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Abstract
The connected k-median problem is a constrained clustering problem that combines distance-based
k-clustering with connectivity information. The problem allows to input a metric space and an
unweighted undirected connectivity graph that is completely unrelated to the metric space. The
goal is to compute k centers and corresponding clusters such that each cluster forms a connected
subgraph of G, and such that the k-median cost is minimized.

The problem has applications in very different fields like geodesy (particularly districting),
social network analysis (especially community detection), or bioinformatics. We study a version
with overlapping clusters where points can be part of multiple clusters which is natural for the
use case of community detection. This problem variant is Ω(log n)-hard to approximate, and our
main result is an O(k2 log n)-approximation algorithm for the problem. We complement it with an
Ω(n1−ϵ)-hardness result for the case of disjoint clusters without overlap with general connectivity
graphs, as well as an exact algorithm in this setting if the connectivity graph is a tree.
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1 Introduction

Clustering problems, like the k-center and the k-median problem, are classical optimization
problems that have been widely studied both in theory and practice. In a typical center-based
clustering problem, the input consists of a given set of data points in some metric space and
a positive integer k. The goal is to partition the data points into k groups (clusters) and
to find a center for each of these groups so as to optimize some objective: In the k-center
problem, the goal is to minimize the maximal distance of any point to the center of its cluster;
in the k-median problem, the goal is to minimize the sum of the distances of the points to
their corresponding cluster centers.
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Both the k-center and the k-median problem are NP-hard but various constant-factor
approximation algorithms are known. For the k-center problem, there are 2-approximation
algorithms [9, 13], and this is best possible [14]. The best known approximation algorithm
for the k-median problem achieves a (2.675 + ϵ)-approximation [2], while it is known that no
approximation factor better than 1 + 2/e ≈ 1.735 can be achieved, unless P=NP [10].

Beyond these vanilla clustering problems, there has been a lot of interest in variants
of clustering problems motivated by specific applications. These variants often introduce
additional constraints. For example, in capacitated clustering problems, constraints are
added that limit the number of data points that can be assigned to each cluster [17]. There
are also models to address outliers in data sets [18], and in the last decade, different variants
of fair clustering problems have been studied [4, 20, 21]. These are just a few examples of the
numerous variants of clustering problems that have been studied to address diverse challenges
in different application domains. Each of these variants requires specialized algorithms, often
inspiring novel methodologies and insights in the broader field of clustering and data analysis.

In this paper, we study a connectivity constraint. The basic idea of this constraint is that
clusters have to correspond to connected subgraphs of a given undirected and unweighted
connectivity graph. This graph is independent of the metric that defines the distances between
the input points.

This model has been studied in different contexts. One line of research, see Ge et al. [8],
considers the connected k-center problem to allow for a joint analysis of two type of data:
attribute data and relationship data. Attribute data can be used for clustering by finding
a suitable metric distance function on the attribute vectors and then applying a popular
clustering method like k-means or k-center. Relationship data arises in the context of
social networks or other network structures and gives information on pairwise relationships.
Clustering on relationship data can be done via methods like correlation clustering. Both
types of data thus allow for well studied clustering methods, but the focus by Ge et al. [8] is
a joint analysis. Connected clustering gives one option to combine relationship and attribute
data by defining a constraint based on the relationships and then optimizing over the attribute
vector distances.

More precisely, connected clustering expects as input a set of points in a metric space
(stemming from the attribute data) and an unweighted graph G (representing the relationship
data), and the goal is to cluster with respect to the metric distance function but under the
constraint that clusters are connected in G. We call G the connectivity graph in the following.

Ge et al. [8] study the connected k-center problem. For this problem, the goal is to compute
k centers c1, . . . , ck and corresponding clusters C1, . . . , Ck such that all Ci are connected
in the connectivity graph G, and such that the largest radius is minimized (the radius of
Ci is maxx∈Ci

d(x, ci)). They provide an optimal algorithm via dynamic programming for
the special case of a tree connectivity graph which was rediscovered by Drexler et al. [6] in
a later publication. Ge et al. also present algorithms for the general case with unknown
approximation guarantee1 and provide an experimental evaluation.

The best-known approximation guarantee for the connected k-center problem is a
O(log2 k)-approximation given by Drexler et al. [6]. For Euclidean metrics with constant di-
mension and metrics with constant doubling dimension, they provide an O(1)-approximation
algorithm. Their paper studies the problem from a very different context: Motivated by an
application from geodesy and sea level analysis, they use the distance function to model
differences in tide gauge measurements and the connectivity graph to model geographic
closeness, and their modelling results in the same problem definition as Ge et al. [8].

