
A Dynamic Piecewise-Linear Geometric Index with
Worst-Case Guarantees
Emil Toftegaard Gæde #

Technical University of Denmark, Lyngby, Denmark

Ivor van der Hoog #

IT University of Copenhagen, Denmark

Eva Rotenberg #

IT University of Copenhagen, Denmark

Tord Stordalen
Technical University of Denmark, Lyngby, Denmark

Abstract
Indexing data is a fundamental problem in computer science. The input is a set S of n distinct
integers from a universe U . Indexing queries take a value q ∈ U and return the membership,
predecessor or rank of q in S. A range query takes two values q, r ∈ U and returns the set S ∩ [q, r].

Recently, various papers study a special case where the the input data behaves in an approximately
piece-wise linear way. Given the sorted (rank,value) pairs, and given some constant ε, one wants
to maintain a small number of axis-disjoint line-segments such that, for each rank, the value is
within ±ε of the corresponding line-segment. Ferragina and Vinciguerra (VLDB 2020) observe that
this geometric problem is useful for solving indexing problems, particularly when the number of
line-segments is small compared to the size of the dataset.

We study the dynamic version of this geometric problem. In the dynamic setting, inserting or
deleting just one data point may cause up to three line-segments to be merged, or one line-segment
to be split at most three-way. To determine and compute this, we use techniques from dynamic
maintenance of convex hulls, and provide new algorithms with worst-case guarantees, including an
O(log n) algorithm to compute a separating line between two non-intersecting convex hulls – an
operation previously missing from the literature.

We then use our fully-dynamic geometry-based subroutine in an indexing data structure, com-
bining it with a natural hashing technique. The resulting indexing data structure has theoretically
efficient worst-case guarantees in expectation. We compare its practical performance to the solution
of Ferragina and Vinciguerra, which was shown to perform better in certain structured settings [Sun,
Zhou, Li VLDB 2023]. Our empirical analysis shows that our solution supports more efficient range
queries in the special case where the update sequence contains many deletions.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Algorithms Engineering, Data Structures, Indexing, Convex Hulls

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.64

Related Version Full Version: https://arxiv.org/abs/2503.05007

Supplementary Material
Software (Source Code): https://github.com/Sgelet/DynamicLearnedIndex [18]

archived at swh:1:dir:b8763eb0504d33beb81ee89d230a30dca8ab0b66
Software (Test Bed): https://github.com/Sgelet/LearnedIndexBench [19]

archived at swh:1:dir:07ea25cfc176438933c1a5507bfdad3ba9461ab6

Funding This work was supported by the Carlsberg Foundation Fellowship CF21-0302 “Graph
Algorithms with Geometric Applications”, the VILLUM Foundation grant (VIL37507) “Efficient
Recomputations for Changeful Problems”, and the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 899987.

Acknowledgements We thank Linda Kleist for reading this paper and correcting our constants.
© Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 64; pp. 64:1–64:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:etoga@dtu.dk
https://orcid.org/0009-0001-9462-6359
mailto:ivva@itu.dk
https://orcid.org/0009-0006-2624-0231
mailto:erot@itu.dk
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.ESA.2025.64
https://arxiv.org/abs/2503.05007
https://github.com/Sgelet/DynamicLearnedIndex
https://archive.softwareheritage.org/swh:1:dir:b8763eb0504d33beb81ee89d230a30dca8ab0b66;origin=https://github.com/Sgelet/DynamicLearnedIndex;visit=swh:1:snp:4cb5f98448fd35e1092239476b3dd4b7fa157fa9;anchor=swh:1:rev:e668899dab95046384f68723e53e0aacbad32feb
https://github.com/Sgelet/LearnedIndexBench
https://archive.softwareheritage.org/swh:1:dir:07ea25cfc176438933c1a5507bfdad3ba9461ab6;origin=https://github.com/Sgelet/LearnedIndexBench;visit=swh:1:snp:b64d98b5a181116695f4f7960511292c6601df13;anchor=swh:1:rev:c3ad0ca2e0149fd2be070b37ba57b12a447bbf71
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

64:2 A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

1 Introduction

We investigate the use of learned indices for the design of dynamic indexing data structures.

Indexing data structures. An indexing data structure maintains a set S of n distinct
integers from a universe U . Let RANK : S → [n] be the function mapping each s ∈ S to its
index in the sorted order of S. The objective is to support the following indexing queries:

member(q) returns true if q ∈ S.
predecessor(q) returns max{t ∈ S | t < q}. (We allow q /∈ S.)
rank(q) returns RANK(predecessor(q)) + 1. (We allow q /∈ S.)

Additionally, we consider range queries, where k denotes the output size:
range(q, t) returns S ∩ [q, t]. (We allow q, t /∈ S.)

Static indexing data structures fall into three broad categories: Tree-based solutions store
S in a sorted array A, requiring no additional space but incurring logarithmic query costs.
Tree traversals enable predecessor, rank, and member queries in O(log n) time and range
queries in O(log n + k) time [1, 3, 32, 37]. Map-based solutions store S in sorted order
and maintain a hash map H : S → [n] mapping each element to its rank [4, 23, 31]. This
enables constant-time support for member, predecessor, and rank queries if queries are
restricted to elements of S, and O(k) time for range queries when both endpoints lie in
S. The additional space is O(n). A third category use what are called learned indices, a
recently introduced term [24, 20, 16, 22, 8]. Given an integer parameter ε, a learned index is
a function hε : U → [0, n] such that

hε(q) ∈ [rank(q)− ε, rank(q) + ε].

The function hε is learned from S and used to guide search in a sorted array A storing
S. Ferragina and Vinciguerra [16] interpret hε geometrically: each s ∈ S maps to a point
(RANK(s), s) in the plane, and hε is learned as a piecewise-linear approximation to FS .

A notable instance of learned indices is the PGM index [16], where hε is a y-monotone
piecewise-linear function made of segments, with the property that each point in FS lies
within an ε-wide horizontal strip around some segment. Let |hε| denote the number of
segments. The data structure supports indexing queries in O(ε + log |hε|) time and range
queries in O(ε + k + log |hε|) time. They also show how to construct a PGM index in linear
time, such that there exists no PGM index h′

ε with |hε| > 2|h′
ε|. Ferragina and Vinciguerra

argue that learned indices are the “best of both worlds” since:
the supported queries are as general as those supported by tree-based solutions,
the solution uses only O(|hε|) additional space, and
O(ε + log |hε|) is, for an appropriate choice of ε, efficient in practice.

Their performance has been empirically benchmarked in several studies [15, 24, 38, 37].

