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Abstract
In a seminal work, Chierichetti et al. [20] introduced the (t, k)-fair clustering problem: Given a set
of red points and a set of blue points in a metric space, a clustering is called fair if the number
of red points in each cluster is at most t times and at least 1/t times the number of blue points
in that cluster. The goal is to compute a fair clustering with at most k clusters that optimizes
certain objective function. Considering this problem, they designed a polynomial-time O(1)- and
O(t)-approximation for the k-center and the k-median objective, respectively. Recently, Carta et
al. [15] studied this problem with the sum-of-radii objective and obtained a (6 + ϵ)-approximation
with running time O((k log1+ϵ(k/ϵ))knO(1)), i.e., fixed-parameter tractable in k. Here n is the input
size. In this work, we design the first polynomial-time O(1)-approximation for (t, k)-fair clustering
with the sum-of-radii objective, improving the result of Carta et al. Our result places sum-of-radii
in the same group of objectives as k-center, that admit polynomial-time O(1)-approximations.
This result also implies a polynomial-time O(1)-approximation for the Euclidean version of the
problem, for which an f(k) · nO(1)-time (1 + ϵ)-approximation was known due to Drexler et al. [24].
Here f is an exponential function of k. We are also able to extend our result to any arbitrary
ℓ ≥ 2 number of colors when t = 1. This matches known results for the k-center and k-median
objectives in this case. The significant disparity of sum-of-radii compared to k-center and k-median
presents several complex challenges, all of which we successfully overcome in our work. Our main
contribution is a novel cluster-merging-based analysis technique for sum-of-radii that helps us achieve
the constant-approximation bounds.
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1 Introduction

Given a set of points P in a metric space (Ω, d) and an integer k > 0, the task of clustering
is to find a partition X1, . . . , Xk of P into k groups or clusters such that each group has
similar points. The similarity of the clusters is typically modeled using an objective function
which is to be minimized. In this work, we focus on the sum-of-radii objective, which is
defined as the sum of the radii of k balls that contain the points of the respective k clusters.
The sum-of-radii objective, while also center-based, has a different flavor from objectives
such as k-center, k-median, and k-means, as it directly sums the radii of the clusters rather
than measuring distances from each point to its assigned center. In these objectives, k

representative points (or cluster centers) are chosen, and the corresponding clusters are
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formed by assigning the points of P to their nearest centers. Such a partition is popularly
known as the Voronoi partition. It is not hard to see that an optimal sum-of-radii clustering
is not necessarily a Voronoi partition. The study of sum-of-radii was motivated by the idea
that it could reduce the so-called dissection effect that is observed in k-center type objectives
(see attached full version for details).

Sum-of-radii clustering is known to be NP-hard even in planar metrics and metrics of
constant doubling dimension [30]. Consequently, it has received substantial attention from the
approximation algorithms community. Charikar and Panigrahy [16] designed a Primal-Dual
and Lagrangian-relaxation-based 3.504-approximation algorithm that runs in polynomial
time (poly-time). Recently, using similar techniques, Friggstad and Jamshidian [26] improved
the approximation factor to 3.389. The best-known approximation factor for sum-of-radii
in polynomial time is 3 + ϵ for any ϵ > 0, due to Buchem et al. [14]. In stark contrast to
other well-studied center-based objectives such as k-center and k-median, the sum-of-radii
objective admits a QPTAS [30], which is based on a randomized metric partitioning scheme.
Additionally, the problem can be solved exactly in polynomial time in the Euclidean metric
of constant dimension [31]. The problem also admits polynomial time exact algorithms in
other restricted settings, such as when singleton clusters are not allowed [9] and the metric is
unweighted [33].

In recent years, sum-of-radii clustering has also been studied with additional constraints.
One such popular constraint is the capacity constraint, which puts restriction on the number of
points that each cluster can contain. In a series of articles [35, 8, 36, 25], O(1)-approximation
algorithms have been designed for capacitated sum-of-radii with running time fixed-parameter
tractable (FPT) in k (i.e., f(k) ·nO(1) for a function f of k), culminating in an approximation
factor of 3. Inamdar and Varadarajan [35] studied sum-of-radii with a matroid constraint
where the set of centers of the balls must be an independent set of a matroid. They obtain
an FPT 9-approximation for this problem. The approximation factor has recently been
improved to 3 by Chen et al. [18]. Obtaining a poly-time O(1)-approximation for any of these
constrained versions is an interesting open question. However, poly-time O(1)-approximations
are known for sum-of-radii with lower bounds and with outliers [3, 14].

Sum-of-radii has also been studied with fairness constraints, which is the main focus of our
work. Clustering with fairness constraints or fair clustering stems from the idea that protected
groups (defined based on a sensitive feature, e.g., gender) must be well-represented in each
cluster. In recent years, fair clustering has received significant attention from researchers
across several areas of computer science. In a seminal work, Chierichetti et al. [20] introduced
the (t, k)-fair clustering problem. In this problem, we are given a set P1 of red points, a set
P2 of blue points, that together contain n points, and an integer balance parameter t ≥ 1. A
clustering is called (t, k)-fair if, for any cluster X, the number of red points in X is at least
1/t times and at most t times the number of blue points in X. We say that each cluster in a
(t, k)-fair clustering is t-balanced.