1 There is a proof in the paper that claims a guarantee of 6, but [6] gives a counterexample.
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In this paper, we study the connected k-median problem, i.e., the related problem with
the k-median objective instead of the k-center objective. We give a formal definition now.

▶ Definition 1 (Connected k-Median Problem (disjoint)). In an instance of the (disjoint)
connected k-median problem, we are given a set V of points, a metric d : V × V → R≥0 on V ,
a positive integer k ≥ 2, and an unweighted and undirected connectivity graph G = (V, E). A
feasible solution is a partition of V into k disjoint clusters V = {V1, . . . , Vk} with corresponding
centers C = {c1, c2, . . . , ck} ⊆ V which satisfies that for every i ∈ [k] := {1, . . . , k} the
subgraph of G induced by Vi is connected and ci ∈ Vi. The connected k-median problem aims
to find a feasible solution (C, V) that minimizes

Φmed(C, V) :=
∑
i∈[k]

∑
v∈Vi

d(ci, v).

The connected k-median has also appeared in different contexts. For example, Validi et
al. [22] study connected k-median for a districting problem. Here the goal is to partition given
administrative or geographic units into districts. The clusters should usually correspond to
connected areas on the map which can be formulated via introducing centers for each unit
and a graph to model which units are neighbors on the map. The k-median objective is one
way to model compactness of districts. Validi et al. [22] study various districting methods,
and connected k-median is one of them. They solve it via an integer linear programming
approach, i.e., to optimality but with exponential worst-case running time. A related variant
is the connected k-means problem, which for example has been considered in [19] where a
heuristic approach to minimize it is employed.

Gupta et al. [12] study k-median/k-means from the point of view of approximation
algorithms. They consider the special case where the number of clusters is k = 2 and the
connectivity graph is star-like (there exists a point that is connected to all other points).
The paper shows that even this case is Ω(log n)-hard to approximate for both problems and
proposed an O(log n)-approximation algorithm for this special case. There is nothing known
about the general case, and our work is motivated by the following question:

Can the connected k-median problem be approximated for general connectivity graphs?

Unfortunately, we quickly arrive at the conclusion that no reasonable approximation
guarantee is possible if P ≠ NP (see Thm 4). We do derive a dynamic programming
based exact algorithm for trees that runs in time O(n2k2) (see Thm 6), thus extending the
landscape for the problem, but the answer to our main question is still negative.

However, our inapproximability proof depends on a subtlety of the problem definition:
The clusters Vi have to be disjoint. This is a natural assumption in clustering, and in
clustering without constraints, clusters can be assumed to be disjoint (adding a point to
multiple clusters will in general only increase the objective). But here, if we allow for
overlapping clusters, then satisfying connectivity can become easier because we can add
critical vertices like articulation points to multiple clusters. This motivates the definition of
connected k-median with non-disjoint clusters.

▶ Definition 2 (Disjoint vs. non-disjoint clusters). In the connected k-median problem with
disjoint clusters, we require the clusters V1, . . . , Vk to be pairwise disjoint. In the connected
k-median problem with non-disjoint clusters, the clusters are allowed to overlap and we only
require V =

⋃
i∈[k] Vi.

One may note that if a vertex appears in multiple clusters it will also contribute to the
objective function multiple times. Thus also in the non-disjoint variant, we are incentivized
to avoid assigning vertices unnecessarily often.
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The non-disjoint version has also been studied previously. For example, Drexler et al. [6]
study it for k-center and give a 2-approximation for this case. From the application side,
it depends on the interpretation whether disjoint or non-disjoint clusters are preferred. In
districting, units should certainly not be in multiple clusters. But for the application of
community detection in social networks the modeling is natural since individuals can belong
to different groups. We thus study the following question.

Can the connected k-median problem with non-disjoint clusters be approximated for
general connectivity graphs?

The proof by Gupta et al. [12] gives a lower bound of Ω(log n) for the disjoint case. For
the sake of completeness, we provide in the full version of this paper an adapted version that
also works if the clusters may overlap [7]. Our main result is a O(k2 log n)-approximation for
the connected k-median problem with non-disjoint clusters.

Before we summarize our results, we need one more definition. For a clustering problem
with constraints, the corresponding assignment version of the problem asks for assigning
points to given centers while respecting the constraints and minimizing the cost. In our case,
we get the following problem.

▶ Definition 3 (Assignment version). In the assignment version of the connected k-median
problem, we assume that k centers, denoted as C ⊆ V , are given and the goal is to find a
feasible assignment of the points in V to the centers C such that the k-median costs are
minimized. This version can be defined both for the disjoint and the non-disjoint variant of
the connected k-median problem.