Dynamic indexing data structures. Due to their fundamental role, dynamic indexing
structures have received extensive theoretical and practical attention. When S is dynamic,
maintaining a sorted array becomes inefficient. Tree-based structures can be updated in
O(log n) time with tree rotations. Map-based approaches allow constant-time member updates
but are typically not extended to support other indexing queries. Learned indices offer a
promising direction by exploiting structural properties of S, akin to parametrised algorithms.
However, just as parametrised algorithms, data structures based on learned indices are not
always efficient: if S lacks exploitable structure or access patterns are skewed, traditional

E. T. Gæde, I. van der Hoog, E. Rotenberg, and T. Stordalen 64:3

a) b) c)

q (hε(q), q)

q′

(hε(q
′), q′)

2ε

Figure 1 (a) a set of n values S. (b) S corresponds to an xy-monotone point set FS . (c) The
PGM index computes a y-monotone set of segments that starts and ends with a vertical halfline.

indexing data structures are preferred [33, 26]. Experimental studies have examined properties
of learned indices [14, 13, 26, 33], in an effort to classify when they are appropriate to use.
As a brief summary, learned indices pay a price in updates [26], and traditional indices are
preferred if S or the access pattern is complex or skewed, or if concurrency is possible [33].
If there is sufficient structure, both space usage and access times can benefit from learned
indices [13, 14], subject to the strategy employed by the learned index.

Dynamic learned indices through the logarithmic method. The logarithmic method of
Overmars [29] provides an amortised way to maintain learned indices. S is partitioned into
⌈log n⌉ buckets Bi, each of size 2i. Each bucket is either full or empty, and stores its contents
in an array Ai in sorted order and maintains a learned index hi

ε over Ai.
Let the learned index hε have a construction time of T (n). This data structure can be

maintained insertion-only in amortised O(T (n) log n) time. An insertion inserts a new value
into B0. Let j be the maximum integer such that all Bi for i ∈ [0, j − 1] are full. This
approach empties these buckets, fills Bj in sorted order, and constructs (Aj , hj

ε) in O(T (2j))
time. Whenever we delete some s ∈ S, this approach instead inserts a tombstone s∗, which
is a special copy of s. If an insertion fills a new bucket Bj , it first iterates over all elements.
If Bj contains both s and s∗, it removes both elements. It then constructs (Aj , hj

ε) twice.
Once on all “normal” values, and once on all tombstones in Bj . This way, deletions take the
same time as insertions do. In this paper, we consider the following open question:

“Can a learned index be dynamically be maintained with worst-case guarantees?”

Intermezzo: computing a line cover. The interpretation of learned indices by Ferragina
and Vinciguerra [16] translates to a geometric problem where the goal is to (approximately)
cover a monotone set of two-dimensional points by a set of line segments. Using the
logarithmic method, and the static algorithm of O’Rourke [27] to approximately points,
they dynamically maintain an ε-cover : a set of lines that are guaranteed to be within an
ε horizontal distance from each point. We consider the problem of maintaining dynamic
ε-covers to be an interesting geometric problem in its own right.

From learned indices to indexing data structures. Under the logarithmic method, indexing
queries decompose naturally across the buckets:

For member(q), q ∈ S if and only if there exists an i ∈ [⌈log n⌉] with q ∈ Bi.
For predecessor(q), the output is the maximum predecessor across Bi for i ∈ [⌈log n⌉].

ESA 2025

64:4 A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

For rank(q), the rank is the sum of all ranks of q in Bi for i ∈ [⌈log n⌉].
For range(q, t), the reported range is the union of all ranges in Bi for i ∈ [⌈log n⌉].

This way, indexing queries require only an additional factor O(log n) time. Indexing queries
can be answered by combining queries to both the normal and tombstone structures. E.g.,
rank(q) is the rank of q in the “normal” data structure minus the rank of q in the tombstone
structure. This approach has two downsides:

First, approach has an amortised update time.
Second, this approach does not support output-sensitive range queries – as there may be
O(n) values s that (together with their tombstones s∗) lie in between a query pair (q, t).

This leads to the following open question:

“Can a dynamic learned index be converted into an output-sensitive dynamic indexing
data structure with worst-case guarantees?”

Contribution and organization. We propose maintaining a dynamic ε-cover (and thereby a
dynamic learned index) via dynamic convex hull techniques. Section 3 shows that deciding
whether S admits an ε-cover of complexity 1 is equivalent to convex hull intersection testing
(Figure 2). Section 4 shows a robust algorithm to compute the intersection between two
convex hulls in O(log n) time. We adapt our algorithm to output a separating line (which is
a learned index of complexity 1) in the negative case. Section 5 combines these with dynamic
convex hull data structures to yield a dynamic learned index worst-case O(log2 n) update
time. We empirically compare our learned index to the PGM index from [16].

Section 6 introduces a novel hashing-based approach to convert learned indices into
dynamic indexing data structures, using O(ε−1) additional expected overhead. We compare
our dynamic indexing structure to the amortised PGM index of [16] in terms of update time
and index complexity. We do not benchmark against traditional indexing data structures –
since the relation between learned and traditional indices is previously studied [33]. Instead,
our goal is to push the theoretical limits and worst-case guarantees of learned indices.

a) b) c) d)

Figure 2 For any set FS , we construct two convex hulls. We prove that there exists a segment ℓ

within L∞-distance ε of all points in FS if and only if these hulls do not intersect. We adapt the
convex hull intersection testing algorithm to find ℓ whenever these hulls are disjoint.

2 Preliminaries

The input is a dynamic set S of n distinct positive integers from some universe U . For a, b ∈ Z
with a ≤ b, we define S[a, b] as the set S ∩ [a, b]. We denote by FS the two-dimensional
point set obtained by mapping each s ∈ S to (RANK(S), s). Throughout this paper, we
distinguish between positions and strict positions. E.g., lying above or strictly above a line.

E. T. Gæde, I. van der Hoog, E. Rotenberg, and T. Stordalen 64:5

▶ Definition 1 ([16]). Let ε be a positive integer. A PGM index hε of S is defined as a
y-monotone set of segments that together cover the y-axis. We regard hε as a map from
y-coordinates to x-coordinates and require that for all q ∈ U , hε(q) ∈ [rank(q)−ε, rank(q)+ε].

Ferragina and Vinciguerra [16, Lemma 1] wrongfully claim an O(n)-time algorithm to
compute a minimum complexity PGM index hε. They invoke a streaming algorithm by
O’Rourke [27] for fitting straight lines through data ranges. We show that this algorithm
outputs a PGM index hε such that there exists no PGM index h′

ε with |hε| > 2h′
ε (see the

full version for details). Their algorithm restricts S to contain no duplicates. We assume the
same setting and compute something slightly different as we define an ε-cover instead:

▶ Definition 2. Let ε be a positive integer. We define an ε-cover f of S as a set of vertically
separated segments with slope at least 1 where all (r, s) ∈ FS are within L∞-distance ε of f .

