12). Since the input of the e-net algorithm is a Delaunay triangulation with the single
vertex b, we obtain Dj by computing the circumcenter of all the lifted triangles incident to b
in the input triangulation, before running the e-net algorithm.
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Figure 10 Delaunay triangulation of the computed 0.25-net of the surface with a small systole
of [16, Sec 7.3]. Left: Drawing centered at a vertex in the long collar. Right: Drawing centered
outside the collar, which appears in the form of “horns” pointing towards the boundary of the

Poincaré disk.

Figure 11 Delaunay triangulations of the computed e-nets for e=0.5 (left), e=0.1 (middle),
€=0.05 (right) on the surfaces of seed 123 (top) and 321 (bottom).

An alternative drawing is obtained by ordering the lifts of the triangles around the initial
anchor following a Breadth First Search (BFS) algorithm on the adjacency graph. Such
a drawing represents a combinatorial Dirichlet domain (see Figure 13). We observe that,
when € decreases, the combinatorial Dirichlet domain fits the Dirichlet domain Dj better.
Formalizing this convergence is an interesting open question.

ESA 2025
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Figure 12 Delaunay triangulations of a 0.5-net (left) and a 0.05-net (right) of the surface of seed

123, and the corresponding Dirichlet domain. Lift computed with the CGAL package [13].

Figure 13 Delaunay triangulations of a 0.5-net (left) and a 0.05-net (right) of the surface of seed

123, and the corresponding Dirichlet domain. Lift computed with a BFS algorithm.
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