Without a constraint, the assignment version of the k-median problem can be solved
optimally by assigning every point to its closest center. For clustering with constraints,
assignment problems can be difficult: For example, the assignment problem for fair k-center
is NP-hard [1], and the connected k-center with disjoint clusters is also NP-hard [6] (both
problems are even hard to approximate better than 3). We will establish an even higher
lower bound for the assignment problem in the connected k-median setting.

1.1 Our results

Table 1 Overview of the results presented in this work.

(a) Our results in the non-disjoint setting

Assignment version Regular version
Approximation O(k log(n)) (Theorem 8) O(k2 log(n)) (Theorem 9)
Hardness(k = 2) Ω(log(n)) (Theorem 7)

(b) Our results in the disjoint setting. All results also hold for the assignment version.

General Graph Tree graph
Approximation O(n log2(k)) (Theorem 5) 1 (Theorem 6)
Hardness(k = 2) Ω(n1−ϵ) (Theorem 4) –

We prove new approximation and hardness results for the connected k-median problem,
both for the disjoint and the non-disjoint variant. Table 1 provides a brief overview of them.
First we establish a strong hardness of approximation result for the connected k-median
problem with disjoint clusters, which even holds in the special case that k = 2.
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▶ Theorem 4. For any ϵ > 0, there is no polynomial-time O(n1−ϵ)-approximation algorithm
for the connected k-median problem with disjoint clusters even if k = 2, unless P = NP. For
the assignment version, this lower bound also holds.

For completeness we point out that one can almost match this lower bound using the
connected k-center algorithm by Drexler et al. [6]:

▶ Theorem 5. For the disjoint connected k-median problem, there is a polynomial-time
algorithm with approximation factor O(n log2 k).

Another important special case that has also been studied for the connected k-center
problem is the case that the connectivity graph is a tree. For this special case, we obtain a
polynomial-time algorithm based on dynamic programming.

▶ Theorem 6. When the connectivity graph G is a tree, then the connected k-median problem
with disjoint clusters can be solved optimally in time O(n2k2). This is true even if the
distances are not a metric or the centers are given.

Motivated by applications like community detection, in which the clusters do not neces-
sarily have to be disjoint, we also study the connected k-median problem with non-disjoint
clusters. This problem is Ω(log n)-hard to approximate even if k = 2.

▶ Theorem 7. There is a constant c > 0 such that for all sufficiently large n, the non-disjoint
connected k-median problem cannot be approximated within a factor of c · log n unless P=NP,
even when k = 2. The same is true for the assignment variant.

Our main result are approximation algorithms for the clustering and the assignment
problem whose approximation factors match this lower bound in terms of n.

▶ Theorem 8. For the assignment version of the non-disjoint connected k-median problem,
there is a polynomial-time algorithm with approximation factor O(k log n). This is true even
if the distances are not a metric.

▶ Theorem 9. For the non-disjoint connected k-median problem, there is a polynomial-time
algorithm with approximation factor O(k2 log n).

1.2 Outline
The remainder of this paper focuses on the non-disjoint variant. For the disjoint results
we refer to the full version [7]. In Section 2.1 we present our algorithm for the assignment
version and in Section 2.2 we give an overview on how the centers can be found. The full
description and analysis of the latter algorithm as well as the hardness proof for this setting
can again be found in the full version of this work.

2 Non-disjoint Connected k-Median Problem

2.1 Assignment Version
The high-level idea to solve the assignment version of the connected k-median problem is to
first define an LP formulation for it and compute an optimum fractional solution for the LP
relaxation in polynomial time. Using an observation that the connected clusters are similar
to so called node weighted Steiner trees we can use this LP solution to obtain k instances of
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the node weighted Steiner tree problem such that every node needs to be contained in at
least one Steiner tree and there exist a fractional solution for each of these instances such
that the total cost of these solutions is bounded by k times the optimum LP solution. Using
a primal-dual algorithm by Klein and Ravi [15] we are able to find integral Steiner trees that
cost at most O(log n) times as much as the respective fractional solutions and which directly
form k connected clusters assigning each node to at least one center. In total, this gives us
an approximation factor of O(k log n).

Now we will define the LP formulation. For that, we use the following definition of cuts:

▶ Definition 10 (Vertex Cuts). For two arbitrary nodes v, w ∈ V , a (v, w)-cut is a subset
S ⊆ V such that all paths from v to w in G contain at least one node in S. The set of all
(v, w)-cuts is denoted by Sv,w.