Chierichetti et al. studied (t, k)-fair clustering with k-center and k-median objectives,
and obtained poly-time 4- and O(t)-approximation, respectively. Since then obtaining a
poly-time O(1)-approximation for (t, k)-fair median or means remained an intriguing open
question. The main challenge in this case is that the optimal clusterings are no longer
Voronoi partitions, as they also need to be (t, k)-fair. Subsequently, (t, k)-fair median/means
has been studied in a plethora of works. The only setting where it is known to obtain a
poly-time O(1)-approximation is when t = 1 [12], that is for (1, k)-fair median/means. These
problems have also been considered in the Euclidean case [46, 5].
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The (t, k)-fair median/means problem has also been studied with an arbitrary ℓ number of
groups. The algorithm of Böhm et al. [12] for t = 1 also yields a poly-time O(1)-approximation
in this case. Note that for t = 1, a cluster contains the same number of points from all groups.
Bandyapadhyay et al. [6] obtained a poly-time approximation for (t, k)-fair median with a
factor that depends on t, ℓ, and k. Bercea et al. [11] and Bera et al. [10] independently defined
a generalization of (t, k)-fair clustering. There we are given balance parameters αi, βi ∈ [0, 1]
for each group 1 ≤ i ≤ ℓ. A clustering is called fair representational if the fraction of points
from group i in every cluster is at least αi and at most βi for all 1 ≤ i ≤ ℓ. They show that
it is possible to obtain poly-time bi-criteria type O(1)-approximations where we are allowed
to violate the fairness constraints by an additive small constant factor. Subsequently, Dai
et al. [23] designed a DP-based poly-time O(log k)-approximation for this problem. For ℓ

groups, their running time is nO(l).
Carta et al. [15] studied fair versions of sum-of-radii. In particular, they study a more

general class of mergeable constraints. A clustering constraint is called mergeable if the
union of two clusters satisfying the constraint also satisfies the constraint. They show that
the fairness constraints defined in (t, k)-fair clustering and fair representational clustering
are mergeable. In their work, they obtained a (6 + ϵ)-approximation for sum-of-radii with
mergeable constraints. In particular, for the above two fairness constraints, their run time is
O((k log1+ϵ(k/ϵ))knO(1)), so FPT in k. The algorithm iteratively guesses the next cluster
based on a k-center completion problem leading to the FPT run time. Their approximation
factor improves to 3+ϵ when t = 1. Drexler et al. [24] obtained an FPT (1+ϵ)-approximation
for Euclidean sum-of-radii with mergeable constraints. Chen et al. [18] studied a fair version,
which is a special case of matroid sum-of-radii, and hence obtained an FPT 3-approximation.
A summary of the results on fair clustering under various objectives is provided in Table 1.

As mentioned before, for fair representational models, only bi-criteria type O(1)-approxi-
mations are known for k-center/median/means, even with two groups. As we focus on our
theoretical quest of designing poly-time O(1)-approximations fully satisfying the fairness
constraints, we study (t, k)-fair sum-of-radii. In light of the above discussion, we state the
following two questions.

Question 1: Does (t, k)-fair sum-of-radii (with two groups) admit a poly-time
constant-approximation algorithm?

Question 2: Does (1, k)-fair sum-of-radii with an arbitrary ℓ ≥ 2 number of groups
admit a poly-time constant-approximation algorithm?

After the work of Chierichetti et al. [20], several other notions of fairness have been
considered in the context of clustering problems. The following is a sample of these works
grouped by the fairness notions: individual fairness [38, 43, 47, 13, 1], proportional fairness [19,
42], fair center representation [17, 40, 39, 21, 34], colorful [7, 37, 4], and min-max fairness [2,
28, 41, 22, 29, 32].

1.1 Our Contributions and Techniques

In our work, we prove two theorems resolving Questions 1 and 2 in the affirmative. First, we
prove the following theorem.

ESA 2025



62:4 Polynomial-Time Constant-Approximation for Fair Sum-Of-Radii Clustering

Table 1 Summary of approximation results for fair clustering under various objectives. “Poly”
denotes polynomial time; “FPT” denotes fixed-parameter tractable in k; ℓ is the number of groups.

Objective Fairness Type Approximation Time Reference
k-Center (t, k) (2 groups) 4 Poly [20]
k-Median (t, k) (2 groups) O(t) Poly [20]
k-Median (1, k) (ℓ groups) O(1) Poly [12]
k-Median (t, k) (ℓ groups) f(t, ℓ, k) Poly [6]
k-Median / Center Representational (bi-criteria) O(1) Poly [10, 11]
Sum-of-Radii Unconstrained 3 + ε Poly [14]
Sum-of-Radii Capacitated 3 FPT [25]
Sum-of-Radii Matroid constraint 3 FPT [18]
Sum-of-Radii (t, k) (2 groups) 6 + ε FPT [15]
Sum-of-Radii (1, k) (ℓ groups) 3 + ε FPT [15]
Sum-of-Radii (t, k) (2 groups) 144 + ε Poly This work
Sum-of-Radii (1, k) (ℓ groups) 180 + ε Poly This work

▶ Theorem 1. There is a polynomial-time (144 + ϵ)-approximation algorithm for (t, k)-fair
sum-of-radii (with two groups).

Our result complements the FPT approximation result of Carta et al. [15] by achieving
the first O(1)-approximation for the problem in polynomial time. The result also implies a
poly-time O(1)-approximation for Euclidean (t, k)-fair sum-of-radii, for which only an FPT
(1 + ϵ)-approximation was known [24]. We note that our result should also be compared with
that of (t, k)-fair k-median for which only O(t)-approximation is known in polynomial time.
In particular, our result places sum-of-radii in the same group of objectives as k-center that
admits polynomial-time O(1)-approximations. Moreover, our result shows that (t, k)-fair
sum-of-radii is in contrast to most of the constrained versions of sum-of-radii, including
capacitated clustering, for which only FPT O(1)-approximations are known.

Next, we give an overview of our approach. Our approximation algorithm is motivated
by the algorithms for (t, k)-fair center and (t, k)-fair median [20]. These algorithms have two
major steps. In the first step, a fairlet decomposition of the points in X = P1 ∪P2 is computed,
i.e., a partition Y = {Y1, . . . , Ym} such that for each fairlet Yi, it either has 1 red point and
at most t blue points or 1 blue point and at most t red points. Let β : P1 ∪ P2 → [m] be the
function that maps each point x to the index of the fairlet that contains x. From each Yi, an
arbitrary point yi is designated as its representative. In the second step, a clustering of these
m representatives is computed with the respective cost function. Also, for each Yi, all of its
points are assigned to the cluster that contains yi. The new clustering is obviously (t, k)-fair,
as each cluster is a merger of fairlets. For the analysis of the cost of the computed clustering,
they define a fairlet decomposition cost, which is used to bound the assignment cost of the
points in the second step. For k-center, this cost is maxx∈X d(x, yβ(x)), and for k-median, it
is

∑
x∈X d(x, yβ(x)). Indeed, both of these costs when optimal are comparable to the optimal

(t, k)-fair clustering cost. For k-center, it is within a constant factor, and for k-median it is
within an O(t) factor. Then, it is sufficient to compute a fairlet decomposition in the first
step whose cost is within a small constant-factor of the optimal fairlet decomposition cost.