An ε-cover has a functionality and complexity similar to a learned index:

▶ Observation 3. Let f be an ε-cover and Q be a horizontal line with height q ∈ [min S, max S].
Let (s, t) be the segment in f closest to q. Then (line(s, t)∩Q).x ∈ [rank(q)−2ε, rank(q)+2ε].

▶ Observation 4. For fixed ε, let k denote the minimum complexity of any PGM index of S.
If f is an ε-cover of S of minimum complexity, then f contains at most k − 2 edges.

▶ Definition 5. For any fixed ε-cover f of S, we define Λ(f) as the set of pairwise interior-
disjoint one-dimensional intervals that correspond to the y-coordinates of segments in f .

Dynamic convex hulls. We dynamically maintain an ε-cover f of S of approximately
minimum complexity. To this end, we use a result by Overmars and van Leeuwen [30] to
dynamically maintain for all [a, b] ∈ Λ(f) the convex hull of FS[a,b]. For any point set F ,
denote by CH(F) their convex hull. The data structure in [30] is a balanced binary tree over
F , which at its root maintains a balanced binary tree over the edges CH(F) in their cyclical
ordering. It uses O(n) space and has worst-case O(log2 n) update time.

Rank-based convex hulls. For any update in S, up to n values in FS may change their
x-coordinate. This complicates the maintenance of a dynamic data structure over F . Gæde,
Gørtz, van Der Hoog, Krogh, and Rotenberg [17] observe that all algorithmic logic in [30]
requires only the relative x-coordinates between points. They adapt [30] to give an efficient
and robust implementation of what they call a rank-based convex hull data structure T (S)
with O(log2 n) update time. For ease of exposition, we overly simplify their functionality:

For each [a, b] ∈ Λ(f), we store S[a, b] in T (S[a, b]). T (S[a, b]) maintains a balanced
binary tree γ(S[a, b]) storing the edges of CH(FS[a,b]) in their cyclical ordering. We use this
data structure as a black box, using the following functions that take at most O(log2 n) time:

T (S[a, b]).get_hull() returns the tree γ(S[a, b]).
T (S[a, b]).split(v) returns, for v ∈ [a, b], T (S[a, v]) and T (S[v, b]).
T (S[a, b]).split(T ([S[b, c])) returns T (S[a, c]).
T (S[a, b]).update(v) updates, for v ∈ [a, b], the set S (deleting or inserting v).

3 Testing whether a set can be ε-covered by a single segment

We consider the following subproblem: given a parameter ε, a set S of n distinct integers,
and the edges of CH(FS) stored in a balanced binary tree, can we compute in O(log n) time
whether there exists an ε-cover f of complexity 1? Formally, we seek a line ℓ of slope at least

ESA 2025

64:6 A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

1 such that all points in FS lie within L∞-distance ε of ℓ. Let L (resp. U) denote the set
obtained by shifting each p ∈ FS downwards and rightwards (resp. upwards and leftwards)
by ε, and adding the point (∞,−∞) (resp. (−∞,∞)).

▶ Lemma 6. Let ℓ be a line of slope at least 1. Then all points in FS lie within L∞-distance
ε of ℓ if and only if ℓ lies below all points in U and above all points in L.

Proof. Any line with positive slope lies above (∞,−∞) and below (−∞,∞). Consider a
point p ∈ FS and the two corresponding points l ∈ L and u ∈ U and denote by C an
axis-aligned square of radius ε centred at p. If ℓ lies below l then all points on ℓ left of l lie
below C. If ℓ lies above u then all points on ℓ right of u lie above C. If ℓ lies above l and
below u then because ℓ has positive slope, it must intersect C. The statement follows. ◀

▶ Corollary 7. ℓ is an ε-cover of S iff it has a slope ≥ 1 and separates CH(L) from CH(U).

Given CH(FS), we can extract CH(L) and CH(U) in O(log n) time. Chazelle and Dobkin [6,
Section 4.2] remark that, in the negative case, convex hull intersection testing can be modified
to produce a separating line. In our setting, the hulls consist of segments with slope at least
1, and any such separator corresponds to an ε-cover. Thus, our problem reduces to the
classical convex hull intersection problem and we are seemingly done.

However, the history of convex hull intersection testing is long and intricate. Both Chazelle
and Dobkin [6] and Dobkin and Kirkpatrick [10] independently proposed the first O(log n)-
time algorithms. In 1987, Chazelle and Dobkin [5] presented a more detailed description of
their method. Dobkin and Kirkpatrick revisited their own work in 1990 [11], proposing a
unified O(log2 n)-time algorithm for polyhedron intersection, which O’Rourke later identified
as incorrect [28]. He corrected the argument and provided a C-implementation. Further
work by Dobkin and Souvaine [9] noted that earlier implementations lacked robustness. More
recently, Barba and Langerman [2] observed that the community still lacked a complete,
robust algorithm for polyhedral intersection. They proposed an alternative O(log n) algorithm
based on polar transformations. Walther’s master’s thesis [35], supervised by Afshani and
Brodal, implemented both this and earlier methods, but the source code is no longer available.

This 35-year history highlights the complexity and subtlety of convex hull intersection
testing. Despite its history, no robust and modern O(log n)-time implementation is available.
Moreover, no published algorithm explicitly computes a separating line in the negative case.

Contribution. In the full version, we present a robust O(log n)-time algorithm for convex hull
intersection testing. Our algorithm is specialised to convex hulls composed of positively sloped
segments and including the points (∞,−∞) and (−∞,∞). We formally prove its correctness
and adapt it to compute a separating line in the negative case, thereby constructing an
ε-cover of complexity 1 when it exists. The later adaption and its analysis are nontrivial,
and arguably (partly) fill a gap in the existing literature on convex hull intersection testing.

▶ Theorem 8. Let A and B be convex chains of edges with slope at least 1, stored in a balanced
binary tree on their left-to-right order. There exists an O(log n) time to decide whether there
exists a line that separates A and B. This algorithm requires only orientation-testing for
ordered triangles and can output a separating line whenever it exists.