Using this, we can reformulate the requirement that a node v must be connected to its
assigned center c by ensuring that for any (v, c)-cut S ∈ Sv,c, at least one node in S is
also assigned to c. This gives us the following LP-formulation of the non-disjoint connected
k-median problem:

min
∑

c∈C,v∈V

d(v, c)xc
v

s.t.
∑
c∈C

xc
v ≥ 1, ∀v ∈ V,∑

v′∈S

xc
v′ ≥ xc

v, ∀v ∈ V, c ∈ C, S ∈ Sv,c,

xc
v ∈ {0, 1}, ∀c ∈ C, v ∈ V, (1)

where for all v ∈ V , c ∈ C the variable xc
v indicates whether v is assigned to c (xc

v = 1) or not
(xc

v = 0). While the first constraint ensures, that each point v must belong to at least one
cluster, the second constraint ensures that the clusters are connected, i.e., if v is connected to
center c, then in each (v, c)-cut, there must be at least one point assigned to c. To relax this
problem we drop the integrality constraint and only require that xc

v ≥ 0 for all v ∈ V , c ∈ C.
It is worth noting that the linear program may have exponential size, as there can be

exponentially many (v, c)-cuts for a given pair v, c. However, since the separation problem can
be solved in polynomial time and there also exists an alternative flow-based formulation of the
LP with polynomial size [7], it remains possible to find the optimum fractional LP-solution
in polynomial time.

Let x̃ be such an optimum fractional solution. By Markov’s inequality it is easy to verify
that for any v ∈ V there exists at least one c ∈ C such that x̃c

v ≥ 1
k . By multiplying all

values with k, we get a new LP solution x with xc
v := kx̃c

v for all v ∈ V, c ∈ C where each
node is assigned to at least one center in its entirety. But even if for a v ∈ V, c ∈ C it holds
that xc

v ≥ 1 there may still exist (v, c)-cuts not containing any nodes fully assigned to c. To
deal with this problem we need some results shown for node weighted Steiner trees.

▶ Definition 11 (Node Weighted Steiner Tree Problem). In an instance of the node weighted
Steiner tree problem we are given a graph G = (V, E), a set of terminal nodes T ⊆ V and
a weight function w : V → R≥0. The goal is to find a subset S ⊆ V such that T ⊆ S, the
nodes of S form a connected subgraph of G, and the sum

∑
v∈S w(v) is minimized.

Similar as for the connected k-median problem there also exists an LP relaxation for the
node weighted Steiner tree problem:
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min
∑
v∈V

w(v)xv

s.t.
∑
v′∈S

xv′ ≥ 1, ∀u, v ∈ T, S ∈ Su,v,

xc
v ≥ 0, ∀v ∈ V, (2)

One might note that the assignment version of the connected k-median problem is closely
related to the node weighted Steiner tree problem as one could reinterpret the problem as
finding k node weighted Steiner trees such that each node is contained in at least one Steiner
tree. The distances of the nodes to the respective centers can in this context be interpreted
as k different node weight functions for the different trees. Using the solution x we will
now define for any center c ∈ C the set Tc := {c} ∪ {v | xc

v ≥ 1}. Then the solution x can
be subdivided into k solutions for the Steiner tree LP using the respective sets (Tc)c∈C as
terminals.

▶ Lemma 12. Let (xc
v)v∈V,c∈C be a solution for LP (1). Then for any center c ∈ C the

values (xc
v)v∈V form a solution for LP (2) with T := Tc and w(v) := d(v, c).

Proof. This lemma is proved by contradiction. Assume that (xc
v)v∈V,c∈C is a solution for

LP (1) that violates some constraint of LP (2). Then there exist two terminals u, v ∈ Tc and
an (u, v)-cut S such that∑

v′∈S

xc
v′ < 1.

Now we distinguish two cases. In the first case let c be one of the nodes {u, v}, w.l.o.g.
u = c. Then we can use the definition of LP (1) and Tc to obtain∑

v′∈S

xc
v′ ≥ xc

v = 1,

which contradicts the assumption.
In the second case both u ̸= c and v ̸= c. Then by the previous argument S can neither

separate u nor v from c because then its weight would be at least 1. Thus there exists a path
from u to c and from c to v not containing any nodes in S. But then there also exists a path
from u to v not using any nodes in S and S would not be a (u, v)-cut. ◀

This lemma is crucial because for the node weighted Steiner tree problem there exists an
O(log n)-approximation algorithm by Klein and Ravi [15] for which Guha et al. [11] later
proved that it is implicitly a primal-dual algorithm and that the cost of the solution is at
most O(log n) times worse than any fractional solution of LP (2). Alternatively Könemann
et al provided a more detailed primal-dual algorithm for a generalized version of the node
weighted Steiner tree problem ensuring the same guarantees [16]. Using these algorithms
and Lemma 12 we are able to subdivide x into k Steiner tree LP solutions that can each be
transformed into a feasible cluster.