Coming back to (t, k)-fair sum-of-radii, it is not clear how to define a suitable fairlet
decomposition cost that can be compared to the optimal (t, k)-fair sum-of-radii cost. In
particular, such a cost needs to be defined independent of the number of clusters k. However,
for sum-of-radii, the objective is the sum of radii of k clusters. For example, a natural
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candidate, the cost for k-median, i.e.,
∑

x∈X d(x, yβ(x)), is likely to be much larger than the
optimal sum-of-radii cost. In the absence of such a suitable fairlet decomposition cost, it is
difficult to argue the increase in the assignment cost, when actual points of Yi are assigned
instead of just the representative yi.

Our approach. Our algorithm is surprisingly simple to state. We first compute a complete
bi-partite graph G with P1 and P2 being the two parts. The weight of each edge is set to be
the distance between the two corresponding endpoints. Subsequently, a degree-constrained,
spanning subgraph of this graph is computed where each vertex has a degree in range [1, t],
and the sum of the weights of the edges is minimized. Such an optimal subgraph can be
computed in polynomial time using the algorithm of Gabow [27]. Moreover, one can show
that such a subgraph is a collection of stars each having at most t edges. Thus, our algorithm
up to this point is in a similar spirit to that of k-median. As we argued before, the total
weight of such a subgraph can be very large compared to the optimal sum-of-radii cost.
Our main contribution is to prove that there is a sum-of-radii clustering of the stars (or
representatives of them) computed in this way whose cost is at most a constant times the
optimal (t, k)-fair sum-of-radii cost. Then, one can compute an approximate sum-of-radii
clustering of these stars and return the corresponding clustering of the points in P1 ∪ P2.
The obtained clustering is (t, k)-fair, as the clusters are disjoint union of the vertices of stars,
each having at most t edges. The proof of the existence of a clustering of the computed stars
whose cost is nicely bounded is based on a novel analysis technique that merges a set of
optimal clusters to obtain superclusters. We give an overview in the following.

Let H be the degree-constrained subgraph computed with the minimum weight possible.
Also, let C∗ = {C∗

1 , C∗
2 , . . . , C∗

k} be a fixed optimal (t, k)-fair sum-of-radii clustering. We
repetitively merge pairs of these clusters if there are edges in H across them. Let Ĉ =
{Ĉ1, Ĉ2, . . . , Ĉκ} be the resulting clustering. By our construction, each star of H is fully
contained in one of these merged clusters or superclusters. Thus, it is sufficient to show
that the radius of each supercluster Ĉi is at most O(1) times the sum of the radii of the
associated optimal clusters whose merger is Ĉi. To bound such radius, we introduce a notion
of minimum-switch paths between pairs of clusters. These paths play a central role in our
analysis. We prove that it is possible to bound the (weighted) length of any such path by
O(1) times the sum of the radii of the associated optimal clusters. Then the diameter (or
radius) of the supercluster can also be bounded likewise, as any two cluster vertices are
connected by a minimum-switch path. The important distinction is that the length of any
arbitrary path might not be bounded in such a nice way.

Next, we prove the following theorem concerning Question 2.

▶ Theorem 2. There is a polynomial-time (180 + ϵ)-approximation algorithm for (1, k)-fair
sum-of-radii with ℓ ≥ 2 groups of points.

Again our result directly improves the FPT approximation result of Carta et al. [15]
and extends to more than 2 groups. The result matches the known constant-approximation
bound for k-center/median/means in this case. The proof of the above theorem is similar to
the proof of Theorem 1, and so employs the same supercluster-based analysis framework.
However, here we need to handle ℓ colors. The main challenge boils down to bounding the
diameter of a certain multi-partite graph G∗

1 with ∪ℓ
i=1Pi being the set of vertices. Intuitively,

by the analysis for two groups, the diameter of the graphs induced by only P1 ∪ Pi is nicely
bounded. However, we still need to bound the diameter of G∗

1. Consequently, we introduce
an additional notion of minimum-color-switch paths. We prove that the lengths of these
paths can also be bounded nicely, exploiting their special properties.

ESA 2025
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Organization. We introduce notation in Section 2 and present our algorithms for (t, k)-fair
and (1, k)-fair sum-of-radii in Sections 3 and 4, respectively. Proofs of statements marked by
(∗) are available in the full version1.

2 Preliminaries

In sum-of-radii clustering, we are given a set P of n points in a metric space with distance d

and an integer k > 0. We would like to find: (i) a subset C of P containing k points and a
non-negative integer rq (called the radius) for each q ∈ C, and (ii) a function ϕ assigning
each point p ∈ P to a center q ∈ C such that d(p, q) ≤ rq. The subset Xq = ϕ−1(q) for
each q ∈ C is called the cluster corresponding to q having radius rq. The goal is to find a
clustering {Xq | q ∈ C} that minimizes the sum of the radii

∑
q∈C rq.

In (t, k)-fair sum-of-radii clustering, we are given two disjoint groups P1 (red) and P2
(blue) having n points in total in a metric space (Ω = P1 ∪ P2, d) and an integer balance
parameter t ≥ 1. A clustering is called (t, k)-fair if, for each cluster X, the number of points
from P1 in X is at least 1/t times the number of points from P2 in X and at most t times the
number of points from P2 in X. The goal is to compute a (t, k)-fair clustering minimizing
the sum of the radii of the clusters. Each cluster in a (t, k)-fair clustering is called t-balanced.