4 Robustness

A geometric predicate is a function that takes geometric objects and outputs a Boolean. Our
algorithms compute geometric predicates and use their output to branch along a decision
tree. In FS , consecutive points differ in x-coordinate by exactly 1 whilst their y-coordinate

E. T. Gæde, I. van der Hoog, E. Rotenberg, and T. Stordalen 64:7

may wildly vary. Consequently, any segment that ε-covers a subsequence of FS is quite steep.
This quickly leads to rounding errors when computing geometric predicates, which in turn
creates robustness errors. To illustrate our point, we discuss one of our main algorithms:

Algorithm 1 intersection_test(edge α ∈ CH(A), edge β ∈ CH(B)).

1: if α = null OR β = null then
2: return No
3: end if
4: s(α, β) = line(α) ∩ line(β)
5: if If s ∈ α and s ∈ β then
6: return Yes
7: end if
8: if α.slope < β.slope then
9: if α.first.x > s(α, β).x then

10: return intersection_test(α.left, β)
11: else if β.first.x > s(α, β).x then
12: return intersection_test(α, β.left)
13: else if α.first.x > β.second.x AND α.first.y > β.second.y then
14: return intersection_test(α.left, β)
15: else if α.second.x < β.first.x AND α.second.y < β.first.y then
16: return intersection_test(α, β.left)
17: else
18: return yes
19: end if
20: end if
21: if α.slope > β.slope then
22: if α.second.x < s(α, β).x then
23: return intersection_test(α.right, β)
24: else if β.second.x < s(α, β).x then
25: return intersection_test(α, β.right)
26: else if α.first.x > β.second.x AND α.first.y > β.second.y then
27: return intersection_test(α, β.right)
28: else if α.second.x < β.first.x AND α.second.y < β.first.y then
29: return intersection_test(α.right, β)
30: else
31: return yes
32: end if
33: end if

intersection_test (Algorithm 1) which determines whether an upper quarter convex
hull CH(A) and a lower quarter convex hull CH(B) intersect. We receive these hulls as two
trees. Our algorithm computes a few geometric predicates given the edges α and β stored at
their respective roots. Given (α, β), we either conclude that CH(A) and CH(B) intersect,
or, that all edges succeeding (or preceding) α (or β) cannot intersect the other convex hull.
Based on the Boolean output, our algorithm then branches into a subtree of α (or β). This
way, we verify whether CH(A) and CH(B) intersect in logarithmic time. Rounding causes
these predicates to output a wrong conclusion, and our algorithm may branch into a subtree
containing edges of CH(A) that are guaranteed to not intersect CH(B). Our algorithm then
wrongfully concludes that there exists a line ℓ separating CH(A) and CH(B). Subsequent
algorithms then exhibit undefined behaviour when they attempt to compute this line.

ESA 2025

64:8 A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

Geometric predicates. Our algorithms use on three predicates for their decision making:
slope. Given positive segments (α, β), output whether slope(α) < slope(β).
lies_right. Given two positive segments α and β with different slopes, output whether
the first vertex of β lies right of line(α) ∩ line(β).
wedge. Consider a pair of positive segments (α, γ) that share a vertex and define W

as the cone formed by their supporting halflines containing (∞,−∞). Given a positive
segment β outside of W , output whether line(β) intersects W .

The segments are given by points with integer coordinates. The slopes of these segments
(and thereby any representation of their supporting line) are often not integer. A naive
way to compute these predicates is to represent slopes using doubles. However, this is both
computationally slow and prone to rounding errors (and thus, robustness errors).

If we insist on correct output, one can use an algebraic type instead. This type represents
values using algebraic expressions. E.g., the slope of a positive segment (a, b) is the quotient:
b.y−a.y
b.x−a.x and so, in our case, it can be represented as a pair of integers. Algebraic types can
subsequently be accurately compared to each other. Indeed, if we want to verify whether
s
t < q

r we may robustly verify whether sr < qt using only integers. Exact (algebraic type)
comparisons are frequently implemented, and present in the CGAL CORE library [12].

However, exact comparisons are expensive. Our implementation of slope requires two
integer multiplications, which is still relatively efficient. Evaluating more complex expressions
requires too much time. As a rule of thumb, we want to avoid compounding algebraic types
to maintain efficiency. Naïvely, lies_right compounds two quotients and wedge compounds
three. We give robust implementations of these functions by invoking three subfunctions.
These compare slopes, or whether a point lies above or below a supporting halfplane:

slope((a, b), (c, d)) :=(b.y − a.y) · (d.x− c.x) < (d.y − c.y) · (b.x− a.x)
above_line((a, b), c) :=(b.x− a.x)(c.y − b.y)− (c.x− b.x)(b.y − a.y) ≥ 0
below_line((a, b), c) :=(b.x− a.x)(c.y − b.y)− (c.x− b.x)(b.y − a.y) ≤ 0

We can create lies_right from our robust predicates (see Figure 3 (a)):

▶ Lemma 9. Let α = (a, b) and β = (c, d) be two positive segments of different slope. Then:

lies_right(α, β) =
(
slope((a, b), (c, d)) == above_line((a, b), c)

)
∨

(
slope((c, d), (b, c)) == below_line((a, b), c)

)
Proof. Suppose that slope(α) < slope(β). Then c lies right of line(α) ∩ line(β) if and only
if c lies above the halfplane bounded from above by line((a, b)). That happens if and only if
(a, b, c) are collinear or make a counter-clockwise turn. This in turn occurs if and only if the

determinant if the matrix
∣∣∣∣(b.x− a.x) (c.x− b.x)
(b.y − a.y) (c.y − b.y)

∣∣∣∣ is zero or more. If slope(α) > slope(β)

the determinant must be negative instead. ◀

Similarly, we can create wedge from our robust predicates. We note for the reader that
explain our equations in words in the proof of the lemma:

▶ Lemma 10 (Figure 3 (b)). If α = (a, b), γ = (b, c) and β = (d, e) be three segments of
positive slope where W =←−α ∪ −→γ bounds a convex area containing (∞,−∞). Then

wedge(α, γ, β) :=(
below_line((b, c), d) ∧

(
above_line((d, e), b) ∨ slope((a, b), (d, e)

))
∨(

below_line((a, b), e) ∧
(
above_line((d, e), b) ∨ slope((d, e), (b, c))

))
∨(

¬below_line((a, b), e) ∧ ¬below_line((b, c), d) ∧
(
slope((a, b), (d, e)) ∨ slope((b, c), (d, e))

))

E. T. Gæde, I. van der Hoog, E. Rotenberg, and T. Stordalen 64:9

Proof. The predicate is a case distinction of three mutually exclusive cases.
If the first vertex of β lies below the supporting line of γ then line(β) intersects W if

and only if it intersects ←−α . This happens if and only if one of two conditions hold: either b

lies below the supporting line of b, or, slope(α) < slope(β).
If the second vertex of β lies below line(α) then the argument is symmetric.
If neither of those cases apply then both endpoints of β must lie in the open green area.