▶ Theorem 8. For the assignment version of the non-disjoint connected k-median problem,
there is a polynomial-time algorithm with approximation factor O(k log n). This is true even
if the distances are not a metric.

ESA 2025
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Proof. In the first step of the algorithm we will first calculate an optimum solution x̃ for
the relaxed version of LP (1) which as argued above can be done in polynomial time. Since
every assignment solution for the connected k-median problem is also an LP solution, the
costs of x̃ are upper bounded by the optimum value OPT. After multiplying the values by k,
the cost of solution x is then again bounded by k · OPT.

Consider Tc as defined above, by Markov’s inequality for every node v there exists a
center c such that x̃c

v ≥ 1
k which means that v ∈ Tc. Thus we have

⋃
c∈C Tc = V . By Lemma

12 the fractional solution x can be split up into k solutions of the Steiner tree LP (2) with
the respective terminal sets (Tc)c∈C such that the total sum of the objective value is exactly
the cost of x.

By applying the algorithm by Klein and Ravi [15] with T = Tc and w(v) = d(v, c) for
every c ∈ C separately, one obtains a Steiner tree Sc with Tc ⊆ Sc whose cost is upper
bounded by O(log n) times the cost of the respective LP solution. Thus one obtains in
polynomial time k Steiner trees each connecting the respective terminal set Tc and total
cost bounded by O(log n) times the objective value of x which results in an upper bound
of O (k log n) OPT. Since every node is contained in at least one of these Steiner trees, this
directly yields the desired solution for the assignment version of the non-disjoint connected
k-median problem.

This proof works even if the distances are not a metric because it does not use any of
their properties. ◀

One may note that this approach works with any approximation algorithm for the node
weighted Steiner tree problem whose cost is bounded by the optimum LP solution. For some
restricted graph classes, including planar graphs, Demaine et al. [5] provided a primal dual
algorithm calculating a constant approximation. Thus the approach can also be used to get
an O(k)-approximation (and O(k2) if the centers are not given) for these kind of connectivity
graphs.

2.2 Finding Centers
In this section we give an overview how suitable centers for the non-disjoint connected
k-median problem can be found. For a more detailed description of the procedure and its
analysis we refer to the full version of this paper [7]. First we will again provide a suitable
ILP formulation:

min
∑

v,c∈V

d(v, c)xc
v

s.t.
∑
c∈V

xc
v ≥ 1, ∀v ∈ V,∑

c∈V

xc
c ≤ k,∑

v′∈S

xc
v′ ≥ xc

v, ∀v, c ∈ V, S ∈ Sv,c,

xc
v ∈ {0, 1}, ∀v, c ∈ V, (3)

where Sv,c denotes the set of vertex cuts, separating v and c, defined as in the previous
section.

The main difference to the assignment variant is that we do now allow to assign nodes to
any other nodes and not only to some predefined centers. However, by definition of Sv,c, it
holds that {c} ∈ Sv,c for any v, c ∈ V . Thus xc

v will automatically be limited by xc
c. This

naturally leads to the property that nodes can only be assigned to c if xc
c = 1. Thus limiting∑

c∈V xc
c by k directly ensures that any solution of the ILP uses at most k centers.



J. Eube, K. Luo, D. Reineccius, H. Röglin, and M. Schmidt 63:9

If we relax the integrality constraint and only require that xc
v ≥ 0 for all v, c ∈ V also LP

(3) can be solved in polynomial time despite its exponential size. The drawback of this is
that for arbitrarily many nodes c′ ∈ V it can hold that xc′

c′ > 0 if the respective values are
sufficiently small. This means that other nodes can at least partially be assigned to them
and we will call the value xc′

c′ the opening of c′.
The main focus of this section is to move these openings to a limited set of k centers

that will be determined by our algorithm such that reassigning the nodes accordingly is not
too expensive. To do this, we follow a similar approach as the LP rounding algorithm for
k-median by Charikar et al. [3]. In the first step, we will find a solution in which every
node is opened either by at least 1

2 or not opened at all (limiting the number of centers to
2k). In the latter steps these openings will then be made integral by first finding possible
replacements for some of the centers, which possibly allows us to close the respective centers,
and then choosing a subset of the centers of size k such that for every center itself or its
replacement is contained in this subset.