In Balanced sum-of-radii clustering, we are given ℓ ≥ 2 disjoint groups P1, P2, . . . , Pℓ

having n points in total in a metric space (Ω = ∪ℓ
i=1Pi, d) such that |P1| = |P2| = . . . = |Pℓ|.

A clustering is called balanced if, for each cluster X, it holds that |X ∩ P1| = |X ∩ P2| =
. . . = |X ∩ Pℓ|. The goal is to compute a balanced clustering that minimizes the sum of the
radii of the clusters. We say that each cluster in a balanced clustering is 1-balanced.

Consider any metric space (Ω1, d1) and a subset S1 ⊆ Ω1. For any cluster Q and a point
p, d1(p, Q) = maxq∈Q d1(p, q). The center of Q in S1 is the point, arg minp∈S1 d1(p, Q). The
radius of Q w.r.t. S1 and d1, denoted by r(S1,d1)(Q), is the distance between Q and its center
in S1, i.e., r(S1,d1)(Q) = minp∈S1 d1(p, Q). We refer to the sum of the radii, w.r.t. S1 and
d1, of the clusters in any clustering C as the cost of C w.r.t. S1 and d1 and denote it by
cost(S1,d1)(C).

We note that the term “(t, k)-fairness” refers specifically to the two-color case, where
each cluster must maintain a red-to-blue ratio within [1/t, t]. This notion does not naturally
extend to more than two colors. In contrast, in the multi-color setting with ℓ ≥ 2 groups, we
adopt the term “balanced clustering” (or “(1, k)-fair clustering with ℓ groups”) to describe
the setting where each cluster must contain an equal number of points from each group.
While we use similar notation for consistency, these two notions are structurally different
and should be interpreted accordingly.

3 The Algorithm for (t, k)-Fair Sum-of-Radii Clustering

In this section, we prove Theorem 1. To set up the stage, we define the following problem.

Min-cost Degree Constrained Subgraph (Min-cost DCS). A Degree Constrained
Subgraph (DCS) H = (V, E′) of a graph G = (V, E) is a subgraph such that the
degree of each vertex v in H is in the range [l(v), u(v)] for given integers l(v) and
u(v). Suppose we are also given a weight function w : E → R+ ∪ {0}. A min-cost
DCS H = (V, E′) of G is a DCS that minimizes the sum of the weights of the edges
in E′ over all DCS.

1 https://arxiv.org/pdf/2504.14683

https://arxiv.org/pdf/2504.14683
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▶ Proposition 1 ([27]). Min-cost DCS can be solved in O(|V |4) time.

The proposition follows from the work of Gabow (Theorem 5.2) [27]. There the stated time
complexity is O((

∑
i∈V ui) min{|E| log |V |, |V |2}), which is O(|V |4), as each upper-bound

ui can be assumed to be at most the degree of the i-th vertex. One technicality is that they
study the maximization version (with real weights), but the minimization version can be
solved by the standard method of negating edge-weights in min-cost DCS. Also see [45] that
has similar discussions and an O(|V |6) time algorithm for min-cost DCS, which they call
minimum-cost many-to-many matching with demands and capacities.

▶ Observation 1 (∗). A min-cost DCS with l(v) = 1 for all v ∈ V does not contain a path
of length three, and thus it is a disjoint union of star graphs.

Our algorithm is as follows.

The Algorithm

1. Construct a graph G = (V, E) where V = P1∪P2 and E = {{p, q} | p ∈ P1, q ∈ P2}.
Define the weight function w such that for each edge e = {p, q}, w(e) = d(p, q).
Compute a min-cost DCS H = (V, E′) of G with l(v) = 1 and u(v) = t for all
v ∈ V .

2. Construct an edge-weighted graph G′ in the following way: For each p ∈ Ω, add a
vertex to G′; For each star S in H, add a vertex corresponding to S to G′, which
we also call by S; For each p, q ∈ Ω, add the edge {p, q} to G′ with weight d(p, q);
For all p ∈ Ω and S in H, add the edge {p, S} to G′ with weight maxq∈S d(p, q).
Let d′ be the shortest path metric in G′. Construct the metric space (Ω′, d′) where
Ω′ is the subset of vertices in G′ corresponding to the stars in H.

3. Compute a sum of radii clustering X = {X1, . . . , Xk} of the points in Ω′ using the
Algorithm of Buchem et al. [14] (with Ω′ also being the candidate set of centers).

4. Compute a clustering X ′ of the points in P1 ∪ P2 using X in the following way.
For each cluster Xi ∈ X, add the cluster ∪p∈S|S∈Xi

{p} to X ′. Return X ′.

Next, we analyze the algorithm. First, we have the following observations.

▶ Observation 2 (∗). X ′ is a (t, k)-fair clustering of P1 ∪ P2.

Next, we analyze the approximation factor. Let C∗ = {C∗
1 , C∗

2 , . . . , C∗
k} be a fixed optimal

(t, k)-fair clustering. We will prove the following lemma. Our result follows as a corollary.

▶ Lemma 1. Consider the clustering X of Ω′ constructed in Step 3 of the algorithm. Then
cost(Ω′,d′)(X) ≤ (48 + ϵ) ·

∑k
i=1 r(Ω,d)(C∗

i ).

▶ Corollary 1 (∗). Consider the clustering X ′ of P1 ∪ P2 constructed in Step 4 of the
algorithm. Then cost(Ω,d)(X ′) ≤ (144 + ϵ) ·

∑k
i=1 r(Ω,d)(C∗

i ). Thus, our algorithm is a
(144 + ϵ)-approximation algorithm.

3.1 Proof of Lemma 1
In the following, we are going to prove Lemma 1. Consider the min-cost DCS H = (V, E′)
computed in Step 1. Also, consider the optimal clusters in C∗. We construct a new clustering
Ĉ = {Ĉ1, Ĉ2, . . . , Ĉκ} by merging clusters in C∗ in the following way, where 1 ≤ κ ≤ k.
Initially, we set Ĉ to C∗. For each edge {p, q} of E′ such that p ∈ Ĉi, q ∈ Ĉj and i ̸= j,
replace Ĉi, Ĉj in Ĉ by their union and denote it by Ĉi as well.