In this case, whenever slope(α) < slope(β), the supporting line of β always intersects W .
Whenever slope(β) < slope(γ), the supporting line of β always intersects W . Whenever
slope(α) ≥ slope(β) ≥ slope(γ), the supporting line of β cannot intersect W . ◀

a)

β

α

b)

β

α

a
b

c

d

e

a
b

c

d
e

Figure 3 (a) We reduce testing whether the first vertex of β lies right of the intersection point to
comparing slopes and the orientation of a triangle. (b) If d lies below the halfplane of line(b, c) then
line((d, e)) intersects the wedge if and only if b lies below line((d, e)).

5 Dynamically maintaining a learned index

We dynamically maintain a learned index hε of S by maintaining an ε-cover f of S. We
guarantee that there exists no ε-cover f ′ of S with |f | > 2|f ′|. By Observation 3, we obtain
a learned index hε. By Observation 4, there exists no PGM index hε where |f | > 2|hε|.

To maintain f , we maintain a balanced binary tree B(f) over Λ(f). Additionally, for
each [a, b] ∈ Λ(f), we maintain a rank-based convex hull T (S[a, b]) of S[a, b] as described
in [17]. We note that we store all segments in f using relative x-coordinates. That is, we
assume for all [a, b] ∈ Λ(f) that the rank of the first element in S[a, b] is zero. We may then
use B(f) to “offset” each line to compute the actual coordinates in rank-space.

▶ Theorem 11. We can dynamically maintain an ε-cover f of S in O(log2 n) worst-case
time. We guarantee that there exists no ε-cover f ′ of S where |f | > 2|f ′|.

Proof. The proof is illustrated by Figure 4. For any s, t ∈ Z with s ≤ t, we say that S[s, t]
is blocked if there exists no ε-cover of S[s, t] of size 1. We maintain an ε-cover f where for
all consecutive intervals [a, b], [c, d] ∈ Λ(f), S[a, d] is blocked. Thereby, |f | ≤ 2|f ′| for any
ε-cover f ′ of S (we give a proof of this fact in the full version).

We consider inserting a value s into S; deletions are handled analogously. We query
B(f) in O(log n) time for an interval [a, b] that contains s. If no such interval exists, set
[a, b] = [s, s]. We search T (S[a, b]) and test whether s ∈ S. If so, we reject the update.

Otherwise, we remove [a, b] from Λ(f) and insert the intervals ([a, s], [s, s], [s, b]). We
obtain T (S[a, s]), T (S[s, s]) and T (S[s, b]) through the split operation.

Let ([w, x], [y, z], [a, s], [s, s], [s, b], [c, d], [e, f]) be consecutive intervals in Λ(f) and denote
I = ([y, z], [a, s], [s, s], [s, b], [c, d]) (see Figure 4 (c)). For each (s, t) ∈ I, we have access to
T (S[s, t]). For any consecutive pair ([s, t], [q, r]) in I, we may join the trees T (S[s, t]) and
T (S[q, r]) in O(log2 n) time to obtain T ([s, r]). We invoke T ([s, r]).get_hull() and apply

ESA 2025

64:10 A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

Theorem 8 to test in O(log2 n) total time whether S[s, r] is blocked. If it is not, we replace
[s, t] and [q, r] by [s, r]. Otherwise, we keep T (S[s, r]) and a complexity-1 ε-cover of S[s, r].

By recursively merging pairs in I, we obtain in O(log2 n) time a sequence I ′ of intervals
([y, β], . . . , [γ, d]) where consecutive intervals are blocked. Since [y, z] ⊆ [y, β], ([w, x], [y, β]) is
blocked. Similarly, ([γ, d], [e, f]) must be blocked. We remove the line segments corresponding
to I from f and replace them with line segments derived from I ′ in constant time. As a
result, we maintain our ε-cover f and our data structure in O(log2 n) total time. ◀

a) b)

[y, z]

[a, b]

[c, d]

[e, f]

[w, x]

c) d)

s I I ′

Figure 4 (a) Let S be a set of values and let us insert s. (b) We consider our ε-cover f and five
consecutive intervals in Λ(f). (c) We create seven intervals by splitting [a, b] on s. (d) By recursively
merging intervals in I, we obtain a set of intervals I ′ where consecutive intervals are blocked.

6 From an ε-cover to an indexing structure

A learned index hε does not immediately support indexing and range queries. We obtain
an indexing structure by combining hε with a hash map H. Combining learned models
with hash maps is not new [25, 34, 36] and this technique has even been applied to learned
indexing [24]. The core idea is to store S in an unordered vector A and maintain a Hash
map H : Z 7→ [n]. Given some q ∈ U , the learned function then produces a value v such that
A[h(v)] is “close” to q. It is compelling to create H such that A[H(h(q))] is (approximately)
the predecessor of q. However, dynamically, this approach fails for the same reason that
storing each s ∈ S at A[rank(s)] fails. Since the ranks of elements in S are constantly
changing, we build a hash map using the parts of S that remain constant: the values.

Our data structure. In the full version, we define a data structure independent of the
learned index hε (we illustrate our approach in Figure 5 (a) + (b)). A page p is an integer
with a vector that stores all s ∈ S where ⌊ s

ε⌋ = p, in order. We store all non-empty pages P

in an unordered vector A. We maintain a hash map H : P → [|A|], where A[H(p)] contains
the page p. We additionally maintain a doubly linked list over all pages in P , arranged in
sorted order.

Our queries. We restrict our learned index hε to a vertical ε-cover. I.e., hε is a y-monotone
collection of line segments such that for all points p ∈ FS , a vertical line segment of height
2ε centred at p intersects a segment in hε. We compute hε oblivious of our paging structure.

E. T. Gæde, I. van der Hoog, E. Rotenberg, and T. Stordalen 64:11

Given q ∈ U , we project q onto hε (Figure 5 (d)). We project to the x-axis, floor the
value, and project back to hε. We prove that the resulting y-value corresponds to the page p

containing predecessor(q). This way, we answer predecessor using O(ε + log |hε|) time.
As a result, we dynamically maintain a learned index hε and a data structure that updates

in O(ε + log2 n) and supports indexing queries in O(ε + log |hε|) expected time (Theorem 12).

a)

c)

5
6
7
8
9
10
11
12
13

A :

ε = 10

103

102

123

122

61

60

85

80

59

57

135

131

78

76

128 67 86

88

139

10 12 6 8 11 1313 75

b)

105

59

57

106

d) ⌊ b
ε⌋

(a, b)

Figure 5 An illustration of our approach in the full version.