We will relax the connectivity constraint during the algorithm. We say for an α ∈ [0, 1] that
an assignment (xc

v)v,c∈V is an α-connected solution if
∑

c∈V xc
c ≤ k, ∀v ∈ V :

∑
c∈V xc

v ≥ 1
and for all v, c ∈ V and all cuts S ∈ Sv,c separating v and c it holds that

∑
v′∈S xc

v′ ≥
min(α, xc

v). To simplify notation, we will denote the weight of the minimum cut between two
nodes v and c (with respect to the values (xc

v′)v′∈V ) by sepx(v, c) = minS∈Sv,c

∑
v′∈S xc

v′ .
Then the last requirement can be reformulated as sepx(v, c) ≥ min(α, xc

v). It is easy to
verify that an assignment corresponds to a fractional solution for LP (3) if and only if it is
1-connected.

Now we give an overview over the different steps of the algorithm. Our main focus will
lie on the first step, which ensures that all centers will be half opened afterwards. This is due
to the fact that it introduces the largest amount of novel ideas and necessary modifications
compared to the existing algorithm by Charikar et al.:

Step 1. To obtain half-opened centers, let an optimal (fractional) LP solution x̃ be given. For
each v, let its mass be defined as mv =

∑
c∈V x̃c

v, its cost (or price) as pv =
∑

c∈V x̃c
v · d(v, c)

and its (average) radius as rv = pv

mv
. We say that an assignment of a node v to another

node c is good if d(v, c) ≤ 4rv. Since mv ≥ 1 for all nodes v ∈ V , we may observe that
because of Markov’s inequality at least 3

4 of v gets assigned via good assignments, i.e.,∑
c∈V :d(v,c)≤4rv

x̃c
v ≥ 3

4 .
We will simultaneously maintain two assignments (xc

v)v,c∈V and (yc
v)v,c∈V such that for

all v, c ∈ V initially xc
v = x̃c

v and yc
v = 0 and that at the end of the algorithm xc

v = 0. The
final values of yc

v will be the assignment using half opened centers. During the algorithm,
the combination of x and y will always be a 1

8k -connected solution, which means that the
following inequalities stay satisfied throughout the entire process:∑

c∈V

(xc
v + yc

v) ≥ 1 ∀v ∈ V (4)∑
c∈V

(xc
c + yc

c) ≤ k (5)∑
v′∈S

xc
v′ ≥ xc

v ∀v, c ∈ V, S ∈ Sv,c (6)

∑
v′∈S

yc
v′ ≥ min

(
1
8k

, yc
v

)
∀v, c ∈ V, S ∈ Sv,c (7)
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Figure 1 A sketch depicting a situation in which, at least if we require 1-connectivity, the total
assignment needs to increase if we apply a shift from c′ to c. The blue values denote the assignments
of the respective nodes to c′ before the shift, i.e., the xv′

v -values. We assume that xc
v = 0 for all

nodes v. Now if we apply a shift from c′ to c by xc′
c = 0.1, both c′ and c have an opening of 0.1.

Thus the nodes b, d, e all need to be assigned to c and c′ with value 0.1. If we would try to find
assignments of a, f and g such that for each node its total assignment to c and c′ is exactly 0.1 we
would need to set xc′

g = xc′
f = 0.1 to ensure the connectivity of b and d to c′. However this would

mean that yc
f = yc

g = 0 which would separate e from c. Thus to ensure connectivity, for at least one
node the total assignment after the shift needs to be larger than the assignment before the shift.

The algorithm will now maintain an initially empty center set C and repeat in an
alternating order the following two steps: First it decides for an additional node whether
it gets added to the center set or not (in the latter case it will be added to a so called
environment of an already existing center). Afterwards it shifts some openings in x (the xc

c

that are greater than 0) to already chosen centers c in C.
To get an intuition regarding the shifts, it can be beneficial to sometimes think about the

connectivity constraints not from a cut-perspective but to rather interpret the assignments
as flows. Using the max-flow min-cut theorem, it is easy to see that if we interpret the values
(xc′

v′)v′∈V as node capacities then there exists a flow from a node v to a node c′ of value f

exactly if sepx(v, c′) ≥ f . Thus our connectivity constraint implies that there always exists a
flow from v to c′ of value xc′

v . By basically reverting this flow for a center c ∈ C and a node
c′ ∈ V we are able to shift an opening of value xc′

c from c′ to c. One important question is
now how the nodes that were previously assigned to c′ get assigned. If xc′

c was equal to xc′

c′ ,
the entire opening of c′ can be shifted and we can simply reassign all nodes to c by setting
yc

v = yc
v + xc′

v and xc′

v = 0 for any v ∈ V . However, if xc′

c was smaller than xc′

c′ only a fraction
of the opening of c′ gets shifted and we basically have to split up the previous assignments
to c′ between c and c′. As Figure 1 shows this can lead to situations in which the total
assignment to c and c′ after this shift actually needs to be larger than the assignment before
this shift. Since it is actually rather involved to determine the new values in this situation, a
formal description will only be provided in the full version of this work. To get an intuition
regarding the algorithm it is for now sufficient to only consider the first case.