ESA 2025
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When the above merging procedure ends, by renaming the indexes, let Ĉ ={Ĉ1, Ĉ2, . . . , Ĉκ}
be the new clustering. Then, we have the following observation.

▶ Observation 3. Consider any star S in H. Then, for some 1 ≤ i ≤ κ, all the points of S

are contained in Ĉi.

Consider the clustering C′ = {C ′
1, . . . , C ′

κ} of Ω′ defined in the following way. For each
star S in H, identify the cluster Ĉi in Ĉ that contains all the points in S. By Observation 3,
such an index i exists. Assign the point p in Ω′ corresponding to S to C ′

i.

▶ Lemma 2 (∗). cost(Ω′,d′)(C′) ≤ 2· cost(Ω,d)(Ĉ).

We will prove the following lemma.

▶ Lemma 3. cost(Ω,d)(Ĉ) ≤ 8 ·
∑k

i=1 r(Ω,d)(C∗
i ).

Lemma 1 follows by Lemma 2 and 3 noting that the Algorithm of Buchem et al. [14]
yields a (3 + ϵ)-factor approximation to the optimal clustering (along with an appropriate
scaling of ϵ). In the rest of this section, we prove Lemma 3.

3.2 Proof of Lemma 3
For simplicity of notation, we drop (Ω, d) from r(Ω,d)(.), as henceforth centers are always
assumed to be in Ω and the metric to be d. Let us consider any fixed Ĉi, and suppose
it is constructed by merging the clusters C∗

i1
, C∗

i2
, . . . , C∗

iτ
. It is sufficient to prove that

r(Ĉi) ≤ 8 ·
∑τ

j=1 r(C∗
ij

). For simplicity of notation, we rename Ĉi by Ĉ, and C∗
i1

, C∗
i2

, . . . , C∗
iτ

by C∗
1 , C∗

2 , . . . , C∗
τ .

Let H1 = (V1, E1) be the induced subgraph of H such that the vertices of V1 are in Ĉ.
We refer to a point of P1 (resp. P2) as a red (resp. blue) point. Note that the edges of H

are across red and blue points. In the following, we construct an edge-weighted, directed
multi-graph G∗ = (V ∗, E∗) in the following manner. G∗ has a vertex vj corresponding to
each cluster C∗

j , where 1 ≤ j ≤ τ . There is an edge e = (vi, vj) from vi to vj for each
p ∈ P1 ∩ C∗

i and q ∈ P2 ∩ C∗
j such that {p, q} is in E1. We refer to such an edge as a 0-edge,

i.e., its parity is 0. The weight ωe of the edge e is d(p, q). Similarly, there is a 1-edge (or
parity 1 edge) e = (vi, vj) from vi to vj for each p ∈ P2 ∩ C∗

i and q ∈ P1 ∩ C∗
j such that

{p, q} is in E1. The weight ωe of the edge e is d(p, q). For each edge ei ∈ E∗, we denote the
corresponding edge in E1 by {ri, bi}, where ri is the red point and bi is the blue point. For
simplicity of exposition, we are going to make heavy use of this correspondence.

▶ Observation 4 (∗). Suppose there is a 0-edge (resp. 1-edge) (vi, vj) in E∗. Then there is
also a 1-edge (resp. 0-edge) (vj , vi) in E∗.

A directed path (or simply a path) π = {u1, . . . , ul} from u1 to ul in G∗ is a sequence of
distinct vertices such that (ui, ui+1) is in G∗ for all 1 ≤ i ≤ l − 1. We say that π contains the
edges (ui, ui+1). If π contains all 0-edges (resp. 1-edges), it is called a 0-path (resp. 1-path).
Two consecutive edges e1 = (ui, ui+1), e2 = (ui+1, ui+2) on π are said to form a switch if they
have different parity. We say that the switch happens at ui+1 and it is the corresponding
switching vertex. The switch is called a b-switch if the parity of e1 is b for b ∈ {0, 1}. A
directed cycle is formed from π by adding the edge (ul, u1) (if any) with it. The reverse
path of π is the path {ul, . . . , u1} that contains the edges (ui+1, ui) for all 1 ≤ i ≤ l − 1.
Such edges exist according to Observation 4. A 0-path (resp. 1-path) in a subgraph of G∗

starting at vi and ending at vj is called maximal if vj does not have any outgoing 0-edges
(resp. 1-edges) in the subgraph.
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▶ Observation 5 (∗). For any two vertices vi, vj ∈ V ∗, there is a directed path from vi to vj

in G∗.

Consider any two vertices vα and vβ of G∗. Let π∗ = {vα = u1, . . . , ul = vβ} be a directed
path from vα to vβ having the minimum number of switches, i.e., a minimum-switch path
from vα to vβ .

We prove the following lemma.

▶ Lemma 4.
∑

e∈π∗ ωe ≤ 6·
∑τ

i=1 r(C∗
i ). Moreover, if π∗ does not have a switch,

∑
e∈π∗ ωe ≤

4 ·
∑τ

i=1 r(C∗
i ).

Before proving this lemma, we show how to prove Lemma 3. Consider any point p in Ĉj .
Let p ∈ C∗

g . Now, consider any point q in Ĉj that is the farthest point from p. Let q ∈ C∗
h. By

Lemma 4 it follows that, there is a path, say π′, from vg to vh whose sum of the edge weights
is at most 6 ·

∑τ
i=1 r(C∗

i ). Then, r(Ĉj) ≤ d(p, q) ≤
∑

e∈π′ ωe +
∑

vertex vi∈π′ 2 · r(C∗
i ) ≤

8 ·
∑τ

i=1 r(C∗
i ).

Summing over all clusters Ĉj in Ĉ, we obtain Lemma 3.