▶ Theorem 12. For any ε, there exists a data structure to dynamically maintain a vertical
ε-cover F of a dynamic set of distinct integers in O(ε + log2 n) time. We guarantee that
there exists no vertical ε-cover F ′ with |F | > 2|F ′|. The data structure supports indexing
queries in O(ε + log |F |) expected time and range queries in additional O(k) time where k is
the output size.

7 Experiments

Our implementation is written in C++ and made publicly available [18]. We compare to
the C++ implementation in [16], which uses a PGM index under the logarithmic method.
The experiments were conducted on a machine with a 4.2GHz AMD Ryzen 7 7800X3D and
128GB memory. Our test bench is available [19], and can replicate experiments, generate
synthetic data, and produce plots. As input we consider two synthetic data sets and two real
world data sets. Three contain data of geometric nature, with one of random nature to align
with precedent. Each set consists of unique 8 byte integers in randomly shuffled order. In
the full version, we showcase additional experiments on other datasets.

LINES is a synthetic data set of 5M integers that, in rank space, produces 5 lines of
exponentially increasing slope. This set models the ideal scenario for a PGM index.
LONGITUDE is a real world data set that contains the longitudes of roughly 246M
points of interest from OpenStreetMap, over the region of Italy. This data is thereby
inherently of geometric nature. This data set was used in both [16] and [21]. We follow [16]
and convert the data to integers by removing the decimal point from the raw longitudes.

ESA 2025

64:12 A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

UNIF originates from [16]. It is a synthetic data set, containing a uniform random
sample of 50M integers from (0, 1011). We adapt this data set to our dynamic setting.
DRIFTER is a real world data set, containing roughly 1.7M steps of accumulated
distance travelled by ocean drifters tracked through GPS [7].

Measurements. We compare the quality of the learned indices based the complexity of hε,
in a dynamic setting. We use the same choice of ε = 64 as in [16] across our experiments. For
performance of the indexing structures, we measure their time per operation in a dynamic
scenarios with a range of query to update ratios. We note that logarithmic PGM is by default
equipped with an optimisation that avoids building a PGM for data below a certain size. In
this case, it instead only uses an underlying sorted array without additional search structure.
In order to properly compare the performances, this optimisation has been disabled.

7.1 The learned index complexity

Figure 6 presents the complexity of the learned indices, measured by the number of line
segments maintained during random-order insertions. The behaviour differs between datasets.
For the geometric Lines and Longitude datasets, the dynamic and logarithmic PGMs
initially perform similarly. As the data grows, the performance of the logarithmic PGM
degrades and its jagged progression reflects its logarithmic partitioning.

On the highly structured synthetic Lines data, the logarithmic method consistently
retains more segments than necessary. It misses the optimal line count by a wide margin due
to its fragmentation across O(log n) buckets. A similar pattern appears in the Longitude
dataset, where the logarithmic PGM maintains roughly 50 percent more segments than our
solution. We note that precisely on these structured data sets, the complexity of the learned
indices is o(n). I.e., precisely here one also expects improvements in query time.

For unstructured data such as Unif, both learned indices display similar asymptotic
trends, with the logarithmic PGM using approximately 30 percent fewer segments. Here, the
complexity appears to scale as Ω(n) for both methods, suggesting that learned indices offer few
to no improvements in the absence of exploitable structure. Surprisingly, the Drifter data –
despite its geometric origin – shows similar results to that of Unif. Again, complexity scales
linearly, and the logarithmic method outperforms the dynamic one by around 30 percent.
This implies that whatever latent geometric structure exists is insufficiently captured by the
learned index under either strategy.

An interesting observation is that, on unstructured data, the imposed bucketing of the
logarithmic PGM index can introduce a form of regularity that the model benefits from,
essentially imposing artificial structure where none exists.

7.2 Running time comparisons

Recall that our indexing structure is composed of a learned index over a vertical ε-cover and
a paging structure. We first examine the performance of both the learned index in its own,
and then the performance of the full indexing structure.

For the dynamic scenarios, we first follow the precedence set by prior papers [16, 21].
These first construct, insertion-only, the indexing structure. They then perform a batch of
10M operations These batches consist of insertions, deletions, and range queries over ranges
such that the output contains approximately

√
n

10 elements. We deviate from the precedent by
also deleting from the index before performing a batch of operations, to simulate a scenario
in which the structure has existed and transformed prior to processing.

E. T. Gæde, I. van der Hoog, E. Rotenberg, and T. Stordalen 64:13

Figure 6 The complexity of the learned indices throughout insertion-only construction. The top
graphs represent geometrically structured data. The left graphs represent synthetic data.

7.2.1 Maintaining a learned index

Figure 7 shows the cost of maintaining each learned index under dynamic operations. Our
update procedure, which ensures worst-case O(log2 n) bounds, performs significantly worse
than the amortised O(log n) updates offered by the logarithmic method – especially on larger
datasets such as Longitude and Unif. On smaller datasets like Drifter, the gap narrows,
but the logarithmic method generally remains preferable in these update-only scenarios.

Figure 7 Update times for maintaining the learned index dynamically.

ESA 2025

64:14 A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

7.2.2 Indexing data structures
We next assess the complete indexing structures under mixed workloads. Batches contain a
tunable ratio of queries and updates, where updates are evenly split between insertions and
deletions, and operations are randomly ordered. More experiments can be found in the full
version. For the Lines dataset, updates are constrained to a single line segment to preserve
its idealised structure. For smaller datasets, batch size is limited to 25 percent.

Adversarial workload (ADV). In the above scenario by [16, 21], an update batch of 10M

operations affects less than ten percent of the data. Therefore, we do not encounter the
worst case scenario where range queries take O(N + ε +

∑⌈log n⌉
i log |fi|) time. So, the worst

case difference in performance does not come to light. Therefore, we additionally construct
an adversarial scenario consisting of 10M range queries after deleting all but 1.000 values.

Figure 8 Time per operation in dynamic scenario with varying query ratios. For the LINES data
set updates are restricted to points on a single line. The ADV ratio denotes the adversarial case
where all but a constant number of elements are deleted before the structure is queried.

Operational performance. Figure 8 summarises the total processing time under varying
query-to-update ratios. Structured datasets, particularly Longitude, reveal a trade-off
between the fact that we have a lower-complexity learned index and our update time. On
one hand, our updates are costly due to our line-merging tests which suffer from the poor
cache behaviour from pointer-based trees, and complex rebalancing that is present in the
state-of-the-art practical dynamic convex hull data structures. This behaviour is also reflected
on our previous analysis of maintaining the learned index itself. On the other hand we see

E. T. Gæde, I. van der Hoog, E. Rotenberg, and T. Stordalen 64:15

on geometrically structured data that, as the query ratio increases, performance improves.
This trend is absent in the Lines data, where updates are constrained and the structure is
small, mitigating cache penalties. Here, running time is largely driven by query processing,
which increases as expected with query ratio.