Since either way also the assignments of nodes assigned to c′ have to be shifted in this
situation, we have to make sure that the distances of the respective shifts are not too large
which the algorithm will ensure by only allowing shifts with a rather small distance between
c and c′ in the beginning and increasing this distance over time. More details will follow
later.

While the shifts depend on the chosen centers C, the choice whether a node v will be
added to C in turn depends on the shifts that have already been performed before v gets
considered by the algorithm. The algorithm terminates once it has decided for every node
whether it gets added to C and all openings in x have been shifted.

To determine which nodes should be added to C, we iterate over all nodes ordered by
their radii in increasing order and check whether we can open them by at least 1

2 . To be more
precise, a node v will be chosen as a center if the sum of the remaining good assignments
(xc′

v )c′∈V is at least 1
2 . The construction of the algorithm will ensure that it will shift at least
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all remaining openings belonging to good assignments of v to v itself which means that v will
be at least half opened. When v is added to the center set we also create its environment
Sv = {v}, which initially only contains v itself.

In the case that v does not get chosen as a center, we know that there were at least 1
4

of good assignments of v that have already been shifted to other centers in C. Since every
center in C gets at least half opened and the entire opening is limited by k, we know that
|C| ≤ 2k and thus there exists at least one center to which 1

8k of the good assignments
of v have been shifted. One critical property of the algorithm will be that before v gets
considered, the distance between the source c′ and target c of any shift will be at most 4rv.
Thus for any good assignment to a node z whose opening has been shifted to a center c we
have that d(v, c) ≤ d(v, z) + d(z, c) ≤ 8rv. As a result we may conclude that there exists a
center c ∈ C such that yc

v ≥ 1
8k while d(v, c) ≤ 8rv and we add v to the environment Sc of

the closest center c fulfilling these requirements.
Adding v to this environment allows us to shift some openings of a node c′ with xc′

v > 0
over the node v to c even if there does not exist a direct flow from c to c′ (i.e., c is not
assigned to c′). The intuition behind this is that we first revert the flow from v to c′ and thus
are already shifting the opening to v. Now by combining yc

v ≥ 1
8k and Property (7) we know

that already before this shift the minimum cut between v and c has value at least 1
8k . Thus

if we are moving the opening (and the assignments to it) to c instead of v itself we know that
the solution still stays 1

8k -connected. Furthermore since v and c are not too far apart, we
know that the distances of these shifts does not increase too much compared to a direct shift
to v. This will help us ensuring that if the openings of some nodes, to which v got assigned,
get shifted to some other centers then the distance added by this shift will not be too large.

Every time after a new node v gets added to either C or to an environment Sc of a center
c ∈ C we will go over all possible shifts ordered by their distances in increasing order, and
perform all shifts with distance at most 4rnext, where rnext denotes the radius of the next
node that will be considered by the algorithm. Note that any shift with radius ≤ 4rv

can
only result from the addition of v to Sc or C because any shift not involving v would already
have been applied in the last iteration (as rv is the previous value of rnext). As a result all
those shifts will be performed before any shift not involving v will be executed. This directly
guarantees that if v is added to C then all openings belonging to good assignments will be
shifted to v, which ensures that v is half opened.

An important property of the shifts is that if we shift some opening of a node c′ ∈ V over
a node v ∈ V then afterwards xc′

v = 0 which ensures that for all v, c′ ∈ V we will only shift
some opening of c′ over v at most once, limiting the number of shifts by |V |2. Additionally
after we have added v to C or a set Sc there always exists a possible shift while xc′

v > 0 for a
c′ ∈ V . Thus, it is possible to execute the described algorithm for a polynomial time until
for every v, c′ ∈ V , xc′

v = 0 and then return (yc
v)v∈V,c∈C . A pseudocode summarizing the

structure of the described procedure can be found in Algorithm 1. The cost of the resulting
1

8k -connected solution is bounded by O(k) times the cost of the LP solution x̃.

Step 2. Now we would like to reduce the number of centers to at most k. However, if we
want to reduce the opening of a center c ∈ C to 0, we will need to find a suitable replacement,
i.e., another center c̃ such that reassigning all nodes assigned to c to c̃ neither costs too much
nor violates our connectivity constraints (which is further relaxed to 1

16k -connectivity). To
do this we will need two properties of Algorithm 1:

For any node v we know that if a shift from another node c′ to a center c caused v to
be (partially) assigned to c then the radius rc of c can be bounded by the radius rv of v

and the distance from v to c′. To be more precise rc ≤ d(v, c′) + 2rv. Intuitively, if this
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Algorithm 1 The general structure of the first step.