3.3 Proof of Lemma 4
The overall idea is to show the existence of a subset of edges E′

2 ⊂ E, such that the set of
edges (E′ \ π∗) ∪ E′

2 form a valid degree-constrained subgraph of G on the set of vertices
P1 ∪ P2. Additionally, we need that the total weight of the edges of E′

2 is small. Then we can
show that the weight of π∗ is also small, as H = (V, E′) is a min-cost DCS of G. However, it
might not be possible to remove only the edges of π∗ from E′ to show the existence of such
a set E′

2. We show that there is a subset E′
1 ⊆ E′ that contains the edges of π∗ and can be

removed to obtain such a valid degree-constrained subgraph. In the following, we prove that
obtaining two such sets E′

1 and E′
2 is sufficient to prove Lemma 4. For a set of edges S ⊆ E,

let w(S) =
∑

e∈S w(e).

▶ Lemma 5. Suppose there are E′
1 ⊆ E′, E′

2 ⊂ E, such that the set of edges (E′ \ E′
1) ∪ E′

2
forms a valid degree-constrained subgraph of G and w(E′

2) ≤ 6 ·
∑τ

i=1 r(C∗
i ). Then, w(E′

1) ≤
6 ·

∑τ
i=1 r(C∗

i ).

Proof. Note that H is a min-cost DCS of G. Consider the graph H ′ induced by the set of
edges (E′ \ E′

1) ∪ E′
2. By our assumption, H ′ is a valid DCS of G. It follows that,

w(E′) ≤ w((E′ \ E′
1) ∪ E′

2), or, w(E′
1) ≤ w(E′

2) ≤ 6 ·
τ∑

i=1
r(C∗

i ).

The last inequality follows from our assumption. ◀

Assuming that the conditions of the above lemma are true, we finish the proof of Lemma 4.∑
e∈π∗

ωe =
∑

(vi,vj)∈π∗

ωe

=
∑

{p,q} corresponding to (vi,vj)∈π∗|p∈C∗
i

,q∈C∗
j

w({p, q}) ≤ w(E′
1) ≤ 6 ·

τ∑
i=1

r(C∗
i ).

If π∗ does not have a switch, then we will show that w(E′
2) ≤ 4 ·

∑τ
i=1 r(C∗

i ). Hence, the
moreover part in Lemma 4 also follows. It is left to show the existence of such E′

1 and E′
2.
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3.4 Construction of E′
1 and E′

2

Two subgraphs G1 and G2 of G∗ are called 0-1-edge-disjoint if for any edge eη1 of G1 and
eη2 of G2, the corresponding edges in E′ are distinct. Thus, if G1 contains a 0-edge (vi, vj),
and G1 and G2 are 0-1-edge-disjoint, then G2 cannot contain the 0-edge (vi, vj) and the
1-edge (vj , vi). Similarly, if G1 contains a 1-edge (vi, vj), and G1 and G2 are 0-1-edge-disjoint,
then G2 cannot contain the 1-edge (vi, vj) and the 0-edge (vj , vi). Let j1 < j2 < . . . < jλ

be the indexes of the vertices on π∗ = {u1, . . . , ul} where the switches occur. Note that
j1 > 1, jλ < l. Denote the switch that occurs at ujh by bh for all 1 ≤ h ≤ λ (i.e., bh is the
parity of (ujh−1, ujh)). Let b0 be the parity of (u1, u2) and bλ+1 be the parity of (ul−1, ul).

First, we consider the simple case when the parity of (ul−1, ul) is 0 (resp. 1)
and there is a 0-path (resp. 1-path) from ul to u1 in G∗ that is 0-1-edge-disjoint
from π∗. Let us denote the latter path by π(l). Note that π∗ is a path having the minimum
number of switches and the existence of π(l) ensures that π∗ does not have a switch. Let
U0 ⊆ E∗ be the subset of edges that lie on the paths in {π∗} ∪ {π(l)}. Next, we define a
subset E′

1 ⊆ E1 that has a one-to-one mapping with U0. In particular, consider any edge
(vi, vj) in U0. Note that if it is a 0-edge, it was added due to an edge {p, q} in E1 such that
p ∈ P1 ∩ C∗

i and q ∈ P2 ∩ C∗
j . We add the edge {p, q} to E′

1. Otherwise, if (vi, vj) is a 1-edge,
it was added due to an edge {p, q} in E1 such that p ∈ P2 ∩ C∗

i and q ∈ P1 ∩ C∗
j . In this

case, we add the edge {p, q} to E′
1.

Next, we show the construction of E′
2. Wlog, let us assume that π∗ is a 0-path. The

other case is symmetric. Note that then π(l) is also a 0-path as per our assumption. First,
we describe the process of adding the replacement edges for the path π∗. Consider any
intermediate vertex (if any) vj′ on this path. Then, there are exactly two points in C∗

j′

corresponding to the edges on π∗, which are of opposite colors. We add an edge between
these two points in E′

2 (see Figure 1). Removal of the edges of E′
1 corresponding to π∗ and

the addition of this edge do not change the degree of the two points in C∗
j′ . Similarly, we

add edges to E′
2 corresponding to the intermediate vertices of π(l). Next, consider the vertex

ul = vi. There is an incoming 0-edge on π∗ and an outgoing 0-edge on π(l) that are incident
on vi. Thus, there are exactly two points in C∗

i of opposite colors corresponding to these
two edges. We add an edge between these two points in E′

2. Removal of the edges of E′
1

corresponding to those two edges, and the addition of this edge does not change the degree
of the two points in C∗

i . Similarly, consider the vertex u1 = v′
i. There is an outgoing 0-edge

on π∗ and an incoming 0-edge on π(l) that are incident on v′
i. Thus, there are exactly two

points in C∗
i′ of opposite colors corresponding to these two edges. We add an edge between

these two points in E′
2. Again, the removal of the edges of E′

1 corresponding to those two
edges, and the addition of this edge does not change the degree of the two points in C∗

i′ . See
Figure 1 for an illustration.

u1=vi′ ul=viπ∗

π(l)

Figure 1 Figure illustrating the construction of E′
2 for {π∗} ∪ {π(l)}. The bold (orange) edges

are in E′
1 and the dashed (purple) edges are in E′

2.
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By our construction, the set of edges (E′ \ E′
1) ∪ E′

2 form a valid degree-constrained
subgraph of G on the set of vertices P1 ∪P2. The way we add the edges to E′

2, both endpoints
of each edge lie in a cluster C∗

j such that the vertex vj corresponding to the cluster lies on a
path in {π∗} ∪ {π(l)}. Now, vj can lie either on one such path or on two paths. Thus, we add
at most two edges to E′

2 corresponding to vj . The sum of the weights of these two edges is at
most 2 times the diameter of C∗

j . Hence, by Lemma 5, we obtain
∑

e∈π∗ ωe ≤ 4 ·
∑τ

i=1 r(C∗
i ).