In contrast, the random data from the Unif dataset shows improved performance with
higher query ratios. In our data structure, having smaller segments reduce restructuring
costs. Our dynamic implementation suffers greatly from cache inefficiency due to random
access during range reporting. The logarithmic PGM, with its lower memory overhead and
sequential layout, delivers significantly better performance – particularly as sizes increase.

For the Drifter data, one would expect a trend similar to that of the Unif data, based
on the complexity of the ε-cover shown in Figure 6. However, there is little difference in
performance for either PGM as the query ratio is varied. This is likely due to the small size
of the data set, with both structures performing updates in fractions of microseconds on
average. The logarithmic PGM does come out slightly on top, likely due to the machine
friendly memory access pattern.

Adversarial impact. Across all datasets, the logarithmic PGM’s tombstoning strategy
becomes a bottleneck in the adversarial scenario. Its range queries must scan and subtract
deleted values before outputting results. Our structure, by contrast, is output-sensitive and
avoids such overhead. This illustrates that our data structure, whilst being generally less
efficient that the logarithmic PGM, offers worst-case guarantees.

8 Conclusion

We studied dynamic learned indices through a geometric perspective. Following the work
of Ferragina and Vinciguerra [16], we maintained a learned index hε of a dynamic set S as
a piecewise-linear approximation – an ε-cover – of the rank-space point set FS . We used
techniques from computational geometry to answer the following question:

“Can a learned index be dynamically maintained with worst-case guarantees?”

We proposed a new approach to maintain a learned index based on dynamic convex hull
data structures. We presented an O(log2 n) time algorithm to dynamically maintain a
learned index hε. To obtain this algorithm, we showed an algorithm to compute a separating
line between two non-intersecting convex hulls – an operation previously missing from the
literature. The existing logarithmic PGM index has an amortised O(log n) time update
algorithm which is more efficient in practice. Indeed, although close in theory, the memory
access pattern associated with dynamically maintaining convex hulls incurs heavy penalties
for large datasets. At the same time, the resulting learned index of the logarithmic PGM,
h′

ε, can be considerably more complex on geometrically structured data.

From learned indices to indexing. Finally, we considered the following question:

“Can a dynamic learned index be converted into a dynamic indexing data structure?”

To this end, we designed a hybrid technique combining hashing-based fast-access data struc-
tures with a doubly linked list to support indexing queries. Our method offers output-sensitive
worst-case guarantees, even in the presence of deletions. As it is known that traditional
indexing structures currently outperform learned indices in the general dynamic setting [33],
we focused our comparisons on improving the theoretical and practical performance within
the class of learned approaches.

ESA 2025

64:16 A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

In practice, the contiguous memory access of the logarithmic PGM index offsets its
overhead from querying multiple structures, making it faster in all scenarios, except for
an adversarial one. This means that the lower complexity of our learned index does not
immediately translate to improved efficiency in the indexing data structure. This raises an
interesting open question of whether memory-access efficient fully dynamic approaches to
convert a learned index into a dynamic indexing structure can exist.

While we acknowledge that our update-times are slow in comparison with state-of-the art,
our approach does illustrate that it brings worst-case guarantees: as it has an advantage when
the query-to-update ratio is large and the index has undergone sufficiently many deletions.
In adversarial workloads with frequent deletions followed by range queries, we have seen
our structure outperform the logarithmic approach – highlighting the value of worst-case
guarantees even in specialised settings.

Closing thoughts. We showed what we believe is an interesting connection between the
geometric learned index by Ferragina and Vinciguerra, and dynamic convex hulls from
computational geometry. We subsequently provided an implementation of a dynamic learned
index that relies on the state-of-the-art dynamic convex hull maintenance algorithms. Our
empirical analysis shows that the complex tree rebalancing that is used to dynamically
maintain a convex hull currently brings considerable operational overhead compared to low-
memory techniques under the logarithmic method. Our experiments, though not uniformly
favourable, offer interesting insights into the current barriers and adversarial tradeoffs between
worst-case dynamic algorithms and memory-efficient amortised rebuilding schemes.

References
1 Manos Athanassoulis and Anastasia Ailamaki. Bf-tree: approximate tree indexing. In

International Conference on Very Large Databases (VLDB), 2014.
2 Luis Barba and Stefan Langerman. Optimal detection of intersections between convex

polyhedra. ACM-SIAM Symposium on Discrete Algorithms (SODA), 2015.
3 Michael A Bender, Erik D Demaine, and Martin Farach-Colton. Cache-oblivious b-trees. In

Symposium on Foundations of Computer Science (FOCS). IEEE, 2000.
4 Chee-Yong Chan and Yannis E Ioannidis. Bitmap index design and evaluation. In ACM

International Conference on Management of Data (SIGMOD), 1998.
5 B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions.

Journal of the ACM, 1987. doi:10.1145/7531.24036.
6 Bernard Chazelle and David P Dobkin. Detection is easier than computation. In ACM

Symposium on Theory Of Computing (STOC), 1980.
7 Jacobus Conradi and Anne Driemel. Finding complex patterns in trajectory data via geometric

set cover. CoRR, abs/2308.14865, 2023. doi:10.48550/arXiv.2308.14865.
8 Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian

Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, et al. Alex: an updatable
adaptive learned index. In ACM International Conference on Management of Data (SIGMOD),
2020.

9 David Dobkin and Diane Souvaine. Detecting the intersection of convex objects in the plane.
Computer Aided Geometric Design, 1991. doi:10.1016/0167-8396(91)90001-R.

10 David P. Dobkin and David G. Kirkpatrick. Fast detection of polyhedral intersection. Theor-
etical Computer Science (TSC), 1983. doi:10.1016/0304-3975(82)90120-7.

11 David P. Dobkin and David G. Kirkpatrick. Determining the separation of preprocessed
polyhedra - a unified approach. In International Colloquium on Automata, Languages and
Programming (ICALP), 1990.

https://doi.org/10.1145/7531.24036
https://doi.org/10.48550/arXiv.2308.14865
https://doi.org/10.1016/0167-8396(91)90001-R
https://doi.org/10.1016/0304-3975(82)90120-7

E. T. Gæde, I. van der Hoog, E. Rotenberg, and T. Stordalen 64:17

12 Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven Schönherr.
On the design of cgal a computational geometry algorithms library. Software: Practice
and Experience, 30(11):1167–1202, 2000. doi:10.1002/1097-024X(200009)30:11\%3C1167::
AID-SPE337\%3E3.0.CO;2-B.