Order v1, ..., vn according to their radii (rv)v∈V in increasing order
for v1, ..., vn do

Decide whether vi is added to the center set C or to an environment Sc of a
center c ∈ C

while A shift from a node v to a center c ∈ C with d(v, c) ≤ rvi+1 is possible do
Apply the cheapest shift

end
end

was not the case, then the algorithm would have shifted some opening of c′ either to v

itself (if v gets chosen as a center) or over v to another center c̃ ∈ C with v ∈ Sc̃ before c

was even added to the center set which would have prevented v from being assigned to c.
The main consequence of this property is that if we can find another center c̃ that is only
a constant times rc away from c then reassigning all nodes that are currently assigned to
c, to c̃ instead costs not too much.
Additionally for any center c it holds that if c got assigned to another center c̃ because
some opening got shifted from a node c′ to c then it holds that d(c, c̃) is bounded by
d(c, c′) + max(4rc, d(c, c′)) because otherwise a shift from c′ to c would have happened
before the shift to c̃. Since the average length of the original assignments of c was rc, one
can use this to identify a center c̃ that is not too far apart from c.

Using these two properties, we are able to split up C into two sets C1 and C1/2 such that
for every center c ∈ C1/2 we have a successor s(c) ∈ C such that the total cost that occurs if
we replace any center in C1/2 by its successor would not be too large and |C1| + 1

2 |C1/2| ≤ k.
Later we will then open all nodes in C1 as well as at most half the nodes in C1/2 to obtain a
integral center set C∗ such that for all nodes in C1/2 either the node itself or its successor is
contained in C∗.

To obtain these sets, we consider an arbitrary center c ∈ C and define ac = 1 − yc
c . Then

at least a total value of ac of the openings corresponding to the initial assignments of c (the
values x̃c′

c for any c′ ∈ V ) were shifted to other centers. If ac has value at least 1
4 , we are able

to use Markov’s inequality together with the second property to identify another center c̃

such that d(c, c̃) lies within O(rc) and c is already sufficiently connected to c̃ (i.e., yc̃
c ≥ 1

16k ).
We thus can set s(c) = c̃ and add c to C1/2.

However, if ac is rather small then it can be that all assignments of c to other centers c̃ only
resulted from shifts of nodes c′ to c̃ that are really far apart from c which means that c̃ can
be even further away. Additionally the assignments yc̃

c might also be quite small which means
that we would need to increase some existing assignments to c̃ to ensure 1

16k -connectivity if
we replace c by c̃. However, if there are multiple centers where the respective value ac is small
then we know that since

∑
c∈C(1 − ac) =

∑
c∈C yc

c ≤ k that if we add one of these centers to
C1/2 we can add multiple others to C1. Since we do not need a replacement for the centers in
C1, we can use a careful potential argument to redistribute parts of the replacement cost of
the centers added to C1/2 to the centers in C1 to bound the additional cost among all nodes.

Step 3. To decide which centers in C1/2 can be closed we have a look at the directed Graph
G1/2 = (C1/2, S), where S =

{
(c, s(c)) | c, s(c) ∈ C1/2

}
contains for any center in C1/2 an

edge to its successor if the latter is again contained in C1/2. If this graph is bipartite we can
simply take the smaller half of this partition and add this to the center set C∗. Then for every
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edge one of its two endpoints is contained in C∗ which ensures that for every center either
itself or its successor is contained in C∗. However, the graph might not directly be bipartite
because it can contain cycles of uneven length. But we can ensure by being a little bit more
careful in step 2 that any of these cycles contains at most one center c with ac < 1

4 . Using
this, we can remove the respective cycles and thus obtain a bipartite graph. For all centers
in C1/2 not added to C∗, we reassign all nodes assigned to them to the respective successor
s(c). Since we bounded the cost of replacing all centers in C1/2 and are only replacing a
subset of them, the total cost of this is again bounded. The entire cost still stays in O(k)
times the cost of the fractional LP solution x̃.

Step 4. After step 3, we have an 1
16k -connected solution only using integral centers. However

the assignments might still be fractional. By multiplying the assignments by 16k the solution
becomes 1-connected and similarly as for the assignment version in Section 2.1 we obtain
that for every node v there exists at least one center c such that xc

v ≥ 1. Again applying
the primal dual algorithm for node weighted Steiner trees, we obtain an entirely integral
solution:

▶ Theorem 9. For the non-disjoint connected k-median problem, there is a polynomial-time
algorithm with approximation factor O(k2 log n).
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