Next, we consider the remaining case when the parity of (ul−1, ul) is 0 (resp.
1) and there is no 0-path (resp. 1-path) from ul to u1 in G∗ that is 0-1-edge-
disjoint from π∗. Thus, there is no bλ+1-path from ul to u1 in G∗ that is 0-1-edge-disjoint
from π∗.

Consider a path π and let vi denote its start vertex. Also, consider a cycle O such that
π and O have exactly one vertex vj in common. Note that π might not have an edge, in
which case vj = vi. Let D be the graph formed by the union of π and O, i.e., by gluing them
together at vj . We refer to such a graph D as a hanging cycle for vi with vj being the join
vertex. D is called a b-hanging cycle if all the edges of π and O are b-edges. Let p be the
point in the cluster C∗

j corresponding to the edge of the cycle O incoming to vj . Additionally,
D is called special if the degree of p in H1 is at least 2, and p is called the special point of D

(see Figure 2).

vi

p

vj

Figure 2 A special hanging cycle with the special point p.

In the current case, we need the following lemmas.

▶ Lemma 6 (∗). Suppose the parity of (ul−1, ul) is 0 (resp. 1), and there is no 0-path (resp.
1-path) from ul to u1 in G∗ that is 0-1-edge-disjoint from π∗. Moreover, suppose there is no
special 0-hanging cycle (resp. 1-hanging cycle) in G∗ for ul that is 0-1-edge-disjoint from π∗.
Then, there exists a 0-path (resp. 1-path) π1 in G∗ from ul to a vertex vj, such that π1 is
0-1-edge-disjoint from π∗ and one of the following is true: (i) the degree of bη (resp. rη) in
H1 is at least 2, where eη is the last edge on π1 if it has an edge or (ul−1, ul) otherwise; or
(ii) C∗

j has a red (resp. blue) point whose degree in H1 is at most t − 1.

▶ Lemma 7 (∗). Suppose the parity of (u1, u2) is 1 (resp. 0), and there is no 1-path (resp.
0-path) from ul to u1 in G∗ that is 0-1-edge-disjoint from π∗. Moreover, suppose there is no
special 0-hanging cycle (resp. 1-hanging cycle) in G∗ for u1 that is 0-1-edge-disjoint from
π∗. Then, there exists a 0-path (resp. 1-path) π1 from u1 to a vertex vj, such that π1 is
0-1-edge-disjoint from π∗ and one of the following is true: (i) the degree of bη (resp. rη) in
H1 is at least 2, where eη is the last edge on π1 if it has an edge or (u2, u1) otherwise, and
(ii) C∗

j has a red (resp. blue) point whose degree in H1 is at most t − 1.

Next, we apply the above lemmas to show the construction of E′
1 and E′

2. Recall that
in this case there is no bλ+1-path from ul to u1 in G∗ that is 0-1-edge-disjoint
from π∗. If π∗ has a switch, then there is no 0-path or 1-path from ul to u1 in G∗ that is
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0-1-edge-disjoint from π∗. Otherwise, it must be that b0 = bλ+1, and hence by our assumption,
there is no b0-path from ul to u1 in G∗ that is 0-1-edge-disjoint from π∗. We conclude that
in this case (b0 = bλ+1), there is no b0-path from ul to u1 in G∗ that is 0-1-edge-disjoint
from π∗. Then, by Lemma 7 it follows that, either there is a (1 − b0)-hanging cycle for
u1 in G∗ 0-1-edge-disjoint from π∗, or a (1 − b0)-path starting from u1 in G∗ with special
properties. This is true, as the parity of (u1, u2) is b0. We denote this structure by π(0).
Additionally, if π(0) is a path, we call bη (resp. rη) an anchor point if its degree in H1 is at
least 2. Similarly, by Lemma 6 it follows that, either there is a bλ+1-hanging cycle for ul in
G∗ 0-1-edge-disjoint from π∗, or a bλ+1-path starting from ul in G∗ with special properties.
This is true, as (ul−1, ul) is a bλ+1-edge. We denote this structure by π(λ + 1). Additionally,
if π(λ + 1) is a path, we call bη (resp. rη) an anchor point if its degree in H1 is at least 2.

Now, if 1 − b0 ̸= bλ+1, then π(0) and π(λ + 1) must be vertex-disjoint. If they are not
vertex-disjoint, there exists a bλ+1-path from ul to u1 in G∗ that is 0-1-edge-disjoint from
π∗: take the edges on π(λ + 1) from ul to a common vertex and the reverse of π(0), from the
common vertex to u1. These reverse edges have parity opposite of 1 − b0, i.e., the same as
bλ+1. But, by our assumption, such a bλ+1-path does not exist. Hence, π(0) and π(λ + 1)
are vertex-disjoint.