13 Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. Why are learned indexes so effective?
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
3123–3132. PMLR, 2020. URL: http://proceedings.mlr.press/v119/ferragina20a.html.

14 Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. On the performance of learned data
structures. Theor. Comput. Sci., 871:107–120, 2021. doi:10.1016/J.TCS.2021.04.015.

15 Paolo Ferragina and Giorgio Vinciguerra. Learned data structures. In Recent Trends in
Learning From Data: Tutorials from the INNS Big Data and Deep Learning (INNSBDDL).
Springer, 2020.

16 Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-dynamic compressed learned
index with provable worst-case bounds. International Conference on Very Large Databases
(VLDB), 2020.

17 Emil Gæde, Inge Li Gørtz, Ivor Van Der Hoog, Christoffer Krogh, and Eva Rotenberg. Simple
and robust dynamic two-dimensional convex hull. ACM Symposium on Algorithm Engineering
and Experiments (ALENEX), 2024.

18 Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen. A Dy-
namic Piecewise-Linear Geometric Index with Worst-Case Guarantees. Software, Carls-
berg Fonden CF21-0302, Villum Fonden VIL37507, Marie Skłodowska-Curie 899987, sw-
hId: swh:1:dir:b8763eb0504d33beb81ee89d230a30dca8ab0b66 (visited on 2025-09-03). URL:
https://github.com/Sgelet/DynamicLearnedIndex, doi:10.4230/artifacts.24667.

19 Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen.
Testbed for our learned index repository. Software, Carlsberg Fonden CF21-
0302, Villum Fonden VIL37507, Marie Skłodowska-Curie 899987, swhId:
swh:1:dir:07ea25cfc176438933c1a5507bfdad3ba9461ab6 (visited on 2025-09-03). URL:
https://github.com/Sgelet/LearnedIndexBench, doi:10.4230/artifacts.24668.

20 Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska.
Fiting-tree: A data-aware index structure. In ACM International Conference on Management
of Data (SIGMOD), pages 1189–1206, 2019. doi:10.1145/3299869.3319860.

21 Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim
Kraska, and Thomas Neumann. Sosd: A benchmark for learned indexes. Conference on Neural
Information Processing Systems (NEURIPS), 2019.

22 Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska,
and Thomas Neumann. Radixspline: a single-pass learned index. In International workshop
on exploiting artificial intelligence techniques for data management, 2020.

23 Nick Koudas. Space efficient bitmap indexing. In ACM international conference on Information
and knowledge management (SIGMOD), 2000.

24 Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In ACM International Conference on Management of Data (SIGMOD), 2018.

25 Yuming Lin, Zhengguo Huang, and You Li. Learning hash index based on a shallow autoencoder.
Applied Intelligence, 2023.

26 Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons
Kemper, Thomas Neumann, and Tim Kraska. Benchmarking learned indexes. Proc. VLDB
Endow., 14(1):1–13, 2020. doi:10.14778/3421424.3421425.

27 Joseph O’Rourke. An on-line algorithm for fitting straight lines between data ranges. Com-
munications of the ACM, 1981.

28 Joseph O’Rourke. Computational geometry in C (second edition). Cambridge University Press,
USA, 1998.

ESA 2025

https://doi.org/10.1002/1097-024X(200009)30:11%3C1167::AID-SPE337%3E3.0.CO;2-B
https://doi.org/10.1002/1097-024X(200009)30:11%3C1167::AID-SPE337%3E3.0.CO;2-B
http://proceedings.mlr.press/v119/ferragina20a.html
https://doi.org/10.1016/J.TCS.2021.04.015
https://archive.softwareheritage.org/swh:1:dir:b8763eb0504d33beb81ee89d230a30dca8ab0b66;origin=https://github.com/Sgelet/DynamicLearnedIndex;visit=swh:1:snp:4cb5f98448fd35e1092239476b3dd4b7fa157fa9;anchor=swh:1:rev:e668899dab95046384f68723e53e0aacbad32feb
https://github.com/Sgelet/DynamicLearnedIndex
https://doi.org/10.4230/artifacts.24667
https://archive.softwareheritage.org/swh:1:dir:07ea25cfc176438933c1a5507bfdad3ba9461ab6;origin=https://github.com/Sgelet/LearnedIndexBench;visit=swh:1:snp:b64d98b5a181116695f4f7960511292c6601df13;anchor=swh:1:rev:c3ad0ca2e0149fd2be070b37ba57b12a447bbf71
https://github.com/Sgelet/LearnedIndexBench
https://doi.org/10.4230/artifacts.24668
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.14778/3421424.3421425

64:18 A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

29 Mark H Overmars. The design of dynamic data structures, volume 156. Springer Science &
Business Media, 1983. doi:10.1007/BFB0014927.

30 Mark H Overmars and Jan Van Leeuwen. Maintenance of configurations in the plane. Journal
of computer and System Sciences, 1981.

31 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 2004.
32 Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In ACM

Symposium on Theory of Computing (STOC), 2006.
33 Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. Learned index: A comprehensive experimental

evaluation. Proc. VLDB Endow., 16(8):1992–2004, 2023. doi:10.14778/3594512.3594528.
34 Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data

set for nonparametric object and scene recognition. IEEE transactions on pattern analysis
and machine intelligence, 2008.

35 Lukas Walther, Gerth Brodal, and Peyman Afshani. Intersection of convex objects in the
plane. Master’s thesis, Aarhus University, 2015. Available at https://cs.au.dk/~gerth/
advising/thesis/lukas-walther.pdf.

36 Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big
data—a survey. Proceedings of the IEEE, 2015.

37 Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael Kaminsky,
and David G Andersen. Building a bw-tree takes more than just buzz words. In ACM
International Conference on Management of Data (SIGMOD), 2018.

38 Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo, and Tianzheng Wang.
Are updatable learned indexes ready? International Conference on Very Large Databases
(VLDB), 2022.

https://doi.org/10.1007/BFB0014927
https://doi.org/10.14778/3594512.3594528
https://cs.au.dk/~gerth/advising/thesis/lukas-walther.pdf
https://cs.au.dk/~gerth/advising/thesis/lukas-walther.pdf

	1 Introduction
	2 Preliminaries
	3 Testing whether a set can be eps-covered by a single segment
	4 Robustness
	5 Dynamically maintaining a learned index
	6 From an eps-cover to an indexing structure
	7 Experiments
	7.1 The learned index complexity
	7.2 Running time comparisons
	7.2.1 Maintaining a learned index
	7.2.2 Indexing data structures

	8 Conclusion