In the other case, 1 − b0 = bλ+1. We note that if π∗ has no switch, b0 = bλ+1. Thus,
if 1 − b0 = bλ+1, then we can safely assume that π∗ has at least one switch. In this case,
suppose there are a (1 − b0)-hanging cycle for u1 and a bλ+1-hanging cycle for ul in G∗,
such that both are 0-1-edge-disjoint, each of the hanging cycles is 0-1-edge-disjoint from π∗,
and either the special vertices of both are distinct or the special points are the same and
the degree of that point in H1 is at least 3. Then, we take the hanging cycle for u1 as π(0)
and the one for ul as π(λ + 1). Otherwise, if there is a (1 − b0)-hanging cycle for u1 in G∗

0-1-edge-disjoint from π∗ or a bλ+1-hanging cycle for ul in G∗ 0-1-edge-disjoint from π∗, we
consider one of those. Assume that the former holds. The other case is symmetric. We take
such a hanging cycle for u1 as π(0). Then, one can prove that there is a bλ+1-path from ul in
G∗ with special properties (Lemma 8 in the full version). We take this bλ+1-path as π(λ + 1).
Otherwise, there is neither a (1 − b0)-hanging cycle for u1 in G∗ 0-1-edge-disjoint from π∗

nor a bλ+1-hanging cycle for ul in G∗ 0-1-edge-disjoint from π∗. Then, one can prove that
there are two 0-1-edge-disjoint paths with parity 1 − b0 = bλ+1, from u1 and ul, respectively,
such that both are also 0-1-edge-disjoint from π∗ (Lemma 9 in the full version). In this case,
we take the path from u1 as π(0) and the path from ul as π(λ + 1).

For all 1 ≤ h ≤ λ, if there are two 0-1-edge-disjoint bh-hanging cycles for ujh in G∗

that are 0-1-edge-disjoint from π∗ and have distinct special points or the same special point
of degree at least 3 in H1, denote them by π1(h) and π2(h). Otherwise, if there is one
bh-hanging cycle for ujh in G∗ that is 0-1-edge-disjoint from π∗, denote it by π1(h). Now,
(ujh−1, ujh) is a bh-edge and (ujh , ujh+1) is a (1 − bh)-edge. Then, one can prove that there
is a bh-path starting from ujh in G∗ with special properties (Lemma 8 in the full version).
Denote this path by π2(h). Otherwise, there is no bh-hanging cycle for ujh in G∗ that is
0-1-edge-disjoint from π∗. In this case, one can prove that there are two bh-paths starting
from ujh in G∗ with special properties. Denote them by π1(h) and π2(h). Note that in all
the cases, π(), π1() or π2() can either be a path or a hanging cycle.

Construction of E′
1. Let U ⊆ E∗ be the subset of edges that lie on the structures in

S = ∪λ
i=1({π1(i)} ∪ {π2(i)}) ∪ {π(0), π(λ + 1), π∗}. Next, we define the subset E′

1 of E′ that
has a one-to-one mapping with U . In particular, consider any edge (vi, vj) in U . Note that if
it is a 0-edge, it was added due to an edge {p, q} in E1 such that p ∈ P1 ∩C∗

i and q ∈ P2 ∩C∗
j .

We add the edge {p, q} to E′
1. Otherwise, if (vi, vj) is a 1-edge, it was added due to an edge

{p, q} in E1 such that p ∈ P2 ∩ C∗
i and q ∈ P1 ∩ C∗

j . We again add the edge {p, q} to E′
1.
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Our proof is completed by the following two lemmas.

▶ Lemma 8 (∗). There is a subset of edges E′
2 ⊂ E, such that the set of edges (E′ \ E′

1) ∪ E′
2

form a valid degree-constrained subgraph of G on the set of vertices P1 ∪ P2.

4 The Algorithm for Balanced Sum-of-Radii Clustering

In this section, we prove Theorem 2. Recall that we are given ℓ disjoint groups P1, . . . , Pℓ

having n points in total in a metric space (Ω = ∪ℓ
i=1Pi, d), such that |P1| = |P2| = . . . = |Pℓ|.

Our algorithm is as follows.

The Algorithm

1. For each 2 ≤ i ≤ ℓ, construct a graph Gi = (Vi, Ei) where Vi = P1 ∪ Pi and
Ei = {{p, q} | p ∈ P1, q ∈ Pi}. Define the weight function wi such that for each
edge e = {p, q}, wi(e) = d(p, q). Compute a minimum-weight (w.r.t. wi) perfect
matching Mi of Gi. For each p ∈ P1, let Sp be the union of {p} and the points
from P2, . . . , Pℓ that are matched to p in M = ∪ℓ

i=2Mi.
2. Construct an edge-weighted graph G′ in the following way: For each p ∈ Ω, add a

vertex to G′; For each p ∈ P1, add a vertex corresponding to Sp to G′, which we
also call by Sp; For each p, q ∈ Ω, add the edge {p, q} to G′ with weight d(p, q); For
all p′ ∈ Ω and p ∈ P1, add the edge {p′, Sp} to G′ with weight maxq∈Sp

d(p′, q).
Let d′ be the shortest path metric in G′. Construct the metric space (Ω′, d′) where
Ω′ is the subset of vertices {Sp | p ∈ P1} in G′.

3. Compute a sum of radii clustering X = {X1, . . . , Xk} of the points in Ω′ using the
Algorithm of Buchem et al. [14] (with Ω′ also being the candidate set of centers).

4. Compute a clustering X ′ of the points in ∪ℓ
i=1Pi using X in the following way.

For each cluster Xi, add the cluster ∪q∈Sp|Sp∈Xi
{q} to X ′. Return X ′.

Let C∗ = {C∗
1 , C∗

2 , . . . , C∗
k} be a fixed optimal balanced clustering.

We have the following lemma. Our main result follows as a corollary.

▶ Lemma 9 (∗). Consider the clustering X of Ω′ constructed in Step 3 of the algorithm.
Then cost(Ω′,d′)(X) ≤ (60 + ϵ) ·

∑k
i=1 r(Ω,d)(C∗

i ).

▶ Corollary 2 (∗). Consider the clustering X ′ of ∪ℓ
i=1Pi constructed in Step 3 of the

algorithm. Then cost(Ω,d)(X ′) ≤ (180 + ϵ) ·
∑k

i=1 r(Ω,d)(C∗
i ). Thus, our algorithm is a

(180 + ϵ)-approximation algorithm.
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